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Abstract. We describe an efficient combination of two variants of the
RSA cryptosystem (MPrime and Rebalanced RSA) analyzed by Boneh and
Shacham [Boneh and Shacham 2002]. For 2048-bit moduli, the resulting de-
cryption process is about 8 times faster than that presented by Quisquater and
Couvreur [Quisquater and Couvreur 1982] and about 27 times faster than the
original cryptosystem.

Resumo.Descrevemos uma combinação eficiente de duas variantes do crip-
tossistema RSA (MPrime e Rebalanced RSA) analisadas por Boneh e
Shacham [Boneh and Shacham 2002]. Para módulos de 2048 bits, o processo
de decriptaç̃ao resultantée cerca de 8 vezes mais rápido que o apresentado por
Quisquater e Couvreur [Quisquater and Couvreur 1982], e cerca de 27 vezes
mais ŕapido que o criptossistema original.

1. Introduction

In this article we present an extension of the work of Boneh and Shacham on some
variants of the RSA cryptosystem. We review two of the four variants (Batch RSA,
Mprime RSA, Mpower RSA, Rebalanced RSA) analysed in [Boneh and Shacham 2002],
with the goal of reducing the decryption and signature generation times of the original
cryptosystem. We briefly discuss the feasibility of combining such variants to obtain a
new more efficient one. As a result, we describe a new variant that we call RPrime RSA,
which combines Rebalanced RSA and MPrime RSA. For private key operations, this
method is about 27 times faster than plain RSA and about 8 times faster than the method
presented by Quisquater and Couvreur in [Quisquater and Couvreur 1982].

This paper is organized as follows. In Section 2. we review the RSA cryptosys-
tem and the Quisquater-Couvreur method [Quisquater and Couvreur 1982]. In Section 3.
we describe Mprime and Rebalanced RSA, two variants of plain RSA. In Section 4. we
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present RPrime RSA, our proposed combination of MPrime and Rebalanced methods. In
Section 5. we present some theoretical and experimental results. In Section 6., we show
how to generate a certificate that proves a lower bound on the security of the system to
any interested third parties. We conclude in Section 7. with some comments on RPrime
RSA.

2. RSA Cryptosystem
Before presenting our proposal to improve the RSA cryptosystem, we review the three
basic algorithms that constitute the RSA cryptosystem, together with a frequently used
optimization technique.

Algorithm 2..1 (RSA).

1. [Key generation]
Generate two primesp, q and compute their productn = pq;
Pick e such thatgcd(e, φ(n)) = 1, whereφ(n) = (p− 1)(q − 1);
Computed such thatd = e−1 mod φ(n);
The public-key is〈n, e〉, while the private key is〈n, d〉.

2. [Encryption]
Given a plaintextM and the public key〈n, e〉, compute the ciphertextC =
M e mod n.

3. [Decryption]
Given a ciphertextC and the private key〈n, d〉, compute the plaintextM =
Cd mod n.

In 1982 a new technique that recoversM from C by preprocessing the private
key was introduced by J-J. Quisquater and C. Couvreur [Quisquater and Couvreur 1982].
Their method splits the private key in two parts,dp ≡ d (mod p − 1) and dq ≡ d
(mod q − 1), and recovers the plaintextM from the ciphertextC by first comput-
ing modulo each factor ofn, i.e. Mp = Cdp mod p and Mq = Cdq mod q, fol-
lowed by reconstruction ofMp andMq modulon using the Chinese Reminder Theorem
(CRT) [Jones and Jones 1998]. In this document we refer to this technique as QC RSA,
and to the version created by Rivest, Shamir and Adleman [Rivest et al. 1978] as plain
RSA.

Using the criterion presented in [Boneh and Shacham 2002], we estimate the
complexity of each method as a function of the number of operations required. Basic
algorithms to compute exponentiations of the formCd mod n take timeO(log dM(n)),
whereM(n) is the cost of multiplying twon-bit integers and can be taken asO(log2 n).
Whend = O(n), these algorithms take timeO(log3 n). On the other hand, QC RSA has
dp = dq = O(

√
(n)) (so thatlog dp = log dq = O(log(n)/2)), for an overall cost of

O(2(log(n)/2)3). Thus, the theoretical speedup of QC RSA with respect to plain RSA
(SRSA) is

SRSA =
log3 n

2(log(n)/2)3
= 4.

