
Secrecy in concurrent version control systems

Jerônimo Pellegrini

1Instituto de Computação – Unicamp

jeronimo@ic.unicamp.br

Abstract. This paper describes two cryptographic protocols for incorporating
secrecy in concurrent version control systems in such a way that neither text nor
passphrases are ever sent to possibly hostile servers. One of the protocols works
for centralized and one for distributed version control systems. Most operations,
as defined by the protocols, take linear time on the size of keys or the size of
changes made to the content, and the most frequent ones do notdepend on the
number of users. Both protocols rely on a public key infrastructure for access
control.

1. Introduction

The development of programs and documents by groups of people is often done using
version control systems (VCSs). Today these tools play a central role in software config-
uration management [7, 3]. Current VCSs have authentication mechanisms and support
secure transmission of data between client and server (or between peers in distributed
systems), but to the best of our knowledge none of them offer agood degree of secrecy so
that they can be installed on a hostile server. A recent survey on the development of soft-
ware configuration management by Estublier and others [3] does not mention secrecy or
encryption; no article in the proceedings of the 12th International Workshop in Software
Configuration Management mentions secrecy either [6]. However, there are situations
where secrecy is desirable:

• The version control system is hosted by a specialized third party. The company
may trust this third party’s technical competence, but not want to share important
secrets with them;
• The company has competent system administrators, but does not want them to

know more than the necessary in order to perform their job;
• If the hosts with the versioned content are stolen, the secrets in them could be used

by a malicious third party.

This paper describes two protocols that bring secrecy to version control systems.
The structure of this paper is as follows: Section 2 gives an overview of version control
systems; Section 3 describes two protocols for incorporating secrecy into VCSs; Section
4 describes the implementation of a prototype for distributed VCSs; finally, Section 5
presents our conclusions and future work.

2. Concurrent version control systems

The basic goal of concurrent version control systems is to allow different users to work on
the same content, while keeping a history of changes and allowing users to undo changes

if necessary. If two users make changes to the same part of thecontent, the system can
at least notify them of the conflict. Version control systemsusually have a client/server
architecture. Before we explain the possible variations onthis basic paradigm, there are
some important concepts related to version control systemsthat need to be presented:

• Repository: this is where all content, along with the versioning meta-data, is
stored. The repository may be centralized, replicated or distributed;
• Working copy: the directory tree with a copy of the content in order to make

changes before sending them back to the repository;
• Revision: also calledversion. This is usually a natural number or a string com-

posed of numbers and separators (like “2.1.13”) that identifies the version of a file.
It may also be a cryptographic hash (as in Monotone[9], for example). There is
usually a partial order among these numbers (the order is partial when we have
“branching” of the content);
• Delta: the differences between two revisions of the content. Thismay be a tra-

ditional Unix diff (a “patch”), or an xdelta [8], which work for binary data. The
delta between two revisions is usually composed of the deltas between the revi-
sions of the files. Some systems are able to compute the deltasof binary files and
filesystem metadata, while others are not;
• Branch: sometimes it is necessary to split the content into different “branches”.

The same content tree is (logically) duplicated in the repository, and changes are
made to each of them separately. For example, several software developers are
working on a program. One of them may need to implement new features that
impact the core of the program. This may be done in a new branch(so it will not
impact the work of other developers), while the others work on the “main” branch.
Later it is possible to incorporate changes from one branch into another;
• Head: when several users are working on different branches, there are several

different revision sequences from the first version to the versions being worked on
by different users. The latest versions in each branch are called “heads” (in some
systems there is the notion of “heads of a branch”, but for thesake of simplicity
we don’t use it);
• Merge: the different copies of the content will eventually need tobe merged and

turned into one. There are a number of different algorithms for merging all ver-
sions. These algorithms can identify and to some extent resolve conflicts between
the different versions (for example, if two users make changes to the same file, but
in different points, then both changes can be applied, one ata time).

Version control systems usually implement different paradigms (all of them de-
rived from the basic idea presented before). However we werenot able to find a cat-
egorized description of all of them. We have decided to briefly describe some of the
characteristics of version control systems that are relevant to this work.

