Secrecy in concurrent version control systems
Jerdnimo Pellegrini

!Instituto de Computag&o — Unicamp

jeronimo@ic.unicamp.br

Abstract. This paper describes two cryptographic protocols for inpmmating
secrecy in concurrent version control systems in such a hatyneither text nor
passphrases are ever sent to possibly hostile servers. f2he protocols works
for centralized and one for distributed version controlteyss. Most operations,
as defined by the protocols, take linear time on the size of &eyhe size of
changes made to the content, and the most frequent ones diepetd on the
number of users. Both protocols rely on a public key infrastinre for access
control.

1. Introduction

The development of programs and documents by groups of @eésmiften done using
version control systems (VCSs). Today these tools play aaewole in software config-
uration management [7, 3]. Current VCSs have authenticatiechanisms and support
secure transmission of data between client and server (areba peers in distributed
systems), but to the best of our knowledge none of them offi@cal degree of secrecy so
that they can be installed on a hostile server. A recent gwkghe development of soft-
ware configuration management by Estublier and others [8% i@t mention secrecy or
encryption; no article in the proceedings of thé"iaternational Workshop in Software
Configuration Management mentions secrecy either [6]. Hewehere are situations
where secrecy is desirable:

e The version control system is hosted by a specialized thartyp The company
may trust this third party’s technical competence, but nattto share important
secrets with them;

e The company has competent system administrators, but ddesamt them to
know more than the necessary in order to perform their job;

e Ifthe hosts with the versioned content are stolen, the teeréhem could be used
by a malicious third party.

This paper describes two protocols that bring secrecy tsimeicontrol systems.
The structure of this paper is as follows: Section 2 gives\amnoew of version control
systems; Section 3 describes two protocols for incorpogeagecrecy into VCSs; Section
4 describes the implementation of a prototype for disteduv/CSs; finally, Section 5
presents our conclusions and future work.

2. Concurrent version control systems

The basic goal of concurrent version control systems idoovalifferent users to work on
the same content, while keeping a history of changes andialijpusers to undo changes

if necessary. If two users make changes to the same part abtitent, the system can
at least notify them of the conflict. Version control systamssally have a client/server
architecture. Before we explain the possible variationghisbasic paradigm, there are
some important concepts related to version control systeaisieed to be presented:

e Repository. this is where all content, along with the versioning medtad is
stored. The repository may be centralized, replicatedsiriduted,;

e Working copy: the directory tree with a copy of the content in order to make
changes before sending them back to the repository;

e Revision also calledversion This is usually a natural number or a string com-
posed of numbers and separators (like “2.1.13") that ifiestihe version of a file.
It may also be a cryptographic hash (as in Monotone[9], f@aneple). There is
usually a partial order among these numbers (the order tapathen we have
“branching” of the content);

e Delta: the differences between two revisions of the content. Tiay be a tra-
ditional Unix diff (a “patch”), or an xdelta [8], which work for binary data. The
delta between two revisions is usually composed of the siéledween the revi-
sions of the files. Some systems are able to compute the débasary files and
filesystem metadata, while others are not;

e Branch: sometimes it is necessary to split the content into diffefbranches”.
The same content tree is (logically) duplicated in the répog and changes are
made to each of them separately. For example, several seftlewvelopers are
working on a program. One of them may need to implement newffes that
impact the core of the program. This may be done in a new brésach will not
impact the work of other developers), while the others warkhe “main” branch.
Later it is possible to incorporate changes from one branithanother;

e Head when several users are working on different branchesether several
different revision sequences from the first version to thsieas being worked on
by different users. The latest versions in each branch diedcteads” (in some
systems there is the notion of “heads of a branch”, but foistile of simplicity
we don'’t use it);

e Merge: the different copies of the content will eventually needéomerged and
turned into one. There are a number of different algorithansrierging all ver-
sions. These algorithms can identify and to some extentvesonflicts between
the different versions (for example, if two users make cleartg the same file, but
in different points, then both changes can be applied, oadiate).