That is, the decryption procedure of QC RSA is about 4 times faster than that of plain
RSA. A more refined analysis would take into account the cost of the final CRT and
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would arrive at a slightly smaller speedup. Actual measurements suggest a gain of 3.24
for 768-bit moduli, 3.32 for 1024-bit moduli and 3.47 for 2048-bit moduli.

This improvement led to the adoption of QC RSA (still in rudimentary form) in
PKCS#1 since version 1.5, and today it can be considered the standard implementation of
RSA.

3. RSA Variants

In this section we present two of the four algorithms analyzed by Dan Boneh and Hovav
Shacham in [Boneh and Shacham 2002] — namely, MPrime RSA and Rebalanced RSA.
The Batch RSA and MPower RSA variants are not described in detail here, although they
are mentioned in section 5 for comparison purposes.

3.1. Mprime (multi-prime) RSA

Mprime RSA was introduced by Collins et al. [Collins et al. 1997]. It differs from plain
RSA by constructing moduli withk prime factors (n = p1p2 · · · pk) instead of only two.
The key generation, encryption and decryption algorithms are as follows:
Algorithm 3..1 (Mprime RSA).

1. [Key generation]
Generatek distinct primesp1, . . . , pk, eachblg(n)/kc bits in size, and compute
n =

∏k
i=1 pi;

Pick e such thatgcd(e, φ(n)) = gcd(e,
∏k

i=1(pi − 1)) = 1;
Computed such thatd = e−1 mod φ(n);
For1 ≤ i ≤ k, computedi ≡ d (mod pi − 1);
The public key is〈n, e〉, while the private key is〈n, d1, . . . , dk〉.

2. [Encryption]
Given a public key〈n, e〉 and a messageM ∈ Z/nZ, encryptM as in plain RSA,
i.e. C = M e mod n.

3. [Decryption]
The decryption is an extension of the Quisquater-Couvreur method. To decrypt a
ciphertextC, first computeMi = Cdi mod pi for 1 ≤ i ≤ k. Next, apply the CRT
to theMi’s to obtainM = Cd mod n.

Mprime RSA achieves a decryption speedup relative to plain and QC RSA by re-
ducing the size of exponents and moduli, at the cost of extra modular exponentiations.
However, a linear increase in the number of exponentiations translates to a cubic decrease
in the cost of each exponentiation, for an overall speedup that is quadratic in the number of
factorsk of the modulus. Formally, evaluatingCd mod n for d = O(n) costsO(log3 n),
whereas Mprime RSA hasdi = O(n1/k) (so thatlog di = O(log(n)/k)) and multipli-
cation cost ofO((log(n)/k)2) for an overall cost ofO(k(log(n)/k)3) = O(log3(n)/k2).
Since QC RSA is already 4 times as fast as plain RSA, the theoretical speedup of Mprime
RSA over QC RSA(SQC) is

SQC = k2/4.

Thus, fork = 3 we obtain a theoretical gain of 2.25 relative to QC RSA.
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3.2. Rebalanced RSA

Rebalanced RSA is based on comments by Wiener [Boneh and Shacham 2002,
Wiener 1990] on the weakness in the use of the private exponentd. This variant im-
proves decryption performance at the expense of encryption performance. This is done
by choosingd such thatd mod p− 1 andd mod q − 1 are small (on the order ofs bits;
usuallys = 160). Unfortunately, such a choice ofd leads to large values ofe (as large as
n itself). We now present the key generation, encryption and decryption procedures for
Rebalanced RSA.
Algorithm 3..2 (Rebalanced RSA).

