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Abstract. This paper describes five hypothetical realizations of IDEA-128, a
128-bit block cipher, using a 256-bit key, iterating 16.5 rounds, and operating
on 32-bit words. These parameters are exactly double the size of the IDEA
block cipher’s. These IDEA-128 variants differ only in the multiplicative group
structure: ZZ∗

232 , ZZ∗

232+1, GF(232), ZZ∗

232−1, or GF(232 + 15). All of these designs
have weaknesses related to the structure of these multiplicative groups, which
lead to decryption failures or cryptanalytic attacks. The overall conclusion is
that none of these variants constitute a secure cipher, and thus, help corroborate
the design of the MESH ciphers, which operate on 16-bit words and use the
same operations of IDEA, but allows text blocks larger than 64 bits, without
compromising security.
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1. Introduction
Ever since the publication of PES in 1990 [16], of IDEA in 1991 [16], and until 2002
[20], no variant of the IDEA cipher with block size larger than 64 bits has resisted public
cryptanalysis. The closest design was Akelarre [2], but it used bitwise rotation instead
of multiplication. Moreover, Akelarre was broken by Knudsen and Rijmen in [14]. Such
larger-block cipher variants would be useful for instance as a buiding block for the con-
struction of hash functions, stream ciphers and MAC algorithms [19, p.229, 340, 353].
Moreover, 128-bit block size is commonplace among modern block ciphers [1, 21], and
help defeat some drawbacks inherent to 64-bit block ciphers in some modes of operation
[13]: “if an n-bit block cipher is used in CBC, CFB, or OFB modes, information on the
plaintext starts to leak after 2n/2 encryptions. This shows that block lengths of 128 bits
are desirable in the near future.”.

The original group operations on 16-bit words in IDEA are: bitwise exclusive-or,
denoted ⊕; modular addition in ZZ216 , denoted ¢; and multiplication in GF(216+1), denoted
¯, where 0 ≡ 216 (Fig. 1 with ~ = ¯, but only eight rounds). An intuitive approach for
the construction of larger IDEA variants would be to use operations on 32-bit words,
doubling the original word size in IDEA. Extending ⊕ and ¢ to 32 bits is straightforward.
The real problem is to find an appropriate multiplicative group operating on 32-bit words:
232 + 1 is an obvious candidate but it is composite, in contrast to 216 + 1, which is the
last known Fermat prime [8]. This word size is also attractive for operation on popular
desktop processors such as Intel’s Pentium I/II/III/4 and AMD’s Athlon/Duron, but slow
on 8-bit and 16-bit processors. Apart from efficiency issues, this paper describes five
hypothetical realizations of IDEA-128, operating on 128-bit blocks, under a 256-bit key,
iterating 16 rounds plus an output transformation (OT), and with operations on 32-bit
words. The OT stands for half a round. IDEA-128 has the same computational graph
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Figure 1. Computational graph of IDEA-128.

of IDEA, but more rounds and the multiplication operation in different algebraic groups.
Each round in IDEA-128 is composed of a key-mixing and an MA half-round just like in
IDEA. Both ciphers use the same computational graph for encryption and decryption, with
just an appropriate change of subkeys for each operation. It follows that the encryption
and decryption frameworks have the same cryptographic strength. Thus, without loss of
generality, we will focus attention on the encryption operation.

Two hypothetical key schedule algorithms for IDEA-128 are described. The main
results in each IDEA-128 variant are the existence of forbidden subkeys (for which de-
cryption fails), and weak subkeys (allowing linear or differential attacks). The first phe-
nomenon is absent is IDEA. Avoiding them in IDEA-128 could either cause noticeable
delays during subkey generation (larger than one encryption operation), or reduce con-
siderably the subkey space. Additionally, it could potentially lead to timing attacks [15].
The key schedule algorithm of IDEA, for example, was not designed to avoid weak keys
[7], and therefore, has been the main weakness exploited by the most effective attacks
on the full cipher [5, 7, 10]. These findings corroborate the design of the MESH ciphers
[20], which operate on 16-bit words and use the same operations of IDEA, but allows text
blocks larger than 64 bits, without compromising security.

This paper is organized as follows: Sect.2. describes two hypothetical key sched-
ule algorithms for IDEA-128, and some of their properties. Sect. 3. describes IDEA-128
with multiplication in ZZ∗

232 . Sect. 4. discusses IDEA-128 with multiplication in ZZ∗

232+1.
Sect. 5. discusses IDEA-128 with multiplication in GF(232). Sect. 6. discusses IDEA-
128 with multiplication in ZZ∗

232−1. Sect. 7. discusses IDEA-128 with multiplication in
GF(232 + 15). Sect. 8. concludes the paper.