Version control systems usually implement different payacs (all of them de-
rived from the basic idea presented before). However we weteble to find a cat-
egorized description of all of them. We have decided to lyridéscribe some of the
characteristics of version control systems that are raleeethis work.

e Centralization: the system may beentralizedreplicatedor distributed depend-
ing on the possibility to have different data repositoriesiag different versions
of the same content. Distributed version control systemsrare recent, and new
merging algorithms have been developed for them [1, 9, E¥én if repositories
are distributed, it is convenient to have a set of hosts wgrkis servers;

e Concurrency control: if two users try to modify the same piece of information,
there is a conflict. The system may avoid conflicts by usingk fethis is called
thelock-modify-unloclkparadigm — or it may just identify these conflicts, and leave
the resolution to the users (as in most open source and fetensy) — this is the
copy-modify-mergparadigm;

e Data representation the system may represent, store and transmit data in dif-
ferent ways. One possibility is to store the original vensid each file, and then
store deltas that can be applied in sequence in order tonditar versions of the
files Another approach is to periodically store a “whole i@r5 of each file, to
avoid applying too many deltas. Also, some systems may slioeetory trees,
links, and possibly other filesystem meta-data, while atlee not able to do that;

¢ Signing of changes some version control systems allow for the cryptographic
signing of deltas, making it possible to trace changes dotieet content. A pub-
lic key infrastructure is required, and different usersha version control system
may verify, in the history logs, who incorporated a specifiarmge. This is partic-
ularly important in the open source and free software cdntaxere the content is
developed with the help of contributors that are not bound bgntract (as would
happen in a software development business, for exampla$. iIhecessary be-
cause of copyright and patent concerns (it should be peswduickly identify
an offending piece of code), and also for security reasodglfa that introduces
a trojan horse would need to be signed by someone).

In the rest of this paper, we will deal with systems that repn¢ data as an initial
revision and a sequence of deltas. We will present one pobtantralized and one for
distributed systems. The protocols work for both confligidiang methods, and integrate
smoothly with systems that have support for cryptograplynatures, as the protocols
themselves need a PKI.

2.1. Dynamics of version control systems

This subsection describes the dynamics of version congstéms and defines some op-
erations that are relevant to understanding the protodtilss. is neither standard nor is it
the only way to describe these systems, but it is enough fiopapose.

2.1.1. Centralized systems

We start with the framework implemented by open source systike CVS [12] and
Subversion [11]: these are centralized, use the copy-moaédrge paradigm, and store
sequences of deltas.

e Grant andRevoke a new user may be granted access to one project in the repos-
itory, and an existing user may have his access revoked isatime way;

e Import : one user sends an initial version of all the data to the seAleneeded
meta-data is also created and stored on the server;

e Checkout andUpdate: one user asks for a specific revision of the repository.
It could be “the latest version”, or some other, like “thesien of yesterday at
midnight”, or “version 143", and so on. If the user did modifions to his own
working copy, then the client will identify that and try to nge the changes done

Branch X is created Branch X The two branches are merged

L \ .

Main branch -

Figure 1. The creation of a new branch, and the later merge of the two branches.

by the user and the new version of the file that came from theeseif that is
not possible, the client warns the user that a conflict haggheA destination path
should be specified,;

e Checkin: one user finished his modifications on the data, and sentie teetrver
a delta that represents the differences between the |laastan (that is on the
server) and his new version of the content. In most systdnisscannot be done if
the user’s working copy is outdated. However, the operatestribed here allows
the user to specify a version on top of which the modificatwilisbe applied. If
the version was not the latest one, then a branch is created,;

¢ Rollback: one user tells the server that a previous revision shouldb®consid-
ered the latest;

e Branch andMerge: given a brancth; and version;, a hew brancl, may be
created from there. Also, given two versionsanduv, of two branche$, andb,,
it is possible to merge both intg; Figure 1 illustrates this;

e Delta: given a repository, project and branch, it is possible tmgote the differ-
ence between any two versions of the content. The same canneeuding one
version of the content in the repository and one working ¢opy

e Apply: a delta is applied to a working copy, and only later sent &osbrver.

There are other operations, like editing log entries, cimgcthe history, and oth-
ers. We have ignored most of them, since they can be treageshthe way as checkins
and checkouts.

Content repositories are often stored in trusted hoststfl@dommunication be-
tween the server and the users’ workstations goes throughagpted channel.

2.2. Distributed systems

This section briefly present distributed version contradteygns. Some examples are
Monotone [9], Git [4] and Darcs [2].

