Hydra: A decentralised group key management

Sandro Rafaeli and David Hutchison
{rafaeli,dh}@comp.lancs.ac.uk
Computing Department, Lancaster University, LA1 4YR, UK

Abstract

In this paper, we describe Hydra, a scaleable decentralised architecture to cre-
ate and distribute symmetric cryptographic keys to large multicast-based groups.
In order to support large multicast groups, the group is divided into a number of
TTL-scoped regions. The purpose of having several regions is to achieve flexible
and efficient key management, particularly in face of group membership changes.
Hydra servers are designated as subgroup managers. They are responsible for
managing group membership and distributing secret keys at the subgroup level.
Hydra does not employ a manager for subgroup managers, and hence, it is not
vulnerable to failures of single entities.

1 Introduction

The use of IP multicast in supporting distributed applications has brought several
benefits in terms of data distribution. However, it is a challenge to effectively control
the access of such data since anyone can join a multicast group and receive the
data being exchanged. Secure multicast sessions can be realised through encryption.
Messages are protected by encryption using a cryptographic key, which in the context
of group communication is called group key. Only those who know the group key are
able to recover the original message.

One of the issues that must be addressed in secure multicast sessions is key dis-
tribution, i.e., how to distribute the group key to all members of a group. In recent
years, many different proposals have been presented to solve the problem of key dis-
tribution. Some of the proposals employ a central entity that manages the whole
group, and thus may not scale for large groups. Other proposals distribute the group
key generation among all members of the group. This also does not scale to large
groups because every single member of the group participates in the key genera-
tion. Moreover, other proposals divide large groups into smaller ones, employing a
controller for each subgroup.

In this paper, we present and describe the Hydra system. Hydra employs a
decentralised architecture to generate and distribute the group key. The large group is
split into smaller subgroups and each subgroup is managed by a Hydra server. Hydra
does not employ a manager for subgroup managers, and hence, it is not vulnerable
to failures of single entities.

The work presented here was done within the context of ShopAware - a research project funded
by the European Union in the Framework V IST Programme.

2 Decentralised Group-Key Management Systems

A decentralised architecture for group-key management is required to have the fol-
lowing features [2][8]:

Distributed control: there should not be a central manager controlling the
subgroup managers. The central manager rises the same issues as centralised systems,
namely if the centralising manager is unavailable, the whole group is compromised;

Local rekey: membership changes in a subgroup should be treated locally, which
means that rekey of a subgroup should not affect the whole group. This is also known
as the I-affects—n problem;

Data independency: the data path should be independent of the key manage-
ment path, which means that rekeying the subgroup should not impose any interfer-
ence or delays to the data communication;

Communication type: groups with a single data source are said to use I-to—n
communication, and groups with several or all members being able to transmit are
characterised by using n—to—n communication.

These features will be used to compare Hydra with other decentralised systems
in Section 5.

3 The Hydra Architecture

3.1 Overview

The Hydra architecture is composed of two hierarchical levels (see Figure 1). Tt
employs a hierarchy in order to organise a large group into smaller subgroups. The top
level is composed exclusively of Hydra servers (HSs). HSs are the entities responsible
for managing the subgroups. Group members are placed in the bottom level separated
into subgroups.

HS-group
Hydra-group ﬁ GC
Subgroup 1 Subgroup 2 Subgroup n L
level 1 =
J J ... d
1 HS HS HSh

level 2 7 @ @ @

members members members

Figure 1: Hydra System.

A group key, namely GroupKey, protects the group communication. All members
in the group share the GroupKey. Hydra uses two secure multicast groups for the
key management. The first one, called HS-group, is used by the HSs in the top
level to agree on a common group key. The second one, called Hydra-group, is used
by the HSs to distribute the agreed key to their respective subgroup members in
the bottom level. The Hydra-group is best described as a single “physical” multicast
group “virtually” divided among the HSs managing it by means of time-to-live (TTL)
scoping [7].

A key called HydraKey protects the communication on the HS-group. HydraKey
is shared by all HSs managing a session. It is valid for a short period and after the
period expires, HydraKey is refreshed. The HS performing the rekey operation at
the time HydraKey expires is responsible for generating the new one and sending it
together with the new Groupkey.

A subgroup key protects the GroupKey within a subgroup in the Hydra-group.
Each subgroup has its own subgroup key and it is shared between the HS controlling
that subgroup and all the subgroup members. When a new GroupKey is distributed
among the HSs controlling a group, the HSs encrypt the new group key with their
respective subgroup key and then send it out.

Hydra does not use a central entity to generate the new group key; if a membership
change takes place at HS;, and a new key must be generated, it can generate the new
group key and send this key to the other HSs involved in that session. Then, the HSs
relay the new group key to their respective subgroup members. One or more HSs
being unavailable does not interfere with the remaining HSs. Members associated
with a failing HSs can rejoin the group session by simply connecting to another HS.