• Centralization: the system may becentralized, replicatedor distributed, depend-
ing on the possibility to have different data repositories storing different versions
of the same content. Distributed version control systems are more recent, and new
merging algorithms have been developed for them [1, 9, 2, 4].Even if repositories
are distributed, it is convenient to have a set of hosts working as servers;

• Concurrency control: if two users try to modify the same piece of information,
there is a conflict. The system may avoid conflicts by using a lock – this is called
thelock-modify-unlockparadigm – or it may just identify these conflicts, and leave
the resolution to the users (as in most open source and free systems) – this is the
copy-modify-mergeparadigm;
• Data representation: the system may represent, store and transmit data in dif-

ferent ways. One possibility is to store the original version of each file, and then
store deltas that can be applied in sequence in order to obtain later versions of the
files Another approach is to periodically store a “whole version” of each file, to
avoid applying too many deltas. Also, some systems may storedirectory trees,
links, and possibly other filesystem meta-data, while others are not able to do that;
• Signing of changes: some version control systems allow for the cryptographic

signing of deltas, making it possible to trace changes done to the content. A pub-
lic key infrastructure is required, and different users of the version control system
may verify, in the history logs, who incorporated a specific change. This is partic-
ularly important in the open source and free software context, where the content is
developed with the help of contributors that are not bound bya contract (as would
happen in a software development business, for example). This is necessary be-
cause of copyright and patent concerns (it should be possible to quickly identify
an offending piece of code), and also for security reasons (adelta that introduces
a trojan horse would need to be signed by someone).

In the rest of this paper, we will deal with systems that represent data as an initial
revision and a sequence of deltas. We will present one protocol centralized and one for
distributed systems. The protocols work for both conflict handling methods, and integrate
smoothly with systems that have support for cryptographic signatures, as the protocols
themselves need a PKI.

2.1. Dynamics of version control systems

This subsection describes the dynamics of version control systems and defines some op-
erations that are relevant to understanding the protocols.This is neither standard nor is it
the only way to describe these systems, but it is enough for our purpose.

2.1.1. Centralized systems

We start with the framework implemented by open source systems like CVS [12] and
Subversion [11]: these are centralized, use the copy-modify-merge paradigm, and store
sequences of deltas.

• Grant andRevoke: a new user may be granted access to one project in the repos-
itory, and an existing user may have his access revoked in thesame way;
• Import : one user sends an initial version of all the data to the server. All needed

meta-data is also created and stored on the server;
• Checkout and Update: one user asks for a specific revision of the repository.

It could be “the latest version”, or some other, like “the version of yesterday at
midnight”, or “version 143”, and so on. If the user did modifications to his own
working copy, then the client will identify that and try to merge the changes done

Main branch

Branch X is created The two branches are mergedBranch X

Figure 1. The creation of a new branch, and the later merge of the two branches.

by the user and the new version of the file that came from the server. If that is
not possible, the client warns the user that a conflict happened. A destination path
should be specified;
• Checkin: one user finished his modifications on the data, and sends to the server

a delta that represents the differences between the latest revision (that is on the
server) and his new version of the content. In most systems, this cannot be done if
the user’s working copy is outdated. However, the operationdescribed here allows
the user to specify a version on top of which the modificationswill be applied. If
the version was not the latest one, then a branch is created;
• Rollback: one user tells the server that a previous revision should now be consid-

ered the latest;
• Branch andMerge: given a branchb1 and versionv1, a new branchb2 may be

created from there. Also, given two versionsv1 andv2 of two branchesb1 andb2,
it is possible to merge both intob1; Figure 1 illustrates this;
• Delta: given a repository, project and branch, it is possible to compute the differ-

ence between any two versions of the content. The same can be done using one
version of the content in the repository and one working copy;
• Apply : a delta is applied to a working copy, and only later sent to the server.

There are other operations, like editing log entries, checking the history, and oth-
ers. We have ignored most of them, since they can be treated the same way as checkins
and checkouts.

Content repositories are often stored in trusted hosts, andthe communication be-
tween the server and the users’ workstations goes through anencrypted channel.

2.2. Distributed systems

This section briefly present distributed version control systems. Some examples are
Monotone [9], Git [4] and Darcs [2].

