
KHAP: Using Keyed Hard AI Problems to Secure Human
Interfaces

Jeff King 1 , Andre dos Santos1 , Chaoting Xuan1

1College of Computing – Georgia Institute of Technology
801 Atlantic Dr – Atlanta, GA, 30332-0280, USA

{peff,andre,cxuan }@cc.gatech.edu

Abstract. There is often a need for users to securely interact with a remote com-
puting system. Typical solutions assume that a local trusted computing platform
is available, but this is often not the case. We introduce KHAP, a protocol for
using hard artificial intelligence problems to provide message authentication
checks centered around a human verifier. We also formally introduce the notion
of a keyed hard AI problem, which is one that uses an authentication key to prove
the source and integrity of a message. We give examples of some keyed hard AI
problems, as well as examples of KHAP’s applicability to the specific problem
domains of Internet voting and the use of smartcards for digital signatures.

1. Introduction
Suppose Alice is on a trip to a computer security conference. Her coworker, Bob, stays
behind to watch over their cubicles. Suddenly, Alice remembers that she forgot to send
an important memo to Bob. No problem, she thinks – there are computers available at
the conference, and she can just fire off an email to Bob. Because it’s so important, Alice
is going to want to sign the memo. Because Alice always carries a smartcard that has
her private key, she can sign the memo. She sits down at a conference computer, plugs
her smartcard into the computer’s reader, and types out the memo. She presses the send
button, and the memo is sent to her card for signing; the signature comes back to the
computer and is emailed with the memo to Bob. Or is it? What did the smartcard really
sign? How does Alice know it’s the same thing that was on her screen? How does Alice
even know if anything was sent to her card?

When humans interact with computing systems, the human often wants to know
that data has reached the intended system, and that it has not been modified in transit.
Traditionally, this issue has been dealt with by making one of two assumptions:

1. there is a direct channel between the human and the system; the human identi-
fies the system by its ability to transmit on the channel, and it is assumed that an
attacker is not able to tamper with data on the channel. Examples include Auto-
mated Teller Machines (ATM) and programs running locally on Personal Com-
puters (PCs).

2. the human has a direct channel to a computing platform that he trusts at least
as much as the destination system. This trusted platform communicates with the
destination system over an untrusted channel; it uses cryptography to verify the
system’s identity and the integrity of the data. An example is using a PC to browse
a web page through an encrypted tunnel[10].

In our example, Alice assumed that she had a direct, secure link to her smartcard.
In reality, she was trusting the computer she was sitting at to accurately relay the infor-
mation. If the computer was acting maliciously, it could easily have displayed one memo

on screen and sent another to the smartcard to be signed; Alice has no way of directly
communicating with the smartcard.

There are many cases where a computing system is not accessible by a direct,
trusted link. The system may be physically located far away. It may be incapable of direct
interaction, as with a typical smartcard. Likewise, the assumption that an intermediate
platform can be trusted is often false. The platform may be a public system, owned and
controlled by an untrusted third party. Even if the owner is trusted, the platform may be
infected by a virus or trojan horse program. It may be possible to insert a “false front”
between the user and the system (e.g., a physical device between a human and ATM that
records account and PIN numbers[1]).

There is therefore a clear need for a system to allow secure interactions with a
remote trusted system. In this paper, we introduce KHAP, a protocol model that allows
a human to securely interact with a remote computing system without making either of
the two assumptions listed above. The model is based on using hard artificial intelligence
(AI) problems to transform data into a form that humans can easily decipher, but which
computers have difficulty interpreting.

Section 2 discusses existing work in this area and defines the building blocks of the
protocol. Section 3 describes the protocol itself, while section 4 provides more concrete
examples of KHAP parameters. Security and human usability properties are discussed
in sections 5 and 6. Some more complete examples are given in 7. Finally, we indicate
future directions and conclusions in sections 8 and 9.

2. Background
This section describes existing work and defines the building blocks of the KHAP proto-
col.

2.1. Related Work

The problem of malicious terminals has been examined many times. However, the focus
is often on the identification of humans to computing systems[7, 4]. Recently there has
been more development of systems focusing on humans verifying computers without the
aid of a trusted computing system.