1. [Key generation]
Generate two random primesp, q, eachblg(n)/2c bits in size, withgcd(p− 1, q−
1) = 2, and computen = pq;
Generate two randoms-bit integersdp and dq, such thatgcd(dp, p − 1) =
gcd(dq, q − 1) = 1 anddp ≡ dq (mod 2);
Apply the CRT to obtaind such thatd ≡ dp (mod p−1) andd ≡ dq (mod q−1);
Computee = d−1 mod φ(n);
The public key is〈n, e〉, while the private key is〈p, q, dp, dq〉.

2. [Encryption]
Apply the encryption procedure of plain RSA. Note though thate = O(n) instead
of O(1) as in plain RSA, thus public-key operations will be more costly.

3. [Decryption]
Apply the decryption procedure of QC RSA.

We now consider the efficiency of Rebalanced RSA. We recall thatdp, dq have
s bits each (hencelog dp = log dq = O(s)). The cost of modular multiplications is the
same as that of QC RSA, so the only difference is the number of multiplications computed
during each modular exponentiation. Aslog dp = log dq = O(log(n)/2) for QC RSA, we
arrive at a theoretical speedup of Rebalanced RSA with respect to QC RSA(SQC) of

SQC =
log n

2s
.

This result implies that, for moduli of 2048 bits withs = 160, Rebalanced RSA is the-
oretically 6.4 faster than QC RSA (practical results are provided in Section 5.). Now we
describe our proposed variant, Rprime RSA.

4. RPrime RSA

The Rebalanced RSA and Mprime RSA methods can be efficiently com-
bined [Boneh and Shacham 2002]. The key generation procedure of Rebalanced RSA
(modified fork primes) is employed together with the decryption procedure of Mprime
RSA. The new key generation, encryption and decryption algorithms are as follows:
Algorithm 4..1 (RPrime RSA).

1. [Key generation]
Generatek random primesp1, . . . , pk, eachblg(n)/kc bits in size, withgcd(p1 −
1, . . . , pk − 1) = 2, and computen =

∏k
i=1 pi;

Generatek randoms-bit integersdp1 , . . . , dpk
such thatgcd(dp1 , p1 − 1) = . . . =
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gcd(dpk
, pk − 1) = 1 anddp1 ≡ . . . ≡ dpk

(mod 2);
Apply the CRT to obtaind such thatd ≡ dpi

(mod pi − 1) for 1 ≤ i ≤ k
[Paixão 2003];
Calculatee = d−1 mod φ(n);
The public key is〈n, e〉, while the private key is〈p1, . . . , pk, dp1 , . . . , dpk

〉.
2. [Encryption]

Apply the encryption procedure of plain RSA. As was the case in Rebalanced
RSA, we havee = O(n) instead ofO(1) as in plain RSA, leading to more costly
public-key operations.

3. [Decryption]
ComputeMi = Cdpi mod pi for 1 ≤ i ≤ k;
Apply the CRT to theMi’s to obtainM = Cd mod n.

Given that thedi’s haves bits each (hencelog di = O(s) for all i), and the cost
of multiplication is (log(n)/k)2, we arrive at an overall cost ofO(ks(log(n)/k)2) =
O(s log2(n)/k). The theoretical speedup over QC RSA(SQC) is then

SQC =
log3(n)/4

s log2(n)/k
=

k log n

4s
.

4.1. Security of RPrime RSA

The security of RPrime RSA depends on the security offered by the private exponentd
(as in Rebalanced RSA), under the constraints described in Section 4., and on the size of
the primes employed (as in Mprime RSA). The private exponentd is large enough that
attacks on smalld are ineffective [Boneh 1999]. Attacks on small public exponentse are
not a problem either, due to the largee’s produced by the key generation procedure.

For k = 3 and using exponentsdp1, dp2 anddp3 of 160 bits each, the complexity
of factoringn is O(280) using the attack of [Boneh and Shacham 2002, Wiener 1990].
To prevent factorization by ECM, primes larger than 256 bits must be employed, hence a
modulus of 1024 bits can have no more than three prime factors, while a 768-bit modulus
should employ at most two factors for the same reason.