These systems work just like centralized systems, except that instead of one cen-
tral repository, there are several of them. A project may exist in a number of different
hosts (usually one per user), and the deltas in each host may be different, since each user
applies deltas to his local repository. Of course, there is away to exchange the differences
between two repositories, so that the project will have the same deltas on both of them.
This is calledsynchronizing. The operations used in decentralized systems are the same
for centralized ones, plus the following:

• Synchronize: given two repositories, a synchronization operation willexchange
deltas between them so they will be identical at the end. Thismay result in a
repository with multiple heads, as if branches had been performed (one can see
the existence of different repositories as different branches of the project);

working copy

working copyrepository

repository

updates / commits
synchronization

updates / commits
Ann (A)

Bernard (B)

Figure 2. Two users with two repositories.

• Merge: merging algorithms for distributed version control systems are different
from those for their centralized counterparts, since it maybe necessary to merge
multiple heads.

Figure 2 shows two users, each with his own repository (some systems hide the
repository in the working copy, so the difference between them is not percieved by the
user). Suppose Ann (A) and Bernard (B) have just synchronized their repositories so they
have the exact same versions of the content. Then A and B startworking independently.
This will create divergence between their repositories: ifthere was a single sequence of
revisions from version to version before, then there will betwo sequences that diverge
from the synchronization moment. Now, A and B may synchronize repositories again
later. This will cause the repositories to be identical again – but both repositories will
have both sequences, with two different “heads”. These two heads may be merged, and
then there would be one single head again. After the repositories are synchronized, it
will seem to both users as if a branch had been made (as in centralized version control
systems). The difference is that the branches were not explicitly created, and were in
different repositories (each user is not necessarily awareof what happens in the other
user’s repository). Since this may happen with several users, a directed acyclic graph
should be used to represent the ancestry of revisions.

In this work, the termshared repositoryis used for the hypothetical repository that
would be the result of synchronizing all users’ repositories. Informally, it’s the “complete”
version of the content, with all changes in all different repositories.

Section 3 explains how these operations can be changed so that no host ever stores
the data without being encrypted.

3. The protocols

The goal of the protocols is to allow the VCSs to work without ever letting data go in clear
to shared repositories (which can be hosted on hostile servers). To achieve this, every user
needs to encrypt everything that he sends, and decrypt everything that he receives from
any servers. The content deltas are computed as usual, but they are encrypted afterwards.
This is done using a symmetric cipher and one single keyk, shared by all users, but not
by the servers: the key is only used by someone that needs to have a working copy. If
the key is compromised, a new key is selected, and all users are informed. A public
key infrastructure is needed (it could be the same used for the signing of deltas, when
available), and the symmetric keyk is encrypted with the users’ public keys.

The following subsections describe the notation used in this work, the common
part of both protocols, and the version control operations for both centralized and dis-
tributed versions of the protocol. In the common part of the protocol, we use “shared

repository” for either the server (in a centralized system)or the collection of repositories,
as mentioned before (for distributed systems).

Notation

In the specification that follows,IDX is “a unique identifier for userX”; all single capital
letters (e.g.,A, B) exceptK denote users (clients) of the system, each of them having a
working copy;G is the group of users;KA is “A’s public key”; K is a list of symmetric
keys;M is a mapping from revisions onto natural numbers;R is the set of all revisions;
δi is the i-th delta stored on the repository (andδ0 for the initial version of the content);
∆r is the set of all deltas in a repositoryr; G is a group of users;Σ is a shared repository;
| is used for concatenation;{m}k means “messagem encrypted with keyk”; A → B is
“A sends a message toB”.

The protocol assumes the existence of an administrative group of persons (
∗

G⊆ G),
with administrative privileges; a star above a capital letter denotes one user in this group

(
∗

C, for example).

3.1. Access control

This subsection describes access control, which is identical in both protocols.

Authentication is left to the underlying version control system. In centralized sys-
tems, users authenticate against the server. In distributed systems, users rely upon a PGP-
like PKI in order to have some degree of confidence on data origin (all distributed version
control systems support cryptographic signing of deltas).However, the authentication of
entities who sign the deltas depend on how users build their web of trust.

3.1.1. The key list

Each user will have a copy of the following:

• A list of usersG;
• A list of keysK = (k1, k2, . . . , kn), with all the symmetric keys used to encrypt

the content;
• A mapping from keys onto revisionsM : K 7→ R.

This information is only transmitted to the user after beingencrypted with the
user’s public key.

Since at any moment it may be necessary to switch to a new symmetric key, all
users should have a list of all keys used, and the revision number when they started being
used. With this, it is possible to decrypt all the deltas, oneby one, using the appropriate
keys for each of them.