Hydra
Server SGKDP
Group

|

Hydra Server
ERSP —— RPP
Hyd
@ ‘ (GKMP Group Creator
Hydra Client SAP/SDP

Figure 2: Hydra’s building blocks.

In Hydra, the group creator takes up important roles during the group creation.
Firstly, it distributes certificates to all entities involved in the group (servers and
members). Secondly, it is responsible for setting the policies of the group and choosing
the cryptographic parameters. Thirdly, it has to allocate the multicast addresses
needed by the architecture and then advertise the session. Finally, it waits for Hydra
servers to connect and request permission to manage the group. The GC participates
in the group setup phase, but it does not take any roles during group management
or key distribution.

Figure 2 shows the protocols that make the Hydra system. Firstly, the GC an-
nounces its group session using the Session Announcement Protocol (SAP) [4] and
Session Description Protocol (SDP) [3]. HSs listen to the well-known SAP address
for Hydra group announcements. When a new Hydra group is identified, the HS
contacts the group creator requesting permission to manage it. The request is made

using the Permission Request Protocol (PRP).

Hydra Clients also listen on the SAP address and when a session is interesting to
them, they contact the closest HS to acquire the group key. Hydra clients use the
Expand Searching Ring Protocol (ERSP) to find the closest HS.

The Synchronised Group Key Distribution Protocol (SGKDP) protocol maintains
the group key synchronised among the HSs participating in the group key manage-
ment. If there is a membership change in the HS, then it generates a new group key
and communicates it to the other HSs via the SGKDP (see Section 4).

Finally, when HSs agree on a new group key, they relay this key to their respective
subgroup members using the Group Key Management Protocol (GKMP). The GKMP
protocol is independent of the SGKDP protocol.

3.2 Authentication

Hydra employs a Public Key Infrastructure (PKI) model to authenticate all parties
in the system. The PKI root certification authority is the group creator. Its functions
include personal authentication, token distribution and revocation reporting.

The GC’s certificate is the root of the hierarchy. The GC also maintains three
other certificates. Each certificate is used to issue specific sets of certificates. The
first set, which contains Hydra server certificates (hCerts), is used to identify HSs
to the group creator. The second set, which contains Session Authorisation Tokens
(SATs), is used to authenticate an HS to other HSs and group members. The third
set, which contains member certificates (mCerts), is used to authenticate members
to HSs and authorise them to participate in the secure group.

4 Synchronised Group Key Distribution Protocol

Hydra does not employ a manager of managers as other decentralised schemes do.
The central manager is a central point of failure and if it becomes unavailable, it
compromises the security of the group, especially if the central manager is in charge
of updating the group key. Hydra gives opportunity to all HSs managing a group
session to change the group key. When a membership change takes place at an HS,
and a new key must be generated, it can generate the new group key and send this key
to the other HSs involved in that session. Thus, one or more HSs become unavailable
do not interfere with the remaining HSs.

SGKDP messages are sent over a group communication service. The group com-
munication is in charge of guaranteeing that all HSs will receive SGKDP messages in
the same order. The order in which the messages are transmitted is not important,
but it is fundamental that the messages are delivered to all HSs in exactly the same
order. Therefore, the group communication in the HS-group must provide totally or-
dered [6] delivery of messages. A totally ordered service has the following property: If
both processes ¢ and j deliver the same messages a and b, they deliver these messages
in the same order.

Hydra uses the SPREAD group communication system [1]. SPREAD supports
total order and provide complete extended virtual synchrony [9] with delivery guar-
antees.

The SGKDP protocol is divided into two parts. In the first part, a new HS joining
the group requests the current GroupKey and HydraKey keys from other HSs already

Table 1: Notations.
{X} and {X}%' encryption and decryption of X with key K

{X};Z{ X is signed with i’s private key, —K
E; - E;: X Entity E; sends message X to E;
E,—x: X Entity E; multicasts message X

in the group. The GC does not participate in any key management protocol, hence
it cannot provide any keys to newly joined HSs. Therefore, newly joined HSs must
request from other HSs (participating in the group management) for a copy of the
current keys.

In the second part, the HSs can update these keys with new values. This part is
executed with either of two messages: NEWKEY message or ALLKEYS message. When-
ever an HS needs to rekey the group (due to membership change, for example), it
multicasts a NEWKEY message containing the new GroupKey. Other HSs receiving this
message learn the new value of the GroupKey key and then update their respective
subgroups with that key. When it is time to change the HydraKey, the HS sends an
ALLKEYS message instead.