Naor and Pinkas propose the use of visual cryptography for message authentication[9].
The user carries a printed transparency as a key; the cipher text is an image of the same
size. When a user places the transparency over the image, the plaintext is revealed (with
some amount of random noise). Some of the problems with this system include the ne-
cessity of carrying the transparency, and the fact that the transparency can only be used
securely a very small number of times.

Berta and Vajda propose a system of “biometric signing“[2]; this system is focused
on sending signed messages from an untrusted terminal. Their model focuses on a remote
sender verifying a signature; however, it is often useful for the sender to verify that his
message reached the destination intact.

Gobioff et al describe a protocol for using a low-bandwidth (e.g., single-bit) secure
channel to achieve more complex operations[3]. They suggest changing the traditional
smart card design to accommodate this secure channel. However, this suggestion has not
been adopted in practice, and is not feasible for problem domains other than smartcards.

Recent research has attempted to exploit the intelligence gap between humans and
machines. A Human Interactive Proof (HIP) is a method by which a computer can tell a

human and a machine apart. HIP research is mainly motivated by efforts to defend Web
services from abuse by programs. A formalization of AI problems as security primitives
can be found in [11].

2.2. Encryption

Our protocol model utilizes a pair of encryption/decryption functions that can be per-
formed by a human. These functions are denotedE andD respectively. LetP be the
set of all plaintext messages,C be the set of all encrypted messages, andK be the set of
all keys. E is defined asE : P × K → C; D performs the inverse,D : C × K → P ,
with D(E(p, k), k) = p for all k ∈ K andp ∈ P . Furthermore, we require that it be
impossible to accurately guess the ciphertext that a given plaintext will generate if the key
is not known:∀c ∈ C, Prp←P [E(p, k) = c] = 1

|C| .

We will also use the concept of the validity of an encrypted message. A given
messagec is valid for a keyk if and only if c ∈ C and there exists a plaintextp such that
E(p, k) = c. In other words, if a given message is supposedly the result of an encryption
with a given key, then there must be a possible plaintext. We use the functionV (m, k) to
show thatm is valid for a given keyk.

2.3. Hard AI Problems

The use of hard AI problems as security primitives was introduced in [11]. We will
reiterate their definitions of AI problems and hard AI problems, and we will provide a
definition for a specific subset of AI problems, which we call Transformable AI Problems
(TAP).

Definition 1 An AI problem is a tripleP = (S, D, f) whereS is a set of problem
instances,D is a probability distribution over the problem setS, andf : S → {0, 1}∗
answers the instances.

Let δ ∈ (0, 1]. For anα > 0 fraction of humansH, Prx←D[H(x) = f(x)] ≥ δ,
whereH(x) represents a human attempt at answering the instance.

Definition 2 An AI problemP is said to be(δ, τ)-hard if there does not exist a program
A running in time at mostτ on any input fromS, such that

Prx←D[A(x) = f(x)] < δ

Definition 3 A TAP problem is an AI problem with the additional constraint that the
hardness must come from deciphering a data transformation. A given TAP problem has
a set of transformations,T , and a set of input messagesM . Recall that an AI problem
is given by the triple(S, D, f). The set of problem instancesS is defined as the set of
all possible transformations:{t(m) : t ∈ T andm ∈ M}. The instance distributionD
is derived by choosingm ← M, t ← T . The answer function,f , converts a problem
instance back to the original input:f(t(m)) = m for all t ∈ T , m ∈M .

If a TAP problem is(δ, τ)-hard, then the transformation itself is(δ, τ)-hard.

Prm←M,t←T [H(t(m)) = m] ≥ δ

Prm←M,t←T [A(t(m)) = m] < δ

That is, recovery of the original message from the transformed message has at leastδ
probability for humans, but less thanδ for current programs.

2.4. Keyed Hard AI Problems

A keyed transformation is a data transformation that takes an additional key parameter,
k. A human with knowledge ofk should be able to recognize the presence or absence
of the key in the transformed value. We denote the human process of distinguishing two
transformed values as a functionHd. Hd(m1,m2) is true if and only if a human can tell
thatm1 andm2 are different values.