The key list can be stored in a special location along with thecontent being ver-
sioned. Exchanging protocol metadata can be done, then, by adding or changing files as
if they were versioned also.

3.1.2. Access grant

A new user A may be granted access to a project. The user sends arequest to the ad-
min group for that project, and one of the admin group memberswill send the key list
encrypted with the user’s public key to the repository (where the user can read it).

G = G ∪ {A}
∗

B→ Σ : M, {K}KA

3.1.3. Access revocation

A userA may have his access to a project revoked. It does not matter ifhe can read the
current version of the data (because he did that in the past anyway), but he should have
no access to future versions. The admin group will, then, pick a new keykn+1, and future
patches will all be encrypted with it. This new key is encrypted with the remaining users’
public keys, and stored in the repository as the latest key.

G = G \ {A}
K′ = K ∪ {kn+1}
M′ =M∪ {n + 1 7→ kn+1}

∀C ∈ G,
∗

B→ Σ : {K′}KC
|M′

3.1.4. Asymmetric key expiration, revocation and compromise

If a user’s asymmetric key expires (or if he decides to revokeit), and there is no reason
to believe that the symmetric keys were compromised, the user presents a revocation
certificate to an administrator and asks him to re-encrypt the key listK with his new
public key. The administrator sends the new key list to the shared repository.

A→ Σ : K ′
A

∗

B→ Σ : {K}K ′
A
|M′

However, if the user believes that his key has been compromised, we assume that
all the symmetric keys that he had were also compromised. Theuser then should perform
the usual procedure to revoke his old public key, but the procedure described in subsection
3.1.5 for symmetric key compromise also needs to be performed.

3.1.5. Symmetric key compromise

If a key ki ∈ K is compromised, the best that can be done is to suspend all access to
the project, pick a new keyk′

0, and use it to re-encrypt all deltas, one by one, encrypt the
new key with the public keys of all users and send the new keys and deltas to the shared
repository.

K′ = {k0}
M′ = {∀i, i 7→ k0}

∀δi,
∗

B→ Σ : {δi}k′
0

∀A ∈ G,
∗

B→ Σ : {K′}KA

∗

B→ Σ :M

3.2. The protocol for centralized systems

This section describes the protocol we propose for centralized version control systems,
showing how the operations in section 2.1 should be changed.

3.2.1. Import

When a user does an initial import, a first symmetric keyk0 is randomly generated, and all
the content to be imported is encrypted with it. The keyk0 is then encrypted with the keys
of all the users in the project group (G). This first key list is then added to the versioned
content, in a special location, before the import is actually sent to the server.

A→ Σ : {δ0}k0

∀B ∈ G, A→ Σ : {k0}KB

3.2.2. Checkout/update

The server sends all the deltas that the user needs to reach the latest version of the repos-
itory. Note that this is different from what sometimes happens with version control sys-
tems, where the whole content is sent at once. Usually, the server can calculate the delta
from one revision to another, but in this case, the content isencrypted, so the deltas need
to be decrypted at the user’s side.

Besides the deltas, the user will also receive the latest version of the key list and
key mapping. In the following,A is an ordinary user, andB belongs to the admin group.
This is how the user asks forr2, and his working copy isr1:

A→ Σ : checkout, IDA

Σ→ A :M, {K}KA

∀ δi, r1 < i < r2Σ→ A : {δi}kM(i)

If one is concerned about the number of deltas to be applied, it is possible to
regularly update a new complete version of the content (for example, everytime after a
number of deltas, or after a fixed number of bytes). Then the number of deltas to be
applied would be limited to the distance to the next completeversion.

3.2.3. Checkin

The user tells the server that he wants to commit. The server will only allow that if the
user has the latest version of the repository (i.e., he may need to issue an update first).
The user is only allowed to commit if he has the latest key list(so he may need to update
it first). He will then encrypt his delta with the latest keykn and send it to the server.

A→ Σ : {δi}kn

3.2.4. Rollback

It is usually enough to just send a “rollback” instruction tothe server, telling which old
revision should it rollback to. The server will then ignore the deltas that were applied
after that revision.