Part I of protocol SGKDP between HS; and HS; goes as follows (see notations in
Table 1):

Part I
1. HS; — *:1,G,HS;,0, JOIN, nonce;, SAT;

2. HSj — HS; : 1,G, HSj,th, OK, {{noncei, Vi, Kgi, th}s_i;ljsj , SATj }K R {th}+KHsi

HS; multicasts a JOIN message to the HS-group. The message ‘contains a nonce
and the HS;’s SAT.

HSs receive the request and verify whether HS; is allowed in the group or not.
If it is, then one of the HSs sends back an 0K message with current HydraKey and
GroupKey. The nonce received in the request is copied to the OK message. The
response is properly signed and the respective SAT is sent with it. The 0K message
is put in an envelope and HS;’s public key (from SAT};) is used to seal the secret key.
Only the HS holder of the counter-part private key can open the envelope.

HS; decrypts the envelop and verifies HS;’s signature. It also checks if HS; is
a valid HS for group session G. HS; then verifies if the nonce received matches the
nonce it had sent. If they do, the HS; knows that this is a fresh 0K message and
accepts the keys.

HS; may not receive any responses. This means that it is the first HS in the group
and then it generates the first HydraKey and GroupKey keys.

Part II of protocol SGKDP goes as follows:

Part II.

1. HS; — *: 1,G,HS;q, Vi, NEWKEY, {{ng,

or

1. HS; — % : 1, G, HS:4, Vyk, ALLKEYS, {{vgk, o Vi K} ot SAT}

An HS can use either a NEWKEY or ALLKEYS message for updatlng GroupKey. The
NEWKEY message updates only GroupKey and ALLKEYS updates both GroupKey and
HydraKey. A NEWKEY message carries the new GroupKey version (incrementing the
previous version value by one) and the new GroupKey value. The HS signs the new
values and then encrypts it with the current HydraKey. The ALLKEYS message carries
also a new version value for HydraKey and a new HydraKey.

SAT; }

b
SI n
g Khte

No acknowledgement is needed due to the total order property. When an HS is
delivered a message, it knows that all other HSs were delivered the same message.

When an HS is delivered a NEWKEY /ALLKEYS message, it executes Algorithm
3. Every HS; has some local state variables, namely GV; and GK;, respectively,
the current group key version and the current GroupKey key, and HV; and HK;,
respectively, the current Hydra key version and the current HydraKey key. Initially,
GV; and HV; are set to zero and GK; and HK; to void. When an HS requires a new
group key, it increments the version number by one and chooses a new GroupKey
key value. These new values are sent in the NEWKEY/ALLKEYS message:

Due to the total ordering property, all HS members of the group communication
executing Algorithm 3 receive the same message m in step 1. If all HS started
executing the algorithm with the same value GV, after several executions of the
algorithm, they are all holding the same value GV, and hence, GK.

Figure 3: Part II SGKDP algorithm.

receive and decrypt message m

verify m’s authenticity

discard m and stop if (Vj <GV) or (Vj} > GV +1)

- accept m and make GK = K7} and GV = V[},

if message type is ALLKEYS then HK = K}}} and HV =V
5. distribute GK to subgroup members

D e

The correctness of the algorithm can be verified with an example. Let us say that
there are two Hydra servers, HS; and HS;, managing a certain group. Both hold
values GV and GK, where GV; = GV, and GK; = GK;. They communicate with
each other using a totally ordered delivery of messages system. HS; and HS; send,
respectively, m; and m; rekey messages at virtually the same time. Before sending
m;, HS; sets VZ;; to GV; + 1 and HS; sets V;’Zj to GV; + 1. By definition, HS; and
HS; have m; and m; delivered in the exact same order. Let us assume that m; is
delivered first and then m; is delivered. Hence, HS; and HS; receive m; in step 1.
In step 2, both verify authenticity of m;. Then, in step 4, HS; and HS; accept m;,
since GV; < le < GV;+ 1 and GV, < Gle < GV, + 1, and set, respectlvely,
GK; K"}; and GV; V"}; and GK = K7}’ and GV le In step 5, both
HSs dlstrlbute the new GroupKey to thelr respective subgroup When message m;
is delivered, both HSs discard it in step 3 because VZZ = GV; and VZZ = GV;.

HSs update the HydraKey key in the same way. However, an ALLKEYS message
is sent instead of a NEWKEY message. The ALLKEYS is treated exactly as the NEWKEY
message, and the example above works in the same way.

5 Related Work

In this section, we go through other main contributions in the group key management
area that also use decentralised subgroups. Although all proposals have in common
the subgrouping within the large group, they use different techniques to achieve the
distribution. The similarity is that all of them divide the large group into smaller
subgroups and employ a subgroup manager to control each subgroup.