2. Key Schedule Algorithms
This section describes two examples of key schedule or key setup (KS) algorithms for
IDEA-128. The first of them is an extended version of IDEA’s [16]:

Algorithm KS1:

• let K = K1|K2|K3|K4|K5|K6|K7|K8 be the original 256-bit user key, partitioned into
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Table 1. Mapping subkey bits to the 256-bit user key.

i-th round Z(i)
1 Z(i)

2 Z(i)
3 Z(i)

4 Z(i)
5 Z(i)

6

1 1–32 33–64 65–96 97–128 129–160 161–192
2 193–224 225–256 50–81 82–113 114–145 146–177
3 178–209 210–241 242–17 18–49 99–130 131–162
4 163–194 195–226 227–2 3–34 35–66 67–98
5 148–179 180–211 212–243 244–19 20–51 52–83
6 84–115 116–147 197–228 229–4 5–36 37–68
7 69–100 101–132 133–164 165–196 246–21 22–53
8 54–85 86–117 118–149 150–181 182–213 214–245
9 39–70 71–102 103–134 135–166 167–198 199–230
10 231–6 7–38 88–119 120–151 152–183 184–215
11 216–247 248–23 24–55 56–87 137–168 169–200
12 201–232 233–8 9–40 41–72 73–104 105–136
13 186–217 218–249 250–25 26–57 58–89 90–121
14 122–153 154–185 235–10 11–42 43–74 75–106
15 107–138 139–170 171–202 203–234 29–60 61–92
16 93–124 125–156 157–188 189–220 221–252 253–28
OT 78–109 110–141 142–173 174–205 — —

eight 32-bit words. These words form the first eight round subkeys: Z (1)
1 , . . . ,Z(2)

2 .
• rotate left the 256-bit key by 49(= 3

2 ∗32+1) bits (in IDEA, the 128-bit user key is
rotated 3

2 ∗ 16 + 1 = 25 bits to the left). Then, partition the resulting 256 bits into
eight 32-bit words, forming the next eight round subkeys. Repeat this procedure
until 100 subkeys for 16.5 rounds are obtained.

Let the bits of K be numbered sequentially from 1 up to 256 in left-to-right order. Thus,
for example, K1 corresponds to bits 1–32 of K. Table 1 shows the mapping of the subkey
bits to the bits of K.

Properties of KS1 include:

• The encryption and decryption subkeys can be generated on-the-fly, because each
subkey depends only on 32 consecutive bits of the user key, and thus, can be
computed independently. On the other hand, there is a high overlapping of bits
among subkeys, allowing the reconstruction of the user key and of other subkeys
if any subkey is even partially recovered (just like in IDEA).

• The subkey generation is faster than one encryption operation since only bit rota-
tions are used. No arithmetic operations are involved.

• There is no provision to avoid patterns in the subkeys. For example, the user
key with all bits equal to zero leads to all encryption subkeys being zero, too.
Similarly, the user key with all bits equal to one causes all encryption subkeys to
equal 232 − 1 = ffffffffx (in hexadecimal notation).

The second key schedule algorithm is described as follows:

Algorithm KS2:

• define 32-bit constants ci as follows c0 = 1 and ci = 3 · ci−1 for i ≥ 1, with
multiplication in GF(2)[x]/q(x), where q(x) = x32 + x28 + x25 + x22 + x18 + x15 +
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x13+ x10+ x8+ x6+ x5+ x2+1 is a primitive polynomial1 over GF(2). The constant
‘3’ is represented by the polynomial x + 1 in GF(2)[x]/q(x).

• the 256-bit key is partitioned into eight 32-bit words Ki, for 0 ≤ i ≤ 7, which
constitute the first eight subkeys: Z (1)

i = Ki ⊕ ci−1, 1 ≤ i ≤ 6, Z(2)
1 = K7 ⊕ c6, and

Z(2)
2 = K8 ⊕ c7.

• each subsequent 32-bit subkey is generated as follows:

Z(h(i))
l(i) =

((((((

Zh(i−8)
l(i−8) ⊕ cl(i−8)

)

¢

(

Zh(i−7)
l(i−7) ⊕ cl(i−7)

))

⊕
(

Zh(i−6)
l(i−6) ⊕ cl(i−6)

))

¢

(

Zh(i−5)
l(i−5) ⊕ cl(i−5)

))

⊕
(

Zh(i−2)
l(i−2) ⊕ cl(i−2)

))

¢

(

Zh(i−1)
l(i−1) ⊕ cl(i−1)

))

≪ 1 , (1)

for 8 ≤ i ≤ 99, where ‘≪ 1’ means one-bit left rotation, h(i) = i div 6 + 1, and
l(i) = i mod 6 + 1.

Properties of KS2 include:

• Encryption subkey generation is on-the-fly, since subkeys can be computed se-
quentially according to (1). But, decryption is not on-the-fly.

• Due to the recurrence (1), based on the primitive polynomial x8 + x7 + x6 + x5 +

x2 + x + 1 over GF(2), there is no key overlapping as in KS1.
• Notice that both of ¢ and ⊕ operations preserve the relative bit position of its

operands. The one bit left-rotation destroys that property, so that changes only at
the most significant bit of some subkeys (for instance, in a related-key attack [3])
would not propagate to other subkeys.

• The 32-bit constants are intended to avoid bit patterns in the subkeys. For example,
without the constants, the all-zero user key would lead to all subkeys been zero.