M. Jason Hinek [Hinek 2002] analyzed a partial key exposure attack on MPrime
RSA, concluding that the attack is ineffective for three and four primes. He also ob-
tained experimental evidence that the attack has running time exponential in the size of
the modulusn, which we believe can be extended for the security of Rprime RSA.

5. Experimental Results

In order to get a better estimate of the decryption performance of RPrime RSA, we
benchmark it against other variants. The first we’ll consider is Batch RSA [Fiat 1989],
which simultaneously decryptsb messages with the approximate cost of a single expo-
nentiation (of ordern) and some small exponentiations (using public exponents). The
second one uses moduli of the formn = pk−1q [Takagi 1998] and is called MPower
RSA [Boneh and Shacham 2002].

Theoretical results shown in previous sections and experimental results obtained
for the decryption algorithms are listed in Table 1. All measurements were performed
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Speedup(SQC) Theoretical Experimental
XXXXXXXXXXXXVariant

Modulus
768 1024 2048 768 1024 2048

Batch 4 4 4 2,47 2,78 3,42
Mprime 2,25 2,25 2,25 1,95 1,89 1,97
Mpower 3,37 3,37 3,37 2,49 2,54 2,79

Rebalanced 2,40 3,20 6,40 2,52 3,02 5,98
Rprime 3,60 4,80 9,60 3,00 3,88 7,83

Table 1. Theoretical and Pratical speedup related to the decryption exponentia-
tions - For b = 4, k = 3 e s = 160.

on an AMD Athlon XP 1400+ platform, with 256 MB of RAM and using the GNU MP
library [Granlund 2005] for integer arithmetic. Our methodology consisted of generating
1000 messages and 20 keys for each moduli size, and computing the arithmetic mean
of the time spent to decrypt each message. For more details (standard deviations, etc.)
see [Paix̃ao 2003].

Experimental results differ from the theoretical results mainly because the ob-
served times include not only exponentiations but some overhead (including CRT compu-
tations) that was neglected in our theoretical analyses. Batch RSA had the most noticeable
decrease from expected results to experimental measurements. The small exponentiations
and multiplications, which weren’t taken into account in our analysis, are significant for
the actual performance of this variant. The remaining variants showed only a slight de-
crease from expected results. Another fact to consider is that speed up of Rebalanced
and Rprime variants significantly increases with larger moduli while the others variants
remains stable. This is because we considers fixed and equal 160 bits (recall thats is
the size of the exponent used in decryption algorithm), while this exponent increases with
moduli size for all other variants.

Overall, the best performing variant was RPrime RSA, showing a 30% improve-
ment over Rebalanced RSA and 783% improvement over QC RSA, both for 2048 bits
moduli. Compared to the plain RSA system, this represents a gain of approximately
2720% or 27 times [Paix̃ao 2003].

Analyzing the variants described in [Boneh and Shacham 2002], we note that
some other combinations might be attempted. One possibility would be a mix of Mprime
RSA or QC RSA with Batch RSA [Fiat 1989]. That is, reduce eachCi (from Batch RSA)
modulopi, 1 ≤ i ≤ k, later reconstructing these results by the CRT1.

Unfortunately, as the decryption process of Batch RSA requires the execution of
small exponentiations for each prime employed2, it is more advantageous to implement
this method with parameterk = 2, that is, using QC RSA instead of Mprime RSA.

One could also consider combining Rebalanced RSA and Mpower RSA. Unfortu-
nately, this variant has bad performance for both encryption and decryption. The reason

1If Batch RSA is combined with QC RSA, we havek = 2.
2Hence, the larger the parameterk, the more trees will be used and consequently more small exponen-

tiations will be necessary, reducing the gain obtained in the exponentiation phase [Paixão 2003].
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is that MPower RSA’s decryption algorithm employs the public exponente, and in Rebal-
anced RSA the exponente is much larger than plain RSA’s public exponents, increasing
the cost of modular exponentiations for both procedures. We therefore do not recommend
this variant.