A→ Σ : rollback, ri

3.2.5. Branching and merging

Let us suppose that the current version of the content isi. A userA opens a new branch,
called “branch X”, and commits some changes. Another user,B, commits changes to the
main branch. We have, then, two deltas that may be applied to versioni:

• δi+1: applying this delta will result in the version of the main branch after the
modifications made byB;
• δX0 applying this delta will result in the version of the new (X) branch, modified

by A.

All that our protocol needs is that the revisions be identified uniquely so that we
can maintain the mappingM, so there is no need for any special provision for branching.

Merging the two branches mentioned above is also done by applying deltas to both
branches, so it doesn’t require anything special either.

3.2.6. Conflicts

We will discuss conflicts for two different version control paradigms:

Lock-modify-unlock In thelock-modify-unlockparadigm, conflicts never actually hap-
pen, but users may need to lock the content at the server. If a whole revision of the project
is locked at each time, then the server only needs to rememberwho was the user who
locked that revision. However, for more fine-grained locks aproblem arises: since the
lock may contain sensitive information (like who is workingon what part of the project,
or even the layout of the project’s directory tree), the locks should not be stored in clear
text on the server. We can only see one solution to this problem: the locks can be imple-
mented as part of the content, so they will not be stored in clear text on the server and the
client software becomes responsible for not modifying content that is marked as locked.

Copy-modify-merge In the copy-modify-mergeparadigm, conflicts are identified and
resolved, as much as possible, by the client, and not on the server. This is done at the
user’s workstation after the content has been decrypted – soconflict resolution in this
paradigm is out of the scope of the protocol.

3.3. The protocol for distributed systems

In a distributed version control system, there will be two different instances of each repos-
itory: one clear and one encrypted. The encrypted repository will keep the access control

public
repository

private
repository

private
working copy

public
rpository

private
working copy

private
repository

synchronize

updates/commits

updates/commits

Ann (A)

Bernard (B)

encrypt/decrypt

encrypt/decrypt

Figure 3. The repositories and working copies of two users.

data and all deltas from the clear repository. The deltas will of course be encrypted in
this repository. All version control operations between working copy and clear repository
work as usual (including rollbacks and conflict handling), since they are both on the same
host. Synchronization between hosts is done by synchronizing the encrypted repositories
in both hosts. The encrypted repository will be called the “public” one, and the clear
repository the “private” one.

Figure 3 above shows user A (on top) and user B (at bottom). Each user has
one private repository and working copy, and also one publicrepository. Signatures from
private repositories are also encrypted, and decrypted back in the other repository; another
signature may added to the encrypted delta.

In distributed version control, each user decides which other users he will trust
(and consequently which deltas will be accepted when synchronizing repositories), so we
can assume that each repository has one single administrator. Only the Grant and Revoke
operations are defined:

A userA grants access to a userB on his repository by addingB’s public key
to his public repository, and encrypting the keymapM and the keysK with B’s public
key. WhenB synchronizes withA’s public repository, he will be able to decrypt all deltas
using his private key.

UserA revokes access from userB on his repository by removingB’s public key
from his public repository and immediately picking a new symmetric keyk. If B has
access toA’s repository, he will not be able to decrypt the new deltas that were encrypted
with k.

For example, supposeA andB are using the same symmetric key,k. A decides to
revoke Eve’s access to the repository, and generates a new key k′. Meanwhile,B revokes
Malice’s key, and generates a new keyk′′. If A andB agree on honoring each other’s
revocations, then they may keep the intersection of authorized users only. After they
synchronize their databases, a third keyk′′′ (that neither Eve nor Malice knows) should be
created. This situation can be detected by checking the keylists during synchronization of
public repositories. LetGA andGB be two lists of users before the synchronization of the
public repositories;KA andKB the two key lists. Then the new user listG and key listK
can be generated as:

G ← GA ∩ GB

K ← KA ∩ KB

If GA * GB andGA + GB, generate a new keyk′′′ andK ← K ∪ {k′′′}

And k′′′ is used as the latest key.

3.3.1. Synchronizing private and public repositories

The encrypted deltas are stored in the public repository along with their interdependencies
(the deltas and their interdependencies form a directed acyclic graph, as mentioned before,
and the synchronization algorithm needs to list the deltas in topological order). The public
and private repositories may be synchronized using Algorithm 1.