• Each subkey after Z(2)
2 requires three additions, eight xors, and one bit rotation

according to (1). Assume that each such operation requires one machine cycle.
This means that computing the remaining 92 subkeys requires 92 ·8 = 736 cycles.
Assume one multiplication requires three times more than an addition or an xor.
Then, one round of IDEA-128 requires four multiplications, four additions, and
six xors. Thus, 16.5 rounds requires 16 · (4 + 6 + 3 · 4) + 2 · (3 + 1) = 360 cycles,
and KS2 is estimated to cost 736

360 ≈ 2.04 or 104% more than one encryption.

3. Multiplication in ZZ∗

232

The first suggested group for IDEA128 is (ZZ∗

232 , ∗), which is motivated by the multiplica-
tion operation in the MARS block cipher [6]. Formally, ZZ∗

232 = {x ∈ ZZ232 |gcd(x, 232) = 1},
where gcd stands for the greatest common divisor, and ~ = ∗ in Fig. 1. It implies that the
multiplicative subkeys in the key-mixing half-round should be relatively prime to 232, oth-
erwise decryption would not be possible. This situation is analogous to that in the NTRU
cryptosystem [11]. In the MA half-round though, subkeys that are not relatively prime
to 232 do not lead to decryption failures, but they may result in non-bijective MA-boxes,
which can be a potential weakness for other techniques, such as impossible differentials
[4] and non-surjective attacks [23].

Even more serious, though, is the fact that this group operation makes IDEA-128
susceptible to a linear attack involving only the least significant bit (LSB) of some 32-bit

1Chosen at random.
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Table 2. 1-round characteristics and linear relations under weak-subkey assumptions.

Input Diff.
1r
→ Output Diff. Input Mask

1r
→ Output Mask Weak Subkeys (i-th round)

(0, 0, 0, δ)
1r
→ (δ, δ, δ, 0) (0, 0, 0, 1)

1r
→ (0, 0, 1, 0) Z(i)

4 , Z(i)
6

(0, 0, δ, 0)
1r
→ (δ, 0, 0, 0) (0, 0, 1, 0)

1r
→ (1, 0, 1, 1) Z(i)

5 , Z(i)
6

(0, 0, δ, δ)
1r
→ (0, δ, δ, 0) (0, 0, 1, 1)

1r
→ (1, 0, 0, 1) Z(i)

4 , Z(i)
5

(0, δ, 0, 0)
1r
→ (δ, δ, 0, δ) (0, 1, 0, 0)

1r
→ (0, 0, 0, 1) Z(i)

6

(0, δ, 0, δ)
1r
→ (0, 0, δ, δ) (0, 1, 0, 1)

1r
→ (0, 0, 1, 1) Z(i)

4

(0, δ, δ, 0)
1r
→ (0, δ, 0, δ) (0, 1, 1, 0)

1r
→ (1, 0, 1, 0) Z(i)

5

(0, δ, δ, δ)
1r
→ (δ, 0, δ, δ) (0, 1, 1, 1)

1r
→ (1, 0, 0, 0) Z(i)

4 , Z(i)
5 , Z(i)

6

(δ, 0, 0, 0)
1r
→ (0, δ, 0, 0) (1, 0, 0, 0)

1r
→ (0, 1, 1, 1) Z(i)

1 , Z(i)
5 , Z(i)

6

(δ, 0, 0, δ)
1r
→ (δ, 0, δ, 0) (1, 0, 0, 1)

1r
→ (0, 1, 0, 1) Z(i)

1 , Z(i)
4 , Z(i)

5

(δ, 0, δ, 0)
1r
→ (δ, δ, 0, 0) (1, 0, 1, 0)

1r
→ (1, 1, 0, 0) Z(i)

1

(δ, 0, δ, δ)
1r
→ (0, 0, δ, 0) (1, 0, 1, 1)

1r
→ (1, 1, 1, 0) Z(i)

1 , Z(i)
4 , Z(i)

6

(δ, δ, 0, 0)
1r
→ (δ, 0, 0, δ) (1, 1, 0, 0)

1r
→ (0, 1, 1, 0) Z(i)

1 , Z(i)
5

(δ, δ, 0, δ)
1r
→ (0, δ, δ, δ) (1, 1, 0, 1)

1r
→ (0, 1, 0, 0) Z(i)

1 , Z(i)
4 , Z(i)

5 , Z(i)
6

(δ, δ, δ, 0)
1r
→ (0, 0, 0, δ) (1, 1, 1, 0)

1r
→ (1, 1, 0, 1) Z(i)

1 , Z(i)
6

(δ, δ, δ, δ)
1r
→ (δ, δ, δ, δ) (1, 1, 1, 1)

1r
→ (1, 1, 1, 1) Z(i)

1 , Z(i)
4

words across all the 16.5 rounds. This attack is based on the fact that the algebraic struc-
ture of ZZ∗

232 makes the LSB of the multiplication result depend only on the LSB of its
operands. For the ¢ and ⊕ operations this linear relation also holds with certainty. There-
fore, one can construct linear relations across the full 16.5-round IDEA-128, and actually
for any number of rounds, with (maximum) bias 2−1 [17], whatever the key/subkey
values, namely, independent of the key schedule algorithm.