5.1. Advantagens, disadvantages and applications of new method

We mention here some characteristics of our proposed variant:

• Uses the same encryption and decryption algorithms as Mprime RSA, allowing
code reuse and portability for PKCS#1-compliant implementations;

• Achieves excellent decryption performance (gain of 7,83 on QC RSA forn =
2048);

• Shows performance increases with larger moduli (ifs is fixed);
• Is not recommended for moduli of up to 768 bits (to prevent factorization by

ECM [Paix̃ao 2003]);
• Has low encryption performance due to large public exponente (similar to the

decryption performance of plain RSA) [Paixão 2003].

The idea of trading off encryption for decryption performance, used by Rebal-
anced RSA and Rprime RSA, may not be seen as an advantage in practice. However,
there are applications where it is desirable. A bank, for instance, has to digitally sign
documents for all of its customers, whereas each customer only has to check their own
signature. In this situation, it is reasonable to offset some of the computional effort de-
manded in generating signatures to the verifier.

A second scenario are applications running on handheld devices such as PDAs,
which generally possess limited computational resources. If the handheld device is per-
forming private-key operations while communicating with more powerful devices (such
as servers, or when docking to notebooks or desktops), then RPrime RSA will achieve
better overall performance, as the computational effort is more evenly distributed accord-
ing to resources available to each party. An even better alternative would be to choose
between Mprime and RPrime RSA keys according to the type of communication being
performed and the devices involved.

6. Certification of ordinary and multiprime RSA moduli

The security of multiprime RSA variants is threatened by insecure parameter choices.
Since only the private key owner is aware of how many primes were employed and how
large they are, it may be tempting to trade off security for performance in a dangerous
fashion, relying on the adversary’s supposed inability to tell whether a given RSA mod-
ulus is comprised of many small primes or a few large primes. If this practice becomes
commonplace, then the perceived security of multiprime RSA variants will be reduced.

In this section we propose a technique that can provide a lower bound on the size
of the factors in an RSA modulus. As a side effect, the maximum number of prime factors
is provided as well3. It applies equally well to ordinary RSA and multiprime variants.

3While the exact number of factors is not provided, this is of little consequence to the difficulty of
factoring the modulus.
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tations) that was neglected in our theoretical analyses. Batch RSA had the most noticeable
decrease from expected results to experimental measurements. The small exponentiations
and multiplications, which weren’t taken into account in our analysis, are significant for
the actual performance of this variant. The remaining variants showed only a slight de-
crease from expected results. Another fact to consider is that speed up of Rebalanced
and Rprime variants significantly increases with larger moduli while the others variants
remains stable. This is because we considers fixed and equal 160 bits (recall thats is
the size of the exponent used in decryption algorithm), while this exponent increases with
moduli size for all other variants.

Overall, the best performing variant was RPrime RSA, showing a 30% improve-
ment over Rebalanced RSA and 783% improvement over QC RSA, both for 2048 bits
moduli. Compared to the plain RSA system, this represents a gain of approximately
2720% or 27 times [Paix̃ao 2003].

Analyzing the variants described in [Boneh and Shacham 2002], we note that
some other combinations might be attempted. One possibility would be a mix of Mprime
RSA or QC RSA with Batch RSA [Fiat 1989]. That is, reduce eachCi (from Batch RSA)
modulopi, 1 ≤ i ≤ k, later reconstructing these results by the CRT1.

Unfortunately, as the decryption process of Batch RSA requires the execution of
small exponentiations for each prime employed2, it is more advantageous to implement
this method with parameterk = 2, that is, using QC RSA instead of Mprime RSA.

One could also consider combining Rebalanced RSA and Mpower RSA. Unfortu-
nately, this variant has bad performance for both encryption and decryption. The reason

1If Batch RSA is combined with QC RSA, we havek = 2.
2Hence, the larger the parameterk, the more trees will be used and consequently more small exponen-

tiations will be necessary, reducing the gain obtained in the exponentiation phase [Paixão 2003].
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p = u2 + v2. The theory of complex multiplication states that elliptic curvesE(Z/pZ)
exist such that

#E(Z/pZ) = p + 1± 2u or p + 1± 2v

[Atkin and Morain 1993]. It is readily seen that these curve orders can be factored as

#E(Z/pZ) = (u± 1)2 + v2 or u2 + (v ± 1)2.