Input :
∆U , the set of all deltas in the public repository;
∆R, the set of all deltas in the private repository;
W U , a scratch working copy for the public repository;
W R, a scratch working copy for the private repository;
K, the list of symmetric keys;
R, the list of revisions;
M, the mapping of keys onto revisions.

Checkout (W U , 0);1

Checkout (W R, 0);2

forall δi,j ∈ ∆R \∆U do3

k ← KM(j);4

Update (W U , i);5

Add(W U , {δi,j}k);6

Add(W U , dep(i, j));7

Checkin(W U , j);8

end9

forall δi,j ∈ ∆U \∆R, in topological orderdo10

k ← KM(j);11

Update (W R, i);12

Apply (W R, {δi,j}k);13

Checkin(W R, j);14

end15

Algorithm 1: Synchronization of public and private repositories.

In the synchronization algorithm, we use the following functions:

• Checkout (W, i): checks out revisioni into working copyW . In the case of the
first private working copy, Checkout (W R, 0) will use the first symmetric key from
the list;
• Apply (W, δi,j): applyδi,j to W , so the working copy will be identical to revision

j;
• Add (W U , δ): given a delta (δ), store it as a filein the public repository;
• Add (W U , dep(i, j)): in the public repository, add the edge (i, j) to the graph that

represents delta interdependency;
• Checkin (W, i): commits changes to the working copyW , using the revision

numberi;

Operation Time (centralized) Time (distributed)

Import s(|δ0|) —
Checkin a(|k|) + s(|δi|) —
Checkout s(|content|) —

Updateva → vb a(|k|) +
∑

a<i<b s(|δi|) —
Grant access a(|K|+ |M|) a(|K|+ |M|)

Revoke access a(|K|+ |M|) |G| a(|K|+ |M|) |G|
Synchronize(r1, r2) — |∆r1 \∆r2 | + |∆r2 \∆r1 |

Table 1. The cost of different operations using the proposed protocols.

3.4. Performance and memory overhead

The proposed protocol is light – Table 1 shows the time required by each operation. In
the table,k is the symmetric key,δi is the data that represents the difference between two
versions of the content, and|x| is used for “size ofx”. r1 andr2 are two repositories in a
distributed system.s(n) stands for “the time taken to encrypt or decrypt an object of size
n with the symmetric key k”;a(n) is “ the time taken to encrypt or decrypt an object of
size n with one of the asymmetric keysKZ”. The set of deltas in repositoryr is ∆r. The
operation “Updateva → vb” is the update of a working copy from versionva to version
vb. Note that for the checkout operation, the cost is proportional to the current size of the
content. The only operation that is affected by the number ofusers is the revocation of a
compromised key (because of the time it takes to encrypt the new key for all users); the
only operation that is affected by the total size of the content is the initial import. All
other operations depend on the size of deltas and on the size of the symmetric key (which
is negligible).

When a user performs a checkout or update, only the relevant part of the key list is
retrieved (that is, the symmetric key encrypted with his private key – the keys encrypted
for other users need not be retrieved).

If the cryptossystem or PKI needs to be changed, it may be necessary to re-encrypt
the whole key list history (which would not likely be too large anyway).

Both protocols require that each user stores additional information on his work-
station. The volume of extra information required is the size of the public repository (this
will depend on the compression algorithm used before the symmetric cipher and on the
size of the repository); the size of the key list (which depends on how often the symmetric
key is changed); and the keymap, which only adds one key ID andone delta ID per delta.
There is also the size of the keyring in the PKI, which dependson the number of users.

4. The implementation

We have implemented the protocol for distributed systems. The prototype is calledApso
and was written in C++. Figure 4 shows the core architecture:a PubRepository object has
a Keystore, a CryptEngine and a VCRepository (an abstraction layer for version control
systems). The CryptEngine and VCRepository classes shouldbe extended to describe
actual cryptographic libraries and version control systems (we have implemented a plugin
for the Nettle cryptographic library [10] and a plugin for the Monotone version control
system). Nettle was chosen because it is simple and small. Monotone was chosen because

PubDatabase PrivDatabase

VCRepositoryCryptEngine

CryptEngineNettle VersionControlMonotone

Keystore

CryptEngineCryptLib VersionControlGit

Figure 4. UML diagram for the core architecture of Apso.

it has direct support for extracting and injecting deltas. The Git and CryptLib plugins were
not implemented, and are there only as illustrations. Besides the core architecture, there is
a command-line interface and a Façade class for users who want to use Apso as a library.