More precisely, let X = X1|X2|X3|X4 and Y = Y1|Y2|Y3|Y4 be the input and output

blocks of one round of IDEA-128. Let (A, B,C,D)
1r
→ (E, F,G,H) denote the one-round

linear relation for which the four-word linear mask (A, B,C,D) applied to X causes the
output mask (E, F,G,H) applied to Y . The middle column of Table 2 lists all non-trivial
(with non-zero masks) one-round linear relations involving only the LSB of the words in
an input/output block pair, and weak multiplicative subkey assumptions.

Using Table 2 several linear relations for the full 16.5-round IDEA-128 with bias
2−1, can be constructed round by round. An example is

(1, 0, 1, 0)
1r
→ (1, 1, 0, 0)

1r
→ (0, 1, 1, 0)

1r
→ (1, 0, 1, 0) , (2)

a 3-round iterative linear relation, with the least number of weak subkeys. Let the input
plaintext be denoted X(1) = (X(1)

1 , X(1)
2 , X(1)

3 , X(1)
4 ), and the ciphertext output after 16.5

rounds be X(17) = (X(17)
1 , X(17)

2 , X(17)
3 , X(17)

4 ). Concatenating (2) with itself up to 16.5 rounds
results in the following linear relation with bias 2−1, input mask (1, 0, 1, 0), and output
mask (1, 0, 1, 0), after the OT:
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(X(1)
1 ⊕ X(1)

3 ⊕ X(17)
1 ⊕ X(17)

3 ) · 1 = (Z(1)
1 ⊕ Z(2)

1 ⊕ Z(2)
5 ⊕ Z(3)

5 ⊕ Z(4)
1 ⊕ Z(5)

1 ⊕ Z(5)
5 ⊕

Z(6)
5 ⊕ Z(7)

1 ⊕ Z(8)
1 ⊕ Z(8)

5 ⊕ Z(9)
5 ⊕ Z(10)

1 ⊕ Z(11)
1 ⊕ Z(11)

5 ⊕ Z(12)
5 ⊕ Z(13)

1 ⊕ Z(14)
1 ⊕

Z(14)
5 ⊕ Z(15)

5 ⊕ Z(16)
1 ⊕ Z(17)

1 ) · 1 . (3)

Relation (3) does not require any weak subkey restrictions, and can be used to distinguish
16.5-round IDEA-128 from a random permutation with high success rate, using about
8 · (2−1)−2 = 32 known plaintexts (KP) [17]:

• collect N ≈ 32 KP, and compute the left-hand side of (3) for all the known
plaintext-ciphertext pairs;

• since the right-hand side of (3) depends on the subkey bits only, and the key is
assumed to be fixed for all KP, the left-hand side of (3) might give a constant
bit value for IDEA-128, while it might give a binary random value for a random
permutation. There is a probability of 2−N that the result is a constant bit for a
random permutation.

The above strategy also results in a key-recovery attack. Just collect the one bit of infor-
mation about the key on the right-hand side of (3).

Neither KS1 nor KS2 are appropriate key schedules because they cannot avoid
even subkey values that not relatively prime to 232. But, even for a key setup that could
avoid these forbidden subkeys, the linear attack above would still work for any number of
rounds.

Under a chosen-plaintext setting, differential analysis of this IDEA-128 variant
using differential characteristics requires the assumption that some multiplicative sub-
keys have the (weak) value 1. The difference operator is ⊕, and δ = 80000000x is
the only non-zero 32-bit wordwise difference used, because δ can propagate across ad-
dition, multiplication and exclusive-or with certainty. Table 2 lists the one-round char-
acteristics for IDEA-128, and the corresponding weak subkeys. The best differential
distinguisher from Table 2, is based on the following 3-round iterative characteristic

(0, δ, 0, δ)
1r
→ (0, 0, δ, δ)

1r
→ (0, δ, δ, 0)

1r
→ (0, δ, 0, δ), because it has restrictions on only four

subkeys: Z(i)
4 , Z(i+1)

4 , Z(i+1)
5 and Z(i+2)

5 . Concatenated with itself up to 16.5 rounds, the input
difference is (0, δ, 0, δ), and the output difference is (0, δ, 0, δ) after the OT, with only 22
restricted subkeys. Similarly, differential characteristics can be used either to distinguish
IDEA-128 from a random permutation or to recover unknown key/subkey bits.

If KS1 were used, and there were no forbidden (multiplicative) subkeys, then this
differential distinguisher could be used to identify a weak-key class (|WKC|) of size 224

i.e. only user key bits 220–243 could be arbitrary. A weak-key class is just a subset of
the key space composed of keys that lead to weak subkeys through some key schedule.
Under KS2 we have |WKC| = 0 after only six rounds, assuming one weak subkey happens
with probability 2−32. But, neither KS1 nor KS2 avoid the non-invertible subkeys, and thus
cannot guarantee correct decryption for an arbitrary key.