These systems work just like centralized systems, excepiriatead of one cen-
tral repository, there are several of them. A project magteixi a number of different
hosts (usually one per user), and the deltas in each host endijférent, since each user
applies deltas to his local repository. Of course, theranayto exchange the differences
between two repositories, so that the project will have traesdeltas on both of them.
This is calledsynchronizing The operations used in decentralized systems are the same
for centralized ones, plus the following:

e Synchronize given two repositories, a synchronization operation exthange
deltas between them so they will be identical at the end. ay result in a
repository with multiple heads, as if branches had beeropedd (one can see
the existence of different repositories as different bhascof the project);

updates / commits -
synchronization -------- >
updates / commits
Bernard (B)

Figure 2. Two users with two repositories.

e Merge: merging algorithms for distributed version control systeare different
from those for their centralized counterparts, since it inayecessary to merge
multiple heads.

Figure 2 shows two users, each with his own repository (someesis hide the
repository in the working copy, so the difference betweesnths not percieved by the
user). Suppose Ann (A) and Bernard (B) have just synchrdritzeir repositories so they
have the exact same versions of the content. Then A and Bnagtgking independently.
This will create divergence between their repositorieshdéire was a single sequence of
revisions from version to version before, then there willthe sequences that diverge
from the synchronization moment. Now, A and B may synchremgpositories again
later. This will cause the repositories to be identical agaibut both repositories will
have both sequences, with two different “heads”. These tailk may be merged, and
then there would be one single head again. After the repstare synchronized, it
will seem to both users as if a branch had been made (as iratizatt version control
systems). The difference is that the branches were notaikplcreated, and were in
different repositories (each user is not necessarily awamhat happens in the other
user’s repository). Since this may happen with severalsysedirected acyclic graph
should be used to represent the ancestry of revisions.

In this work, the ternshared repositorys used for the hypothetical repository that
would be the result of synchronizing all users’ repositariaformally, it’s the “complete”
version of the content, with all changes in all differentasipories.

Section 3 explains how these operations can be changedtsmthast ever stores
the data without being encrypted.

3. The protocols

The goal of the protocols is to allow the VCSs to work withoegdetting data go in clear
to shared repositories (which can be hosted on hostile sgrvi® achieve this, every user
needs to encrypt everything that he sends, and decrypttauggythat he receives from
any servers. The content deltas are computed as usual dyudré encrypted afterwards.
This is done using a symmetric cipher and one singlekeshared by all users, but not
by the servers: the key is only used by someone that needvéoahaorking copy. If
the key is compromised, a new key is selected, and all user;ntormed. A public
key infrastructure is needed (it could be the same used ®ositning of deltas, when
available), and the symmetric kéyis encrypted with the users’ public keys.

The following subsections describe the notation used s wurk, the common
part of both protocols, and the version control operatiarsbbth centralized and dis-
tributed versions of the protocol. In the common part of thetgcol, we use “shared

repository” for either the server (in a centralized systenthe collection of repositories,
as mentioned before (for distributed systems).

Notation

In the specification that followd,D x is “a unique identifier for usek™; all single capital
letters (e.g. A, B) exceptK denote users (clients) of the system, each of them having a
working copy;g is the group of usersi 4 is “A's public key”; K is a list of symmetric
keys; M is a mapping from revisions onto natural numbéRsis the set of all revisions;

0; is the i-th delta stored on the repository (ador the initial version of the content);

AT is the set of all deltas in a repositoryG is a group of users; is a shared repository;

is used for concatenatiofm }, means “message encrypted with keyt”; A — B is

“A sends a message 1.

The protocol assumes the existence of an administratiwegrbpersonsgC G),
with administrative privileges; a star above a capitaklettenotes one user in this group

(5, for example).

3.1. Access control

This subsection describes access control, which is idantidoth protocols.

Authentication is left to the underlying version controsgm. In centralized sys-
tems, users authenticate against the server. In distdlsystems, users rely upon a PGP-
like PKI in order to have some degree of confidence on datan(adl distributed version
control systems support cryptographic signing of deltewever, the authentication of
entities who sign the deltas depend on how users build thedr ot trust.

3.1.1. The key list

Each user will have a copy of the following:

e Alist of usersg;

e Alist of keysKC = (ky, ko, ..., k,), with all the symmetric keys used to encrypt
the content;

e A mapping from keys onto revisionst : — R.