The result is more naturally interpreted in terms of Gaussian integers: to each
primep = u + iv, we associate four curves with complex multiplication byZ[i], whose
orders are given by the Gaussian integers adjacent top in the Gaussian plane. In Section
6.3., the reciprocal of this statement will prove useful: if a Gaussian integerr is adjacent
to a Gaussian prime, thenr is the order of an elliptic curve modulop with complex
multiplication byZ[i].

Furthermore, these curves can be constructed in a straightforward manner
[Atkin and Morain 1993]. If required, the decompositionp = u2 + v2 is efficiently pro-
duced by the algorithm of Cornacchia, with cost less than that of a square root modulop
and a gcd with arguments the size ofp. Next a quadratic non-residueg modulop must be
found. Since(p − 1)/2 integers modulop are quadratic non-residues, and Jacobi testing
by quadratic reciprocity is quite efficient, this step is of little consequence to the overall
running time. Then the curves

y2 = x3 − gkx, k = 0, 1, 2, 3

have complex multiplication byZ[i] and distinct group orders.

6.3. The certification method

We rely on the following result, which is a direct modification of the Goldwasser-Kilian
ECPP theorem [Goldwasser and Kilian 1986] and was stated and proved by David Broad-
hurst in [Broadhurst 2005a]. Throughout this section,n is a composite that is not a power,
and hask factors.
Theorem 6..1.LetS be a prime. Suppose there exists an elliptic pseudocurve6 E(Z/nZ)
and a pointP = (x, y) on E, such thatSP = O. Givene such thatS > (ne + 1)2, then
the prime factors ofn are lower bounded byn2e.

Proof. Let p be any prime factor ofn. ThenS | #E(Z/pZ). By Hasse’s theorem,
#E(Z/pZ) < (

√
p+1)2. It follows thatS < (

√
p+1)2, butS > (ne +1)2 by hypothesis.

Then(
√

p + 1)2 > (ne + 1)2, so that
√

p > ne and finallyp > n2e.

The following corollary bounds the number of prime factors ofn.
Corollary 6..2. If e > 1/(2j) in Theorem 6..1, thenn has at mostj − 1 prime factors.

6An elliptic pseudocurve is an elliptic curve modulo a composite integern, which doesn’t give rise to a
valid group of points over the curve (this only happens if the modulusn is prime), but still retains many of
the properties of an actual elliptic curve. See [Cohen 1996] and [Crandall and Pomerance 2000] for more
information on pseudocurves.
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Proof. Let pi denote thei-th of k prime factors ofn. If e > 1/(2j), thenpi > n1/j for all
pi. We have

n =
k∏

i=1

pi >
k∏

i=1

n1/j =
(
n1/j

)k

and this leads to a contradiction ifk ≥ j.

Note that Theorem 6..1 requires the pointP = (x, y) to have orderS when con-
sidered modulo each of the prime factors ofn =

∏
pi — indeed, ifSP = O (mod p)i

but SP 6= O (mod p)j for somei, j, thenx ≡ 0 (mod p)i but x 6≡ 0 (mod p)j, so
gcd(x, n) = pi provides a factor of the composite.

Recall thatS | #E(Z/piZ), 1 ≤ i ≤ k. To findpi’s that satisfy this relationship,
it’s easier to devise a search procedure that begins by constructing valid curve orders with
shared factorS, then seeks primespi such that there exist elliptic curves modulo each
pi with the desired orders. Note that this search procedure is performed backwards in
comparison to the ECPP algorithm, which is given a primep and seeks an elliptic curve
with certain properties.