4. Multiplication in ZZ∗

232
+1

The first important fact about the multiplicative group (ZZ∗

232+1,¡), where ZZ∗

232+1 = {x ∈
ZZ232+1| gcd(x,232 + 1) = 1}, is that 232 + 1 = 641 ∗ 6700417 = 4294967297, unlike in
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IDEA, where 216 + 1 is prime. Similar to IDEA, though, multiplication in ZZ∗

232+1 assumes
0 ≡ 232, so that all values fit into a 32-bit word. Also, all multiplications in this IDEA-
128 variant, with group operation ~ = ¡ in Fig. 1, involve one subkey as an operand,
and such operation is not invertible for any subkey Z ( j)

i , unless gcd(Z( j)
i , 232 + 1) = 1,

or equivalently, gdc(Z( j)
i , 641) = gcd(Z( j)

i , 6700417) = 1. Consequently, any hypothetical
key schedule for this IDEA-128 variant has to avoid all multiplicative subkeys multiples of
641 and 6700417, otherwise decryption would not be possible. Neither KS1 nor KS2 have
any provision to avoid these multiplicative subkeys. Therefore, neither is an appropriate
key setup algorithm for this IDEA-128 variant.

There are φ(232 + 1) = φ(641) · φ(6700417) = 4288266240 values in the range
[1, 232] that are relatively prime to 232 + 1, where φ is Euler’s totient function 2. These
valid subkeys account for a fraction of 4288266240

232 ≈ 99.84% of all values in the range. The
number of forbidden subkey values for ZZ∗

232+1 is only 232−φ(232+1) = 6701055. To invert
the valid multiplicative subkeys one can use the extended Euclidean GCD algorithm [19],
or Euler’s theorem. The former is faster. In the latter case simply raise the element to the
power φ(232 + 1) − 1 modulo 232 + 1. For instance, 2−1 ≡ 24288266239 ≡ 2147483649 mod
(232 + 1) is the inverse of 2 modulo 232 + 1.

Unlike ZZ∗

232 , the multiplication in ZZ∗

232+1 has a wrap-around effect [16] such as
in GF(216 + 1), which means that the LSB of the multiplication result does not always
depend exclusively on the LSBs of its operands. Nonetheless, this property does not
avoid linear attacks altogether. Linear relations with bias 2−1 exploiting the LSB of round
input and output words, across ¡, still exist for subkeys 232 and 1. From Table 2, with ¡
as the multiplication operator, it is possible to build several linear relations, with bias 2−1

(maximum), across multiple rounds, under these weak multiplicative subkeys and with
high bias, similar to [7]. These relations use the 3-round iterative relation described in

Sect. 3.: (1, 0, 1, 0)
1r
→ (1, 1, 0, 0)

1r
→ (0, 1, 1, 0)

1r
→ (1, 0, 1, 0). The bias is 2−1 as long as the

subkeys Z(i)
1 , Z(i+1)

1 , Z(i+1)
5 , Z(i+2)

5 have value 232 or 1, in rounds i to i+2. Concatenated with
itself up to 16.5 rounds results in a linear relation with input mask (1, 0, 1, 0), output mask
(1, 0, 1, 0) after the OT, under 22 weak subkeys. Therefore, this IDEA-128 variant with
¡ can be distinguished from a random permutation, with high success rate, using about
8 · (2−1)−2 = 32 KP [17], under some key schedule algorithm that avoids the forbidden
subkeys. For both KS1 and KS2, though, these 22 subkey restrictions lead to |WKC| = 0,
across 16.5 rounds. Anyway, neither KS1 nor KS2 are appropriate key schedule algorithms
because neither can avoid the forbidden subkeys.

The differential analysis of this IDEA-128 variant is analogous to that of Sect. 3.:
the differential characteristic covers 16.5 rounds and assumes 22 weak subkeys. The
subkey values 1 and 232 are weak because they turn the multiplication into the identity
mapping, namely they make the other operand became a fixed point. Under KS1, we
expect |WKC| = 224 after 16.5 rounds. Under KS2 we expect |WKC| = 0 after only six
rounds.

2Curiously, 641 and 6700417 form a pair of RSA primes in an unbalanced RSA variant [24], namely one prime
number is much smaller than the other: 641 is about nine bits long, and 6700417 is about 22 bits long. If the multi-
plication operation X ¡ Z mod (232 + 1) in IDEA-128 were substituted for an exponentiation, XZ mod (232 + 1), where
gcd(Z, φ(232 + 1)) = 1, then, encryption and decryption of this operation could be accomplished as in RSA. For the
latter, given Z, one can easily find the decryption exponent (or inverse subkey) d of Z such that XZ·d mod (232 + 1) ≡ X.
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5. Multiplication in GF(232)
Another IDEA-128 variant can use the finite field GF(232) = GF(2)[x]/p(x), where p(x)
is a primitive polynomial of degree 32 over GF(2), for instance, p(x) = x32 + x27 + x25 +

x22+ x20+ x18+ x16+ x10+ x9+ x5+ x4+ x2+1. The computational graph for this IDEA-128
variant uses ~ = � as the group operation in Fig. 1.