This information is only transmitted to the user after beamgrypted with the
user’s public key.

Since at any moment it may be necessary to switch to a new synmurkey, all
users should have a list of all keys used, and the revisiorbeumhen they started being
used. With this, it is possible to decrypt all the deltas, bp@ne, using the appropriate
keys for each of them.

The key list can be stored in a special location along withcthrent being ver-
sioned. Exchanging protocol metadata can be done, therddiggor changing files as
if they were versioned also.

3.1.2. Access grant

A new user A may be granted access to a project. The user seedgiest to the ad-
min group for that project, and one of the admin group membaisend the key list
encrypted with the user’s public key to the repository (vehdie user can read it).

G=gu{A)
B— > M,{]C}KA

3.1.3. Access revocation

A user A may have his access to a project revoked. It does not matterdéan read the
current version of the data (because he did that in the pgstay), but he should have
no access to future versions. The admin group will, therk aicew keyk,, . ;, and future
patches will all be encrypted with it. This new key is encegwith the remaining users’
public keys, and stored in the repository as the latest key.

G =g\ {4}

K'= KU {kp1}
M=MU{n+1— k,1}
VO €G, B— S {K' o | M

3.1.4. Asymmetric key expiration, revocation and compronse

If a user's asymmetric key expires (or if he decides to revgkeand there is no reason
to believe that the symmetric keys were compromised, the pigsents a revocation
certificate to an administrator and asks him to re-encryptkiy list C with his new
public key. The administrator sends the new key list to treresth repository.

A—-Y: K
B— 31 {K}ie, M

However, if the user believes that his key has been compeainge assume that
all the symmetric keys that he had were also compromiseduséethen should perform

the usual procedure to revoke his old public key, but thegutace described in subsection
3.1.5 for symmetric key compromise also needs to be peridrme

3.1.5. Symmetric key compromise

If a key k; € K is compromised, the best that can be done is to suspend alsato
the project, pick a new key;, and use it to re-encrypt all deltas, one by one, encrypt the
new key with the public keys of all users and send the new kegigialtas to the shared
repository.

K' = {ko}

./\/l/ = {\V/'l, 1+]{30}

Vo, B— 3 : {0i}ry

VAeG, B—Y:{K'}k,
B—Y: M

3.2. The protocol for centralized systems

This section describes the protocol we propose for cem&@lversion control systems,
showing how the operations in section 2.1 should be changed.

3.2.1. Import

When a user does an initial import, a first symmetric kgis randomly generated, and all
the content to be imported is encrypted with it. The kgys then encrypted with the keys
of all the users in the project groug) This first key list is then added to the versioned
content, in a special location, before the import is acyusdint to the server.

A— % {00}k
VBEQ7AHZ {kO}KB

3.2.2. Checkout/update

The server sends all the deltas that the user needs to realdteaht version of the repos-
itory. Note that this is different from what sometimes happwith version control sys-
tems, where the whole content is sent at once. Usually, tiversean calculate the delta
from one revision to another, but in this case, the conteandsypted, so the deltas need
to be decrypted at the user’s side.

Besides the deltas, the user will also receive the latesioreof the key list and
key mapping. In the following4 is an ordinary user, ang belongs to the admin group.
This is how the user asks fo2, and his working copy is;:

A — ¥ : checkout/D,4
L= A:MAK}k,
Vo, mm<i<ryd—A: {5i}kM(i)

If one is concerned about the number of deltas to be applidgd, gossible to
regularly update a new complete version of the content fan®le, everytime after a
number of deltas, or after a fixed number of bytes). Then thmb=x of deltas to be
applied would be limited to the distance to the next completsion.

3.2.3. Checkin

The user tells the server that he wants to commit. The serileonly allow that if the
user has the latest version of the repository (i.e., he may e issue an update first).
The user is only allowed to commit if he has the latest key($isthe may need to update
it first). He will then encrypt his delta with the latest kky and send it to the server.

A—Y: {6},

3.2.4. Rollback

It is usually enough to just send a “rollback” instructiontbe server, telling which old
revision should it rollback to. The server will then ignoreetdeltas that were applied
after that revision.