At first, it’s not clear how to produce curve orders divisible byS from the defining
equations#E(Z/piZ) = (u±1)2+v2, u2+(v±1)2 andpi = u2+v2. In principle, one can
pick v at random and computeu such thatu2 ≡ −(v ± 1)2 (mod S), until pi = u2 + v2

is prime; thenS | #E(Z/piZ) by construction. (Clearly this argument is symmetric inu
andv.) Doing this for eachpi, the compositen can be constructed. However, since the
square root

√
u2 (mod S) is typically as large asS itself, the constructed composite will

be too large to fulfill the conditions of Theorem 6..1.

The key insight is to work overZ[i]: choose a rational primeS ≡ 1 (mod 4) and
factor it overZ[i] asS = uS + ivS. Then pick Gaussian integersg = ug + ivg at random
(subject to size restrictions, as will be clear) and computeSg until an integer adjacent to
Sg in the Gaussian plane is prime; we’ll call itp1. (When considered as a rational prime,
we’ll employ the square of its norm.) Then an elliptic curvey2 = x3 + ap1x (mod p)1

exists such that#E(Z/p1Z) = |Sg|2. Construct a pointPp1 ∈ E(Z/p1Z) of orderS by
generating a random pointP0, computingPp1 = (#E(Z/p1Z)/S)P0 and checking that
Pp1 6= O (which will almost always be the case). Repeat this procedure fori = 2, . . . , k
to find other primespi with #E(Z/piZ) divisible byS and a pointPpi

∈ E(Z/piZ) of
orderS. Apply the Chinese Remainder Theorem to the parametersap1 , . . . , apk

of the
constructed elliptic curves, and coordinatewise to the pointsPp1 , . . . , Ppk

, to construct an
elliptic pseudocurveE(Z/nZ) : y2 = x3 + anx (mod n) and a pointPn on E(Z/nZ)
of orderS. The witnessS, the compositen, the pseudocurveE(Z/nZ) and the point
Pn ∈ E(Z/nZ) thus obtained satisfy the conditions of Theorem 6..1.

We formalize this search procedure in the following algorithm:
Algorithm 6..3. Given l, k and primeS, S ≡ 1 (mod 4), this algorithm generates an
l-bit k-prime RSA modulusn and a certificate thatn’s factors are lower-bounded byS.

1. [FactorS overZ[i]]
Apply Cornacchia’s algorithm toS to obtainu2

S + v2
S = S;

for (1 ≤ j ≤ k) {
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2. [Find suitable curve orders]
forever{

Generate randomuj, vj of size(l/k − lg S − 2)/2 bits each;
Compute a candidate order#Ej = 2S(uj + ivj) = u + iv;
if (one of{(u± 1)2 + v2, u2 + (v ± 1)2} is prime){

Setpj to the prime value;
break;

}
}

3. [Construct CM curves with desired orders]
Find a quadratic non-residueg modulopj;
for (0 ≤ k ≤ 3) {

Let E(Z/pjZ) be the curvey2 = x3 − gk (mod pj);
Find a pointP0 onE(Z/pjZ);
if ((#Ej)P0 = O) {

aj = gk;
break;

}
}

4. [Find points of orderS]
while ((#Ej/S)P0 = O)

Find another pointP0 onE(Z/pjZ);
Pj = (xj, yj) = (#Ej/S)P0;

}
5. [Lift parameters toZ/nZ]

Using the Chinese Remainder Theorem:
Computean such thatan ≡ aj (mod pj) for 1 ≤ j ≤ k;
ComputePn = (xn, yn) such thatxn ≡ xj (mod pj) and yn ≡ yj

(mod pj) for 1 ≤ j ≤ k;
6. [Return results]

return {{p1, . . . , pk}, E(Z/nZ), Pn};

An explanation is in order concerning the factor 2 in the candidate group orders.
In the equation#E = u2 + v2 = 2S(uj + ivj), the factor 2 guarantees thatu ≡ v ≡ 0
(mod 2), so that the integers{(u ± 1)2 + v2, u2 + (v ± 1)2} being tested for primality
are always odd (being the sum of an even and an odd integer), thus twice as likely to be
prime as random integers of the same size.