Monotone is a totally distributed version control system that supports (and en-
forces by default) the signing of each commit made to the repositories, and uses a hash
of the delta as revision number. Each user may decide on a listof other users whose keys
will be accepted when incorporating changes to his local repository (which in Monotone
jargon is a “database”). Nettle is a cryptographic library that is small and only performs
cryptographic operations and does no resource allocation or I/O.

4.1. Implementation details

A public Apso repository is always linked to a private one andcontains the following tree:

apso/deltas/
apso/users/USER/public_key
apso/users/USER/keys/
apso/users/USER/keymap/

Wheredeltas is a directory where all the encrypted deltas are stored (filenames
are revision ids). Each user has oneUSERsubdirectory with a filepublic_key contain-
ing that user’s public key, and also two subdirectories:keymap , where each file maps
one revision onto a symmetric key id (in version control systems which support version-
ing of links, these are links to actual keys), andkeys , where all symmetric keys are stored
(filenames are key ids). Users keep their private keys wherever they find convenient, and
pass the key location to Apso .

For example, Alice has her key list underapso/users/alice/keys . When
she needs a specific keyki, she will find it in a fileapso/users/alice/keys/key_i .
Just ask is in the fileapso/users/alice/keys/k , the mapping for revisionr is in
the file apso/users/alice/keymap/r . It may be good to deny access to Alice to
other subdirectories, with other users’ keys, but the key lists are encrypted so it may be
unnecessary.

All version control operations work as usual on the private repository, and only
these three operations are defined in our implementation:

• Private and public repository synchronization: this is done using algorithm 1;
• Granting access: the administrators will encrypt all the symmetric keys andcheck

them in (in the public repository), so the user may check out his list later;
• Revoking access: someone in the admin group adds a new key to the list and

removes the user’s directoryapso/users/USER/ from the public repository.

Apso was tested withs AES as the symmetric cipher and RSA for encrypting the
AES keys (both provided by Nettle).

5. Conclusion

This paper described protocols for bringing secrecy to concurrent revision control sys-
tems. The protocols do not require servers to ever see eitherthe clear content or the
key used to encrypt it. Keys are encrypted using asymmetric algorithms, but the content
(which is supposedly larger than users’ keys) is only encrypted using symmetric ciphers.
The protocols also work for the non-merging revision control systems (those in which
locks are used to avoid conflicts). We have implemented the distributed protocol using an
extensible architecture. We plan to implement the same protocol in other modern version
control systems and use Elliptic Curve Cryptography [5] to speed up the revoke operation
when the number of users and the key history are large.

References

[1] Arch: a distributed version control system.http://www.gnuarch.org/ (May, 2006).

[2] Darcs: a revision control system.http://abridgegame.org/darcs/ (May, 2006).

[3] Jacky Estublier, David Leblang, Geoff Clemm, Reidar Conradi, Walter Tichy, André
van der Hoek, and Darcy Wiborg-Weber. Impact of the researchcommunity on the
field of software configuration management.Transactions on Software Engineering
and Methodology, 14(4):1–48, 2005.

[4] Git: Tree history storage tool.http://git.or.cz/ (May, 2006).

[5] D. Hankerson, A. Menezes, and S. Vanstone.Guide to Elliptic Curve Cryptography.
Springer-Verlag, 2004.

[6] E. J. Whitehead Jr. and Annita P. Dahlqvist, editors.Proceedings of the 12th International
Workshop on Software Configuration Management (SCM 2005), 2005.

[7] Alexis Leon. Software Configuration Management Handbook. Artech House, 2 edition,
2004.

[8] J. MacDonald. Versioned file archiving, compression, and distribution. UC Berkeley.
Available athttp://www.cs.berkeley.edu/˜jmacd/ (May, 2006).

[9] Monotone: a distributed version control system.http://www.venge.net/monotone

(May, 2006).

[10] Nettle: a low-level cryptographic library.http://www.lysator.liu.se/nisse/˜nettle/

(May, 2006).

[11] C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick. Version Control with
Subversion. O’Reilly, 2004.

[12] Dave Thomas and Andy Hunt.Pragmatic Version Control Using CVS. Pragmatic Book-
shelf, 2003.