A — X : rollback r;

3.2.5. Branching and merging

Let us suppose that the current version of the contentAsuser A opens a new branch,
called “branch X”, and commits some changes. Another usgcommits changes to the
main branch. We have, then, two deltas that may be appliedrgon::

e §,.1. applying this delta will result in the version of the mairabch after the
modifications made bys;

e 0x, applying this delta will result in the version of the new (Xahch, modified
by A.

All that our protocol needs is that the revisions be iderdifi@iquely so that we
can maintain the mappin!, so there is no need for any special provision for branching.

Merging the two branches mentioned above is also done byiagpleltas to both
branches, so it doesn’t require anything special either.

3.2.6. Conflicts

We will discuss conflicts for two different version contranadigms:

Lock-modify-unlock In thelock-modify-unloclparadigm, conflicts never actually hap-
pen, but users may need to lock the content at the server.ibéwevision of the project
is locked at each time, then the server only needs to remewihbemwas the user who
locked that revision. However, for more fine-grained lockzr@ablem arises: since the
lock may contain sensitive information (like who is workiog what part of the project,
or even the layout of the project’s directory tree), the kskould not be stored in clear
text on the server. We can only see one solution to this pnebiee locks can be imple-
mented as part of the content, so they will not be stored iar¢kxt on the server and the
client software becomes responsible for not modifying enhthat is marked as locked.

Copy-modify-merge In the copy-modify-merg@aradigm, conflicts are identified and
resolved, as much as possible, by the client, and not on tiverseThis is done at the
user’'s workstation after the content has been decrypted cesfiict resolution in this
paradigm is out of the scope of the protocol.

3.3. The protocol for distributed systems

In a distributed version control system, there will be twibedtent instances of each repos-
itory: one clear and one encrypted. The encrypted repgsitdrkeep the access control

encrypt/decrypt updates/commits

public i private i private Ann (A)
repository "] repository working copy
synchronize --------- -
public P private private)
rpository s "] repository +7| working copy Bernard (B)
encrypt/decrypt updates/commits

Figure 3. The repositories and working copies of two users.

data and all deltas from the clear repository. The deltasokitourse be encrypted in
this repository. All version control operations betweenkimg copy and clear repository
work as usual (including rollbacks and conflict handling)cs they are both on the same
host. Synchronization between hosts is done by synchranthie encrypted repositories
in both hosts. The encrypted repository will be called thebl” one, and the clear
repository the “private” one.

Figure 3 above shows user A (on top) and user B (at bottom).h lHaer has
one private repository and working copy, and also one pubpository. Signatures from
private repositories are also encrypted, and decryptddibdlee other repository; another
signature may added to the encrypted delta.

In distributed version control, each user decides whickeotisers he will trust
(and consequently which deltas will be accepted when sypmering repositories), So we
can assume that each repository has one single administatly the Grant and Revoke
operations are defined:

A user A grants access to a usBron his repository by addingg’s public key
to his public repository, and encrypting the keym&pand the keydC with B’s public
key. WhenB synchronizes withi’s public repository, he will be able to decrypt all deltas
using his private key.

User A revokes access from usBron his repository by removing’s public key
from his public repository and immediately picking a new syetric keyk. If B has
access tod’s repository, he will not be able to decrypt the new deltad there encrypted
with k.

For example, supposé andB are using the same symmetric kéy,A decides to
revoke Eve’s access to the repository, and generates a ryekt. Kdeanwhile,B revokes
Malice’s key, and generates a new ki If A and B agree on honoring each other’s
revocations, then they may keep the intersection of autbdrusers only. After they
synchronize their databases, a third kéy(that neither Eve nor Malice knows) should be
created. This situation can be detected by checking theskeguring synchronization of
public repositories. Lef* andG? be two lists of users before the synchronization of the
public repositorieskC* andXC? the two key lists. Then the new user ligtand key listC
can be generated as:

G—g'ng”?
K« KAnKE
If G4 ¢ G5 andG” 2 G, generate a new ke’ andK — K U {k"'}

And k" is used as the latest key.

3.3.1. Synchronizing private and public repositories

The encrypted deltas are stored in the public repositornygahath their interdependencies
(the deltas and their interdependencies form a directetdliagyaph, as mentioned before,
and the synchronization algorithm needs to list the defté&spological order). The public
and private repositories may be synchronized using Aligorit.