Definition 4 A keyed transformationT is said to be(α, ε, τ)-distinguishable for a hu-
manH if, given two keys,k andk′, whose absolute difference|k − k′| > ε

Prm←M [Hd(T (m, k), T (m, k′))] ≥ α

and there does not exist a programA that runs in timeτ such that, givenm,m′ ←M and
t = T (m, k)

Pr[Hd(t, A(m′, t))] ≥ α

That is, a human can tell with probabilityα that two messages were transformed with suf-
ficiently different keys. Furthermore, there is no current program to convert a transformed
message into a different message without creating two distinguishable values. Note that
we use the notation|k−k′| to refer to the absolute difference between two keys; however,
the “value” of the keys will often not be easily quantifiable. In such a case, the ability to
distinguish between two keys can be determined experimentally (i.e., we care only that
the keys are “sufficiently different” for our purposes, not about their actual values).

Definition 5 A TAP problem is(α, ε, τ)-keyed if every transformationt ∈ T is (α, ε, τ)-
distinguishable.

3. KHAP Protocol Model
The participants in this model are the human,H, the remote computing systemS, and a
man-in-the-middle attacker,MM . It is assumed thatH andS are able to communicate
with each other, but thatMM may block or modify messages without the knowledge of
H andS. It is also assumed thatH andS may agree on a secret beforehand.

Furthermore,H andS have agreed on two functionsE andD, which match the
encryption and decryption functions described in section 2.2. They have also agreed
upon a TAP problem that is(δ, τ)-hard (α, ε, τ)-keyed. We useT (m, k) to denote the
computation of a problem instance wherein a transformation is chosen randomly from the
set of transformations and applied tom using keyk.

The security goals are to allowH to verify with high probability that a given mes-
sage originated withS, that messages fromS have arrived unmodified, and that messages
sent toS have arrived unmodified. The notion of “high probability“ in the goals is depen-
dent on the hardness and keying parameters given above. When choosing a TAP problem,
participants should consider the parameters of the problem in relation to the desired level
of assurance.

The protocol behavior is described in the following sections. Each section details
the behavior of the two participants,H andS, in a given situation.

3.1. S transmits to H

Assume thatS has a messagem0 that it wants to transmit toH. S andH share two
secrets,k1 andk2. H is expecting the message.

The behavior ofS is as follows:

1. S computesm1 = E(m0, k1)
2. S computesm2 = T (m1, k2)
3. S transmitsm2 to H

The behavior ofH is as follows:

1. H receivesm′2; if message does not arrive within a timeout period,H assumes
that message has been lost

2. H computesm′1 = H(m′2)
3. H computesvT = complement(Hd(m

′
2, T (m′1, k2)))

4. H computesvE = V (m′1, k1)
5. H computesm′0 = D(m′1, k1)
6. H believes the message to have originated withS and have arrived unmodified if

and only if bothvT andvE are true.

3.2. H transmits to S

Assume thatH has a messagem that he wants to send toS. S andH share two secrets,
k1 andk2.

The behavior ofH is as follows:

1. H transmitsm to S
2. H waits for a responser from S; if response does not occur within a timeout

period,H assumes that message did not reachS
3. H verifiesr asm2 in the previous protocol; if verification fails,H assumes that

message did not reachS intact
4. H comparesm′ = D(H(r), k1) to m; if not equal,H assumes that message did

not reachS intact

The behavior ofS is as follows:

1. S receivesm′

2. S computesr = T (E(m′, k1), k2)
3. S transmitsr to H

4. Examples of Functions

In this section, more concrete examples forE andT are given. These lists are not meant
to be exhaustive, but to provide examples that we believe meet the definitions listed in
section 2.

4.1. Encryption Functions

The exact encryption function used will depend largely on the type of messages to be
encrypted. In all cases, the key will be very short by traditional standards; this is a re-
quirement since a human must be able to remember the key and perform the decryption
manually.

Substitution One simple encryption function is message substitution. That is, one mes-
sage is substituted for another according to a key. In order for this to be feasible for
humans, the number of messages must be very small; furthermore, the mapping of mes-
sages must be simple to remember. The former requirement is subject to the constraints
of the problem domain. The latter requirement can be helped with the use of semantic
mappings. Consider an example whereM = {yes, no} andK consists of pairs of sets of
words with semantic similarity. So ifk = (fruits, cities), thenE(yes, k) might be “apples”
andE(no, k) might be “Atlanta.”

Null Encryption As a special case, we will examine the security impacts of using the
identity function (E(m, k) = m for all m andk). This function has the advantage of
requiring no effort on the part of the user. It is also more flexible, in that the set of
messages does not need to be known beforehand.