The attentive reader may question the need for CM curves, as it appears that super-
singular curves could be used instead. Unfortunately, the simple relationship between a
primep and the curve orderp+1 of a supersingular curve modulop works against the goal
of hiding the factorp inside a compositen. In fact, given a witnessS | p+1, then trivially
p ≡ −1 (mod S). If S > n1/4, which will often be the case, one can apply Coppersmith’s
improvement of Lenstra’s divisors in residue classes algorithm [Coppersmith et al. 2004],
which finds the factors ofn in polynomial time with the information provided.

On the other hand, for an elliptic curveE(Z/pZ) with CM by Z[i], the relationship
betweenp and#E(Z/pZ) is trivial if the decomposition ofp as a Gaussian prime is
known, but hard to deduce otherwise. Since factorization into Gaussian primes can be no
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easier than integer factorization, this provides an argument for the difficulty of factoring
a composite given the information provided by a semiprimality certificate.

It is desirable to compress the size of semiprimality certificates. Our first strategy
is to reduce the representation ofS by picking a prime of special form, sayS = rs + e
for small r, s, e. A second strategy is to reduce the size of the curve parametera. For
instance, one could fixa = ±1. Although a valid curve would eventually be found by
trial and error, after looking at4k curves on average, it’s possible to do better. Ifp ≡ 5
(mod 8) andp = u2 + v2, then one can takeu ≡ 1 (mod 8) andv ≡ 4 (mod 8). It’s
known [Morain 1998] that the curvesE : y2 = x3 + x (mod p) andE ′ : y2 = x3 − x
(mod p) have orders(u − 1)2 + v2 and (u + 1)2 + v2, respectively. By considering
candidate orders of these two forms only, the pigeonhole principle states that at most
2k − 1 candidates are required before two of them share the samea (either 1 or -1).

6.4. Parameter selection for certificates

The only remaining question is the size ofS relative ton. Recall thatn hask prime
factors. Then obviouslyS < n1/k, by the argument in the proof of Corollary 6..2. One
shouldn’t takeS too close to this bound, though, sincen can be factored with effort
O(n1/k/S) by a simple brute-force attack: choose a random Gaussian integerg of size
(lg(n)/k − lg S − 2)/2 bits, compute candidate factorsp = |2Sg + ij|2, 0 ≤ j ≤ 3 and
test ifp | n. To deflect this attack, one must chooseS small enough in comparison ton1/2

that generic factorization algorithms are easier to apply than this brute-force method.

With this in mind, we suggest the following choice forS: given the rough com-
plexity c of factoringn, obtained by plugging inn or its factorspi into the complexity
estimates of NFS or ECM, chooseS such thatc < n1/k/S (or equivalentlyS < n1/k/c).
It is also prudent to add a small safety factor toS (by reducing its size, we stress), to en-
sure that factoringn by NFS or ECM is easier than an exhaustive search of factors using
the method above.

7. Conclusion

Considering the comments and recommendations of Section 4.1., we suggest the follow-
ing guidelines for deploying these algorithms:

• For good encryption and decryption performance, and interoperability with sys-
tems that already implement PKCS#1, we recommend the use of MPrime RSA.

• Although Mpower and Batch RSA achieve better performance than MPrime, they
are not specified in PKCS#1. Moreover, we emphasize the fragility of keys that
must be employed to obtain good performance out of Batch RSA, and the use of
an agglomerate of messages, which will certainly affect the performance.

• For applications that demand high decryption and signing performance, the best
choice is RPrime RSA, which for 2048-bits moduli showed an improvement of
30% over Rebalanced RSA, being therefore about 27 times faster than plain RSA
and about 8 times faster than QC RSA (Table 1). Besides, this variant can in-
teroperate with systems that implement PKCS #1. Also, systems that implement
Mprime RSA can be easily modified to implement RPrime RSA as well; it suffices
to modify the key generation procedure or create a hybrid key system.
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We also presented a certification method that lower-bounds the size of prime fac-
tors of a multi-prime RSA modulus. The method is practical and easy to implement if an
elliptic curve arithmetic library is available, and provides third-parties with an assurance
of the security level of a given multi-prime RSA modulus against factoring attacks.
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