Input:

AY, the set of all deltas in the public repository;

AR the set of all deltas in the private repository;

WV, a scratch working copy for the public repository;
W, ascratch working copy for the private repository;
IC, the list of symmetric keys;

R, the list of revisions;

M, the mapping of keys onto revisions.

1 Checkout (Y, 0);

2 Checkout %, 0);

forall 6,; € A"\ AV do
k= Kmi)s
Update (7Y, 4);
Add(WY, {8 ;}1);
Add(WY dep(i, §));
Checkin{¥?, 5);

9 end

10 forall 4;; € AV \ A%, in topological orderdo

11 k «— /CM(j);

12 | Update (W%, 4);

13| Apply (WF, {0:;});

14 | Checkin{V%, 5);

15 end

Algorithm 1. Synchronization of public and private repositories.

w

o N o o b

w

In the synchronization algorithm, we use the following ftioes:

e Checkout (I, 7): checks out revisiominto working copylV. In the case of the
first private working copy, Checkouti(?*, 0) will use the first symmetric key from
the list;

e Apply (W, 46;,): applyd; ; to W, so the working copy will be identical to revision
J;

e Add (WVY,6): given a deltad), store it as a filen the public repository;

e Add (WY dep(i,7)): in the public repository, add the edgej) to the graph that
represents delta interdependency;

e Checkin (W,7): commits changes to the working coply/, using the revision
numberi;

| Operation | Time (centralized) | Time (distributed) |

Import 5(|do|) —
Checkin (kD) + s(3:]) =
Checkout s(|content) —
Updatev, — v, | a(lk]) + >, ;- 5(10:]) —
Grant access a(|K] + |M]) a(|K| + M)
Revoke access a(|K] + [M])]G] a(|K] + |M]) |G]
Synchronizér, r5) — [A™\ A™] 4+ JA™\ AT

Table 1. The cost of different operations using the proposed protocols.

3.4. Performance and memory overhead

The proposed protocol is light — Table 1 shows the time reguiy each operation. In
the table k is the symmetric keyj; is the data that represents the difference between two
versions of the content, and| is used for “size of”. r; andr, are two repositories in a
distributed systems(n) stands for “the time taken to encrypt or decrypt an objectz# s
n with the symmetric key Kk’ (n) is “ the time taken to encrypt or decrypt an object of
size n with one of the asymmetric ke¥s;”. The set of deltas in repositoryis A". The
operation “Update, — v,” is the update of a working copy from versiog to version
v,. Note that for the checkout operation, the cost is propodito the current size of the
content. The only operation that is affected by the numbeisefs is the revocation of a
compromised key (because of the time it takes to encrypt élhekey for all users); the
only operation that is affected by the total size of the conte the initial import. All
other operations depend on the size of deltas and on thefdize symmetric key (which

is negligible).

When a user performs a checkout or update, only the rele@anofthe key list is
retrieved (that is, the symmetric key encrypted with higge key — the keys encrypted
for other users need not be retrieved).

If the cryptossystem or PKI needs to be changed, it may bessacgto re-encrypt
the whole key list history (which would not likely be too l@gnyway).

Both protocols require that each user stores additionatimétion on his work-
station. The volume of extra information required is thesfthe public repository (this
will depend on the compression algorithm used before thersytmic cipher and on the
size of the repository); the size of the key list (which deggean how often the symmetric
key is changed); and the keymap, which only adds one key IDbardlelta ID per delta.
There is also the size of the keyring in the PKI, which deperdthe number of users.

4. The implementation

We have implemented the protocol for distributed systenmg grototype is called\pso
and was written in C++. Figure 4 shows the core architectufeubRepository object has
a Keystore, a CryptEngine and a VCRepository (an abstratiger for version control
systems). The CryptEngine and VCRepository classes shmmulkektended to describe
actual cryptographic libraries and version control systémwe have implemented a plugin
for the Nettle cryptographic library [10] and a plugin foretMonotone version control
system). Nettle was chosen because it is simple and smalodoe was chosen because

PubDatabase

CryptEngineCryptLib > CryptEngine |VCReposit0ry |<|_| VersionControlGit
| CryptEngineNettle | | VersionControlMonotone |

Figure 4. UML diagram for the core architecture of Apso.

it has direct support for extracting and injecting deltalse Git and CryptLib plugins were
not implemented, and are there only as illustrations. Bxssilkde core architecture, there is
a command-line interface and a Facade class for users whictavase Apso as a library.