4.2. TAP and Keyed TAP Problems

This section contains problems we believe to meet the requirements for TAP and keyed
TAP problems. Because TAP problems derive their hardness from a set of transformation
functions, the problems are described in terms of their transformations.

Speech Synthesis One possible scheme is to produce audible human speech; that is, if
m is text, thenT (m, k) is a digital sound file containing the spoken text ofm. Further-
more,k is a set of values modeling the vocal properties of a speaker such that for someε,
T is (α, ε, τ)-distinguishable.

The key is a representation of a human vocal tract. This is typically represented
as a plot of frequency against time called a cepstrum. There is significant research in the
area of modeling vocal parameters[8].

To generate a key,S chooses random values within the vocal model (within some
parameters that still represent human voice).H is “trained” on the voice by listening to
several samples produced by it. Note thatH does not have specific knowledge of the key,
since it would be difficult to remember and useless for manual computation. However,
the memory of the voice allowsH to perform the distinguishability test.

WhenS wishes to computeT (m, k), it first synthesizes the voice based on the
model given byk (H must have been previously trained to recognizek). Then it may
apply a filtering transformation that adds noise to the resulting audio file. Examples of
such transformations are described in [5]. The purpose of the noise is to mask the speech
in such a way that humans can still understand and recognize it, but computer speech
recognition systems are thwarted.

A human may computeH(m) merely by listening to the audio file and under-
standing the spoken words.Hd consists of correctly identifying the vocal properties of
the speaker.

3D Rendering A three dimensional (3D) rendering problem is a TAP problem defined
by the tuple(L, S, N, F) whereL is a set of scene names,S is a set of 3D renderable
scenes,N is a function mappingl ∈ L to a sets ⊂ S, andF is a function mapping text
m ∈M to a 3D renderable version of the text.

The keyk is an ordered list of scene names. To computeT (m, k), S performs the
following algorithm:

foreach l in k do
randomly choose a scene, s, from a uniform distribution

over the set N(l)
insert F(m) into the scene
randomly choose a camera location within the scene
render the scene

done

T (m, k) returns the ordered list of rendered scenes.H must be able to recognize
the scene name based on a rendering of the scene;H can distinguish messages produced
by different keys by the presence and ordering of specific scenes (he must therefore re-
member the ordering of the scenes in his key). ComputingH(m) consists of reading the
text found within the scene.

In order for an attacker to computeA(T (m)), he must be able to identify the text
within the scene, convert it to its original model, and perform the inverse ofF .

Keyless Transformation Some problems believed to be hard TAP problems are already
known; these are described in [5, 11]. We will examine the security implications of
using keyless TAP problems with KHAP. These functions have the advantage that they are
already being analyzed and used in production systems. They also may have a stronger
hardness guarantee and may put less burden on the user.

5. Security Analysis

This section considers some possible attacks byMM and describes the role of theE and
T functions.

5.1. MM discards messages

It is always possible forMM to discard messages and perform a Denial of Service attack.
However,H assumes the worst in the absence of an expected message. It is therefore not
possible by discarding a message forMM to trick H into thinking that a message was
successfully delivered. In the case of unexpected messages (fromS to H), it is possible
to silently discard the message withoutH realizing. It is assumed that the underlying
message protocol will perform in such a way thatS does not send unexpected messages,
or that missing such messages will not be a serious security breach.

5.2. MM modifies message in transit

Assume thatH sends a message toS, andMM changes the messagem in transit to
m′. S returnsr = T (E(m′, k1), k2). MM interceptsr and must sendr′ to H such that
Hd(r

′, T (E(m, k1), k2)) is false andD(H(r′), k1) = m. MM knowsr andm because
it intercepted them in transit. It also knowsm′, since that is the forged message it has
created.

We will examine the implications when using keyed and regular TAP problems in
conjunction with null and non-null encryption functions.

Keyed Transformation and Non-Null Encryption Assume that the participants are
using a keyed hard TAP problem and non-identity encryption.MM ’s attack consists of
the following steps:

Step 1: MM attempts to breakE through cryptanalysis over multiple runs. Because
the encryption key is short, it is likely that cryptanalysis will be fruitful if enough
plaintext/ciphertext pairs are captured and recognized byMM . For some problem
domains,MM can potentially stimulate multiple runs by repeatedly sending fake
requests toS.
The plaintextm is known toMM . However, the ciphertextc = E(m, k1) may be
difficult to acquire, since it requires computingc = A(T (c)), which is believed to
be difficult. Some instances where it may be possible to recognize the ciphertext
include:

– A malicious human may computeH(T (c)) and feed the result to a com-
puter for cryptanalysis.