Multiplication in GF(232) can be accomplished efficiently like the xtime operation
in the AES [1], with polynomial representation in GF(2)[x]/p(x). Multiplicative inverse
subkeys can also be efficiently computed using Euclid’s extended GCD algorithm for
polynomials [18]. Most multiplicative subkeys are invertible, except for the zero subkey
which is the only forbidden value (in the key-mixing half-round). This subkey exception
is less serious than in Sect. 4., because any potential key schedule algorithm for IDEA-128
using GF(2)[x]/p(x) would have to avoid only one multiplicative subkey value. Neither
KS1 nor KS2, though, have any provisions to avoid this multiplicative subkey. This situa-
tion is analogous to a key schedule problem in the block cipher SHARK [22]. Nonethe-
less, this exception alone may prohibit the use of this IDEA-128 variant as a primitive
in the hash function construction [19], particularly if in the latter arbitrary values can be
input independently as subkeys without appropriate processing.

Disregarding the forbidden subkeys for a moment, a linear attack on IDEA-128
using �, similar to the attack described in Sect. 3., would be effective only for the (weak)
subkey value 1. In order to estimate the |WKC| for KS2, one can assume that KS2 behaves
as a pseudorandom number generator. Under this hypothesis, one can estimate that each
32-bit multiplicative subkey assume value 1 with probability about 1

232−1 , since the value

0 is forbidden. From Table 2, the 3-round iterative relation (0, 1, 1, 0)
1r
→ (1, 0, 1, 0)

1r
→

(1, 1, 0, 0)
1r
→ (0, 1, 1, 0) has only four subkey restrictions: Z (i)

5 , Z(i+1)
1 , Z(i+2)

1 , and Z(i+2)
5 ,

from rounds i to i + 2. A 5-round distinguisher based on this relation would require only
six weak subkeys. Assuming independence of each weak subkey, the estimated weak-
key class size for a linear attack on 6-round IDEA-128, with this linear distinguisher
is 2256 · ( 1

232−1 )6 ≈ 2256−192 = 264. For a 6-round distinguisher, the estimated |WKC| is
2256 · ( 1

232−1 )8 ≈ 1. Under KS1 we have |WKC| = 23 after 13 rounds, and |WKC| = 0 after
14 rounds.

The differential characteristics under weak-subkey assumptions for this IDEA-128
variant follow the same reasoning as in Sect. 4.

6. Multiplication in ZZ∗

232
−1

The group (ZZ∗

232−1,⊗), where ZZ∗

232−1 = {x ∈ ZZ232−1|gcd(x, 232 − 1) = 1} has already been
used in the MMB block cipher [7, chap. 6]. In IDEA-128 this multiplicative group oper-
ation will be denoted with ~ = ⊗ in Fig. 1. Notice that 232 − 1 = 3 ∗ 5 ∗ 17 ∗ 257 ∗ 65537
is the product of all known Fermat primes [8]. According to [7], A ⊗ B mod (232 − 1) =
A ∗ B mod 232 + bA∗B

232 c, where B is relatively prime to 232 − 1.

The ⊗ operation is used in different ways in MMB and IDEA-128. In MMB, fixed
32-bit (invertible) constants are used as one of the operands to ⊗. In IDEA-128, a variable
32-bit subkey is used as one of the operands, and thus have to be relatively prime to 232−1
in order for the multiplication to be invertible. This situation is similar to that with ZZ∗

232+1:
there are φ(232−1) = φ(3) ∗φ(5) ∗φ(17) ∗φ(257) ∗φ(65537) = 231 values relatively prime

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 8



to 232 − 1 in the range [1, 232 − 1], where φ is Euler’s totient function. These elements
account for a fraction of 231

232 =
1
2 of all values in the range. To find the multiplicative

inverse of the encryption subkeys, one can use Euler’s theorem as in Sect. 4., or Euclid’s
algorithm [19]. One forbidden subkey for the multiplication in ZZ∗

232−1 is zero, because it
does not allow decryption when used in the key-mixing half-round, a phenomenon also
observed in Sect. 3.. Moreover, (232 − 1) ⊗ A = 232 − 1, where A ∈ ZZ232−1, namely, the
multiplicative subkey 232 − 1 is the same as multiplication by 1 (a fixed point).

The same linear relations of Sect. 3. also apply to IDEA-128 with ⊗. The weak
subkey values {1, 232 − 1} are not forbidden, and have bias 2−1 across ⊗ with masks in-
volving only the LSB of the input and output words. Under KS1, these weak subkeys are
contradictory, because 1 = 00000001x and 232−1 = FFFFFFFFx, namely, the first subkey
requires the 31 MSBs to be zero, but the second weak subkey requires the same 31 MSBs
to be one. Thus, under KS1, but using only one weak subkey value, the expected |WKC|
are the same as in Sect. 4.. Using both weak subkey values, |WKC| = 0. For KS2, the
same reasoning as in Sect. 4. apply.

Differential cryptanalysis using characteristics in Table 2 applies similarly to this
IDEA-128 variant but with weak subkey values {1, 232 − 1}. The attack complexitities,
and considerations about KS1 and KS2 in Sect. 3. hold accordingly.