In Iolus [8], each subgroup has its own key. The absence of a general group key

makes membership changes in a subgroup to be treated locally. It means that changes
that affect a subgroup are not reflected to other subgroups.

Hardjono proposed the IGKMP protocol [5]. In IGKMP, the subgroup are divided
in administratively scoped areas [7]. There is one Domain Key Distributor (DKD)
and several Area Key Distributors (AKDs). A group key is generated by the DKD
and is propagated to the members through the AKDs.

Setia, Koussih and Jajodia proposed Kronos [10]. Kronos is an approach driven
by periodic rekey, which means a new key is generated after a certain period of time,
disregarding any membership changes in the group.

Table 2 shows a summary of the characteristics of each decentralised scheme. The
value between brackets represents the best option, accordingly to sections 2.

Table 2: Features comparison

Feature/Scheme Hydra Iolus IGKMP Kronos
Distr. Control (Y) Y Y N Y
Fault-tolerant (Y) Y Y N Y
Secure Keys (Y) Y Y Y N
Local rekey (Y) N Y N na
Data indep.(Y) Y N Y Y
Membership rekey(Y) Y Y Y N

Y=feature present, N=feature not present, na=not applicable

Hydra has a fundamental advantage over IGKMP, because Hydra does not have a
central controller. IGKMP relies on the central controller for authentication and key
generation, and if the central controller is not available, the whole group is affected.
In Hydra, the group creator appears only during setup time and it is contacted neither
during authentication nor for group key updates.

Another advantage that Hydra has over IGKMP is that Hydra is more flexible
regarding the subgroup formation. Whenever an HS stops working, its members can
always find the new nearest HS and rejoin the group session. This is not possible in
IGKMP due to its administrative scoped multicast subgrouping. There may not be
another reachable AKD.

Although Kronos does not use a central controller and the subgroup controllers
can generate the new keys independently, it compromises the group security because
it generates the new key based on the previous one. If one key is disclosed then it
compromises all following keys. Additionally, Kronos servers must have their clocks
perfectly synchronised to be able to change keys at exactly the same time. Hydra
uses keys that are independently generated, so that they cannot be used to recover
either past keys or future keys.

Hydra presents the undesirable effect of one change affecting the whole group that
Tolus manages to avoid. However, Hydra separates the control path (key manage-
ment) from the data path, which means that group communication is not interrupted
or spoiled by key management operations. Although Hydra needs a longer time to
rekey the whole group after a membership change, the delay will be noticed only in
the group key updates (control path). The group communication (data path) will
not be affected by that. In Iolus, the group data must be translated when it moves
from one subgroup to another.

6 Conclusion

In this paper, we have described Hydra, a new approach for distributing group key
management. A large multicast session is split in smaller subgroups and a group
controller manages each subgroup. Hydra drops the central controller for subgroup
controllers and distributes the key generation and group management among several
HSs. It makes the system fault-tolerant, since it allows any HS to generate the group
key and it will prevent the interruption of the group communication.

Hydra draws the line between control (key management) path and data path.
Although Hydra may need a long time to rekey the whole group after a membership
change, the delay will be noticed only in the group key updates (control path). The
group communication (data path) will not be affected by that. Yet, the separation
between the control and data path allows Hydra to serve both 1-to-n and n-to-n
group communications.

References

[1] Y. Amir and J. Stanton. The Spread wide area group communication system. Technical
Report 98-4, Department of Computer Science, Johns Hopkins University, 1998.

[2] L. Dondeti, S. Mukherjee, and A. Samal. Survey and Comparison of Secure Group
Communication Protocols. Department of Computer Science, University of Maryland,
1999.

[3] M. Handley and V. Jacobson. SDP: Session Description Protocol. RFC 2327, November
1997.

[4] M. Handley, C. Perkins, and E. Whelan. Session Announcement Protocol. RFC2974,
October 2000.

[5] T. Hardjono, B. Cain, and I. Monga. Intra-domain Group Key Management Protocol.
IETF Internet draft (work in progress), September 2000.

[6] K.P.Birman. Building Secure and Reliable Network Applications. Manning Publications
Co., 1996.

[7] D. Meyer. Administratively Scoped IP Multicast. RFC 2365, July 1998.

[8] S. Mittra. Iolus: A Framework for Scalable Secure Multicasting. In ACM SIGCOMM,
volume 27,4 of Computer Communication Review, pages 277-288, New York, September
1997. ACM Press.

[9] L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal. Extended virtual synchrony.
In In Proceedings of the 14th IEEFE International Conference on Distributed Computing
Systems, pages 56—65, 1994.

[10] S. Setia, S. Koussih, and S. Jajodia. Kronos: A Scalable Group Re-keying Approach
for Secure Multicast. In 2000 IEEE Symposium on Security and Privacy, Oakland CA,
May 2000.