– MM may have a low but statistically significant probability of comput-
ing A(T (c)). Over a sufficient number of attempts, enough data may be
collected for successful cryptanalysis. The exact details depend on the
(δ, τ)-hard parameter of the specific transformation used.

Step 2: IfE is broken, thenMM may easily computec = E(m, k1) without knowingk1.
However, he still must computer′ such that it is indistinguishable fromT (c, k2).
But following the definition of a keyed transformation (section 2.4), no program
exists to computer′ with probability greater thanα.

In order to succeed in foolingH, MM must successfully complete both steps.

Null Encryption If the identity function is used for encryption, then clearly Step 1
becomes trivial.MM need only to complete Step 2 to succeed. Furthermore, it was found
in [11] that an attacker could have greater success in analyzing a transformation if the
input were known. Since the plaintext messages may be predictable, encryption decreases
the chance that the attacker can predict the ciphertext input to the transformation.

Non-Keyed Transformation If a regular TAP problem is used to provide the transfor-
mation step, then Step 2 becomes trivial. The integrity of the system relies solely on the
inability of MM to break the encryption function, as shown in Step 1.

Non-Keyed and Null If a keyless transformation is used with the identity function, then
both steps become trivial. In this case, the protocol is providing no assurance whatsoever
of the integrity of messages.

S sends toH If we assume thatMM is able to guess the message, thenMM ’s task
is identical to the one described above, with one caveat:H does not already know
the contents of the message. ThereforeMM does not have to constructr′ such that
D(H(r′), k1) = m, but rather such thatV (H(r′), k1) is true. This is still not trivial, but
allows the possibility that rather than breakingE, MM sends random (possibly valid)
messages. This is not likely to be a problem, as a human receiving a string of unintelligi-
ble messages will presumably become suspicious.

5.3. Replay Attacks

MM may mount a replay attack by saving valid messages sent betweenH andS and
resending them later. The duplicate messages may be used to repeat operations or may
have an unexpected meaning in a different context.

KHAP doesn’t directly deal with replay attacks; however, it is simple to incorpo-
rate prevention measures into a protocol that uses KHAP. For messages fromS to H, S
can insert a timestamp into outgoing messages that is authenticated along with the mes-
sage contents. The timestamp may be based on either wall clock time or a monotonically
increasing arbitrary value.

In the case of an arbitrary value,H must keep track of the value and verify that
it increases in each message. In order to prevent replay attacks across sessions,H must
remember the current value until the next session. This may be prohibitively difficult for
most humans.

Using wall clock time provides a convenient global timer. The clock must not
reset, so it must contain the full date and time to a resolution oft time units.H confirms
that the timestamp on each message is increasing; thereforeS cannot send more than one
message in eacht interval. H must also confirm that the timestamp is withins units of
his current idea of the time (based on an independent clock). While some clock skew is
inevitable betweenS andH, the skew can be overlooked byH if it is smaller thans.

In the case that an attacker replays a message fromH to S, the situation is some-
what more complex.H will not be expecting any messages fromS, and so cannot partic-
ipate in the verification. In fact, KHAP takes no precautions to prevent arbitrary forged
messages being sent toS. It is up toS to use a different mechanism to authenticate mes-
sages fromH; such a method is outside the scope of this paper. On the other hand, ifS is
a device that can be turned off, like a smartcard, these attacks cannot happen arbitrarily.
They can occur only when the card is on, such as when the smartcard is plugged in to a
malicious terminal.

6. Human Requirements
One of the most important aspects of this system is usability by humans. The behavioral
description of the protocol spells out several steps for the user to perform; however, most
of these steps should occur naturally and easily (without the need to follow a memorized
script).

The human must be able to “time out” when messages fail to arrive; it is natural
for users to expect computers to react reasonably quickly. If a response does not arrive
within what a human considers a reasonable time, it can be considered to have timed out.

The human must also be able to computeH(m) for a given messagem. The
definition of an AI problem gives at leastδ probability of success for a human. In practice,
this step may consist of operations as simple as reading or listening to the messagem.