7. Multiplication in GF(232
+ 15)

The finite field GF(232 + 15) has already been used3 in the Peanut98 block cipher [25]. In
this IDEA-128 variant, the multiplication operation will be denoted with ~ = £ in Fig. 1.
Notice that 232 + 15 = 4294967311 is a prime number, but in order to fit all values into 32
bits, a further reduction modulo 232 is needed, so that a£b = (a∗b mod (232+15)) mod 232,
∀a, b ∈ GF(232 + 15). Even though 232 + 15 is prime, there can only be 232 multiplicative
subkeys, from 0 up to 232 − 1. Consequently, the subkey values 232 + i, for 0 ≤ i ≤
14, have to be discarded. Moreover, the subkeys which have these larger-than-32-bit
values as multiplicative inverses (for decryption) represent a problem for the key schedule
algorithm. For instance, (232)−1 mod (232 + 15) ≡ 572662308, so the inverse of subkey
572662308 is larger than 32 bits. Particularly, (232 + 14)−1 = 4294967310 = 232 + 14.
Thus, even if the fifteen subkeys 232+i, for 0 ≤ i ≤ 14, were discarded for encryption, they
could still be required for decryption, and the key schedule would need to make provisions
for subkeys larger than 32 bits. These problems arise in the context of IDEA-128, because
in Peanut98 operations involving GF(232 + 15) are not limited to a multiplication between
a subkey and a data words.

The subkey 0 is a forbidden subkey since it is non-invertible. Another problem is
related to the double modular reduction. Suppose two inputs a, b and a multiplicative sub-
key Z( j)

i such that a£ Z( j)
i = b£ Z( j)

i = c. An example is Z( j)
i = 11, a = 3123612591 which

results in a £ Z( j)
i = 13 (one modular reduction), and b = 1171354721 which leads to

b£Z( j)
i = 232 + 13 ≡ 13 (two modular reductions). This means that all multiplicative sub-

keys have equivalent subkeys, depending on the other data to multiplication. Moreover,
depending on the key schedule algorithm, there may be equivalent keys, namely, different
user keys leading to the same encryption transformation. This situation can happen either

3The Peanut97 cipher uses the prime number 232 − 5, while the DFC cipher [9] uses the prime number 264 + 13.

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 9



in the key-mixing or in the MA half-round. It has not been determined yet if KS1 or KS2

can generate equivalent keys for this IDEA-128 variant.

On the other way around suppose, for example, two subkeys Zi = 3123612591,
Z j = 1171354721, and a 32-bit data word a = 11. Then, a £ Zi = a £ Z j = 13, namely, an
operation in the key-mixing half-round. Thus, this particular decryption can be accom-
plished in two different ways (equivalent decryption subkeys).

Disregarding the double-modular-reduction problem for a moment, both linear
and differential attacks on this IDEA-128 variant would still depend on the key schedule
algorithm to guarantee the existence of weak multiplicative subkeys. Assuming (weak)
multiplicative subkeys with value 1, the same linear relations and characteristics of Sect. 4.
apply to this IDEA-128 variant.

8. Conclusions
This paper described five hypothetical realizations of 128-bit block variants of the IDEA
cipher [16], and two examples of key schedule algorithms. The parameters for IDEA-128
are exactly double the size of IDEA’s. Ciphers with 128-bit blocks are useful for instance
as a buiding block for the construction of other cryptographic primitives such as hash
functions, stream ciphers and MACs [19, p. 229,340,353]. Moreover, 128-bit block size
is commonplace among modern block ciphers [1, 21], and help defeat some drawbacks
inherent to 64-bit block ciphers [13].

The main problem is constructing a 128-bit block cipher variant of IDEA is to
find an appropriate multiplicative group on 32-bit words to replace GF(216 + 1) used in
IDEA. This paper analysed five algebraic group candidates. But, it does not mean that
there are no other alternatives. It is left as an open problem whether there are any other
suitable algebraic groups on 32-bit words that would allow a secure IDEA-128 cipher.
Moreover, even though operations on 32-bit words seem attractive for modern desktop
processors such as Intel’s Pentium and AMD’s Athlon, the number of multiplication op-
erations greatly increases in these IDEA-128 variants (Table 4), making them even slower
than IDEA.

Two key schedule algorithms for IDEA-128 were suggested: one of them, KS1, is
an extension of the original key schedule of IDEA. The other, KS2, is based on the key
setup of the MESH ciphers [20]. KS2 is more complex, but does not have the key overlap-
ping property of KS1, due to the recurrence relation (1). The aim is to avoid bit patterns
in the key to propagate to the subkeys, a behavior that may lead to weak subkeys. It may
seem that KS1 and KS2 were too poorly designed to avoid weak and forbidden subkeys
in IDEA-128, but it must be understood that some attacks work independent of the key
scheduke algorithm; and further, it is not the responsibility of a key setup algorithm to
repair weaknesses in the encryption and decryption schemes. Nonetheless, it is impor-
tant to design key setup algorithms that simultaneously: (i) avoid weak, equivalent and
forbidden subkeys; (ii) key agile, i.e. significantly faster than one encryption operation;
(iii) are immune to manipulation by an adversary (for example, in some hash function
constructions [19, p. 340], or in related-key attacks [12]).