Monotone is a totally distributed version control systerattBupports (and en-
forces by default) the signing of each commit made to thesipaes, and uses a hash
of the delta as revision number. Each user may decide onaf ldher users whose keys
will be accepted when incorporating changes to his locads#pry (which in Monotone
jargon is a “database”). Nettle is a cryptographic librdrgttis small and only performs
cryptographic operations and does no resource allocatii®o

4.1. Implementation details
A public Apso repository is always linked to a private one aadtains the following tree:

apso/deltas/
apso/users/USER/public_key
apso/users/USER/keys/
apso/users/USER/keymap/

Wheredeltas is a directory where all the encrypted deltas are storedéitees
are revision ids). Each user has dd8ERsubdirectory with a filgublic_key contain-
ing that user’s public key, and also two subdirectoriesymap, where each file maps
one revision onto a symmetric key id (in version control egs$ which support version-
ing of links, these are links to actual keys), &egls , where all symmetric keys are stored
(filenames are key ids). Users keep their private keys wieetéey find convenient, and
pass the key location to Apso .

For example, Alice has her key list undapso/users/alice/keys . When
she needs a specific kéy, she will find it in a fileapso/users/alice/keys/key i
Just ask is in the file apso/users/alice/keys/k , the mapping for revisiom is in
the file apso/users/alice/keymap/r . It may be good to deny access to Alice to
other subdirectories, with other users’ keys, but the ketg lare encrypted so it may be
unnecessary.

All version control operations work as usual on the privaeasitory, and only
these three operations are defined in our implementation:

¢ Private and public repository synchronization: this is done using algorithm 1;

e Granting access the administrators will encrypt all the symmetric keys ahdck
them in (in the public repository), so the user may check milist later;

e Revoking access someone in the admin group adds a new key to the list and
removes the user’s directoapso/users/USER/ from the public repository.

Apso was tested withs AES as the symmetric cipher and RSAnfenypting the
AES keys (both provided by Nettle).

5. Conclusion

This paper described protocols for bringing secrecy to smeat revision control sys-

tems. The protocols do not require servers to ever see ditbetlear content or the

key used to encrypt it. Keys are encrypted using asymmdgarithms, but the content

(which is supposedly larger than users’ keys) is only enexypising symmetric ciphers.
The protocols also work for the non-merging revision congystems (those in which

locks are used to avoid conflicts). We have implemented thteilolited protocol using an

extensible architecture. We plan to implement the sam@pobin other modern version

control systems and use Elliptic Curve Cryptography [5]deesd up the revoke operation
when the number of users and the key history are large.

References
[1] Arch: a distributed version control systeimtp://www.gnuarch.org/ (May, 2006).
[2] Darcs: arevision control systerhttp://abridgegame.org/darcs/ (May, 2006).

[3] Jacky Estublier, David Leblang, Geoff Clemm, Reidar €ah, Walter Tichy, André
van der Hoek, and Darcy Wiborg-Weber. Impact of the reseamcmunity on the
field of software configuration managemeitansactions on Software Engineering
and Methodologyl14(4):1-48, 2005.

[4] Git: Tree history storage toohttp://git.or.cz/ (May, 2006).

[5] D. Hankerson, A. Menezes, and S. Vanstor@uide to Elliptic Curve Cryptography
Springer-Verlag, 2004.

[6] E.J. Whitehead Jr. and Annita P. Dahlqvist, editétoceedings of the 12th International
Workshop on Software Configuration Management (SCM 2Q08)5.

[7] Alexis Leon. Software Configuration Management Handbodktech House, 2 edition,

2004.
[8] J. MacDonald. Versioned file archiving, compressiond alstribution. UC Berkeley.
Available athttp://www.cs.berkeley.edu/ jmacd/ (May, 2006).
[9] Monotone: a distributed version control systentp://www.venge.net/monotone
(May, 2006).
[10] Nettle: alow-level cryptographic librariittp://www.lysator.liu.se/nisse/ nettle/
(May, 2006).

[11] C. Michael Pilato, Ben Collins-Sussman, and Brian Wzatrick. Version Control with
SubversionO’Reilly, 2004.

[12] Dave Thomas and Andy HunBragmatic Version Control Using CV®ragmatic Book-
shelf, 2003.