The human must be able to distinguish between messages transformed with the
correct key, and those that have been forged. The definition of a distinguishable transfor-
mation gives at leastα probability of success in distinguishing correct and forged values.
This step should not involve a great deal of effort; for example, in the speech example
transformation given above, the cognitive process verifying the speaker’s voice happens
subconsciously.

The human must also be able to computeD(m, k). The difficulty of this step de-
pends on the exact encryption function used. The function must be simple to compute.
Ideally it should have low key storage requirements, but in some cases it may be accept-
able for the user to carry additional storage (e.g., a piece of paper). In practice, this is
probably the step that requires the most effort.

It is possible to reduce the total effort required and increase the chances of success

by using a non-keyed transformation or null encryption. However, in any application of
this model, the security tradeoffs listed in section 5 should be taken into account.

The result of the KHAP protocol is that the human participant can verify whether
data was modified in transit. However, it specifies no behavior forH when a disruption
is detected. This behavior will largely be dependent on the problem domain, but some
general solutions are mentioned here.

Out of Band Channels It may be possible forH to contactS using another channel.
For example, if a user detects a forgery at an ATM, he may be able to contact the bank by
telephone.

Retry Elsewhere In some instances, the effects of a modified message may be nullified
by a subsequent message. For example, consider an Internet voting service where only
the last vote that has been cast is counted. If a user detects a forgery at one machine, he
may try again later from a different location, replacing any potentially forged vote.

Single-bit Communication In some cases, it may be possible to send a single bit of
information to the remote system. For example, consider a smartcard system for signing
documents. A user types in a document and sends it to the smartcard for signing. The
smartcard waits 60 seconds before performing the actual signature. If the user detects
a forgery, he removes the smartcard from the reader before the 60 second period (if he
receives no response within 60 seconds, he considers it a time out and removes the card).
Thus the bit is set if the card is left in and unset if the card is removed. The single bit
translates to commands of “sign the document” or “don’t sign the document” to the card.

7. Use Cases

Because the exact transformations and encryption used depend somewhat on the problem
domain, it is useful to examine some specific applications. This section describes some
potential sequences of events. The exact details of the transformations in each scenario
are meant to show the wide variety of possibilities.

7.1. Electronic Voting

Alice wants to vote electronically at a public Internet terminal. She has a smartcard which
will sign her vote, and both she and the card know that their shared key is “cows”. Alice
plugs her smartcard into the terminal and makes two votes.

The first vote is a referendum, and she votes “yes.” The terminal sends “1 yes”
to the smartcard, which cryptographically signs her vote and sends it anonymously to the
vote tallier. The smartcard returns a three dimensional rendering of a group of cows in a
field spelling out the string “1 yes”. Alice reads the text, verifies that it matches her vote,
and verifies that cows are involved.

The second vote is between several candidates. Alice produces a write-in vote
of “Mickey Mouse.” The terminal maliciously sends “2 Donald Duck” to the smartcard,
which it signs and sends to the vote tallier. The terminal receives back a rendering of
“2 Donald Duck“ branded onto a cow. To try to fool Alice, the terminal renders her
original vote, “Mickey Mouse” next to a picture of some sheep. Alice verifies that the
vote matches her intent, but is alarmed that there is no cow in the picture.

Alice removes her card from the machine. Later that day, she is at a different
public terminal. She inserts her card and recasts her second vote. The voting author-
ity receives her vote and replaces the old, malicious vote with her new vote. She may
also anonymously telephone the voting authority to lodge a complaint with the original
terminal.

7.2. Document Signing

Recall our example from the beginning of the paper. Alice wants to send a signed doc-
ument to Bob using her smartcard, but only public conference terminals are available.
Fortunately, Alice is presenting a paper on KHAP, and so she has her key ready. Alice’s
key is a set of speech patterns that were randomly generated; when text is synthesized
using the patterns, the resultant voice is easily recognizable to Alice, who has heard it
several times before (when using her smartcard). Note that Alice could not easily de-
scribe the characteristics of the voice. Fortunately, she doesn’t need to; she need only
distinguish the voice from other voices.