The first problem with all the five groups is related to multiplicative subkeys for
which decryption could not be accomplished because of non-invertible subkeys. These
forbidden subkeys are unacceptable. Their number depends on the algebraic group. One
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Table 3. Estimated weak-key class size and number of rounds for DC and LC attacks.
Group ZZ∗

232 ZZ∗

232+1 GF(232) ZZ∗

232−1 GF(232 + 15)
Weak Subkeys {1} {1, 232} {1} {1, 232 − 1} {1}
LC KS1 (2256;∞) (0; 14) (0;14) (0;14) ‡ (0;14)

KS2 (2256;∞) (0; 6) (1;6) (0;6) ‡ (0;6)
DC KS1 (224; 16.5) (224; 16.5) (224; 16.5) (224; 16.5) ‡ (224; 16.5)

KS2 (0; 7) (0;6) (0;6) (0;6) ‡ (0;6)
‡: WKC for one weak subkey only, not both at once.

solution would be for the key schedule to avoid these subkeys, but this procedure could
reduce the subkey space considerably or imply long delays (performance loss) during
subkey generation, such as in the MARS block cipher [6]. Further, it is left as an open
problem whether these exception handlings would be exploitable by timing attacks [15].
Ignoring the decryption problem for a moment, linear and differential attacks were also
considered for the IDEA-128 variants. The linear attacks described in Sect. 3., with mul-
tiplication in (ZZ∗

232 , ∗), can either distinguish IDEA-128 from a random permutation, or
recover information on the subkeys. The attacks apply not only to 16.5-round IDEA-128,
but to any number of rounds. The attack complexity is only 32 KP, and equivalent en-
cryption effort. The corresponding differential attack could identify a weak-key class of
224 keys for 16.5 rounds, under KS1. Under KS2, weak-key classes are expected for no
more than seven rounds.

For the IDEA-128 variant using multiplication in (ZZ∗

232+1, ¡), any key sched-
ule algorithm would need to avoid multiplicative subkeys that are multiples of 641 and
6700417, in order to allow proper decryption. Under this assumption, less effective linear
and differential attacks apply, compared to (ZZ∗

232 , ∗) (see Table. 3).

The IDEA-128 variant using multiplication in GF(232) has at least one weak sub-
key, 1, and one forbidden subkey, 0 (when used in the key-mixing half-round). These
exceptions compare favorably with the 231 forbidden subkeys, and 232 weak subkeys in
the IDEA-128 in Sect. 3.. Nonetheless, the weak subkey value still allows linear and
differential attacks under weak-subkey assumptions, depending on the key schedule algo-
rithm (Table. 3).

The linear and differential distinguishers for IDEA-128, with multiplication in
(ZZ∗

232−1, ⊗), were the same as those in Sect 3.. The weak (multiplicative) subkey values
are {1, 232 − 1} for the ⊗ operation. The |WKC| and the considerations about KS1 and KS2

are summarized in Table. 3.

The linear and differential attacks of Sect. 7., with multiplication in (GF(232+15),
£) work similarly to those in Sect 6.. The weak subkey value is 1, and the |WKC| and
the considerations about KS1 and KS2 are in Table. 3. The results in this Table assume
that the presence of forbidden subkeys, or other algebraic problems in the cipher will not
affect the effectiveness of attacks.

The overall conclusion concerning the five realizations of IDEA-128 is that none
of them constitute a sound cipher design. Additionally, they help corroborate the rationale
for the MESH designs [20], that used the same group operations on 16-bit words as the
IDEA cipher, but achieved a relatively high level of security without the need to double
the word size to 32 bits, and without forbidden nor equivalent subkeys.

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 11



Table 4. Comparing parameters of IDEA, MESH-64, and IDEA-128.
Cipher IDEA MESH-64 IDEA-128 IDEA-128 IDEA-128 IDEA-128 IDEA-128
Group GF(216 + 1) GF(216 + 1) ZZ∗

232 ZZ∗

232+1 GF(232) ZZ∗

232−1 GF(232 + 15)
Notation Mult. ¯ ¯ ∗ ¡ � ⊗ £

Word Size (bits) 16 16 32 32 32 32 32
Structure Finite Field Finite Field Group Group Finite Field Group Finite Field

Group Origin Fermat prime Fermat prime MARS IDEA SHARK MMB Peanut98
# Invertible Subkeys 216 216 φ(232) φ(232 + 1) 232 − 1 φ(232 − 1) φ(232 + 15)

Block Size (bits) 64 64 128 128 128 128 128
Key Size (bits) 128 128 256 256 256 256 256

# Rounds 8.5 8.5 16.5 16.5 16.5 16.5 16.5
# Mult. Oper. (†) 34 42 66 66 66 66 66

# ¢ Oper. (†) 34 42 66 66 66 66 66
# ⊕ Oper. (†) 48 48 96 96 96 96 96

Reference [16] [20] this paper
†: only encryption and decryption, i.e. not including the key schedule.

Table 4 compares IDEA and MESH-64 with the five IDEA-128 variants.
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