Alice types the memo into the terminal’s word processor program and requests that
it be sent to her card for signing. The card simultaneously signs the data and produces
a synthesized version of the text. It does not release the signature from the card, but
returns an audio file of the synthesized voice. The card then waits for the length of the
audio stream plus thirty seconds. If it has received no input by that point, it releases the
signature. If the card is removed from the reader, it obviously cannot release the signature.

Alice listens to the voice reading her memo, confirms that it is the voice she rec-
ognizes and the text is what she wrote, and waits ten seconds for the signature.

8. Future Work

There are several issues with KHAP that have yet to be addressed.

Because of the nature of hard AI problems, there is no way to formally prove that
they will remain hard; it is merely the consensus of the AI research community that there
is no solution for a particular problem. It is therefore critical to further investigate specific
implementations of KHAP.

It may be possible in some circumstances to gain some knowledge of a specific
transformation key over a large number of messages. For example, imagine a system uses
messages encoded as speech with a particular voice key. If an attacker starts with a guess
as to the key and refines his estimate as more messages are heard, eventually the difference
between his estimate and the key will drop belowε, making the two indistinguishable.
One possible way to counter this would be to “age” the key; that is, to change it over
time such that the rate of change is greater than the rate at which an attacker’s estimate
improves. If the changes are small enough, then a user will not be able to distinguish them
over a small set of changes. Over a larger set of changes, the user will be incrementally
“retrained” from message to message.

One implementation obstacle is the computational power required to perform the
transformations. In particular, is it feasible to have a smartcard synthesizing speech or
rendering 3D models? Where are the models stored? A possible solution to this is to
use external computation and storage. A smartcard may be able to use encrypted aux-
iliary storage[6] to hold the rendering models or the data required for speech synthesis.
If a remote coprocessor is available, the smartcard may be able to offload some of the
computation[12].

9. Conclusions

The use of both malicious terminals and hard AI problems in security are relatively new
areas of research brought about by the recent ubiquity of networked computing.

We have introduced KHAP, a system for using hard AI problems to provide data
integrity from a malicious terminal in some common circumstances. We have shown that
given a sufficiently hard AI problem, using KHAP succeeds in securing data integrity be-
tween a human and a computing system. We have also shown that KHAP-based protocols
can be feasibly performed by humans.

Furthermore, we have introduced the concept of keyed AI transformations, a se-
curity primitive that can be used in a variety of other protocols both to hide data from
automated adversaries and to attach authentication to specific messages. Previous work
has demonstrated the use of hard AI problems as security primitives[11]; however, we
believe this to be the first use of AI problems for message authentication.

References

[1] ATM machines rigged (newspaper article). The Globe and Mail, August 12, 2003,
http://www.globeandmail.com.

[2] Istvn Zsolt Berta and Istvn Vajda. Documents from malicious terminals.
http://www.crysys.hu/publications/files/BertaV2003spie.pdf, 2003.

[3] H. Gobioff, S. Smith, J. Tygar, and B. Yee. Smartcards in hostile environments. In
Proceedings of the Second USENIX Workshop on Electronic Commerce, 1996.

[4] Nicholas J. Hopper and Manuel Blum. Secure human identification protocols.Lecture
Notes in Computer Science, 2248, 2001.

[5] G. Kochanski, D. Lopresti, and C Shih. A reverse turing test using speech. InPro-
ceedings of the International Conferences on Spoken Language Processing, Denver,
Colorado, September 2002.

[6] Umesh Maheshwari and Radek Vingralek. How to build a trusted database system on un-
trusted storage. InProceedings of the 4th Symposium on Operating Systems Design
and Implementation, San Diego, October 2000.

[7] T. Matsumoto and H. Imai. Human identification through insecure channel.Advances in
Cryptology – EUROCRYPT 91. Lecture Notes in Computer Science, 547, 1991.

[8] Fabian Monrose, Michael K. Reiter, Qi Li, and Susanne Wetzel. Cryptographic key gen-
eration from voice. InProceedings of the IEEE Symposium on Security and Privacy,
Oakland, California, May 2001.

[9] Moni Naor and Benny Pinkas. Visual authentication and identification.Lecture Notes in
Computer Science, 1294, 1997.

[10] E. Rescorla. HTTP over TLS. IETF RFC 2818.

[11] L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA: Using hard AI problems
for security. InProceedings of Eurocrypt 2003, 2003.

[12] B. S. Yee.Using Secure Coprocessors. PhD thesis, Carnegie Mellon University, 1994.

