
Defeating Malicious Terminals in an Electronic Voting System

Daniel Hanley 1 , Jeff King 1 , Andr é dos Santos1

1College of Computing
Georgia Institute of Technology

801 Atlantic Drive
Atlanta, GA 30332-0280

USA

Abstract. The advent of electronic voting gives rise to a new threat: Adversaries
may execute undetectable, automated attacks against the system. Elections are
often secured through complex policies, which may be difficult to enforce; Com-
pletely Automated Public Turing Tests to Tell Computers and Humans Apart
(CAPTCHAs) provide an inexpensive alternative. The goal of this study is to in-
troduce a unique application of CAPTCHAs that allows a human to transmit a
message securely across an untrusted medium, and this has direct implications
in the domain of electronic voting. We assume that the voter is equipped with a
trusted voting device capable of digitally signing the vote. A trusted tallier gen-
erates a CAPTCHA-encrypted ballot, which contains a one-time pad, a mapping
of candidates to values. This CAPTCHA is sent to the user across an untrusted
voting terminal. The user transmits to the trusted device a value corresponding
to his chosen candidate, which is signed using a blind signature scheme and
transmitted to the tallier. Finally, the tallier then translates this value into the
voter’s selected candidate. All steps of such a protocol must be defined such that
they are usable by all voters, and we will consider the usability of some example
CAPTCHA-based voting systems.

1. Introduction

A system that fails to limit its dependency on trusted parties is generally prone to abuse.
This is why a democratic system aims to restrict trust such that those in power are held
accountable for their actions. Unfortunately, some electronic voting systems deployed
recently in the United States and elsewhere may extend trust to a much wider and less
accountable set of machines and individuals.

In a traditional voting system, the voter directly records a vote on some physical
medium, and places it in the care of voting administrators and talliers who are trusted
with the task of securely storing the votes. A set of checks and balances, coupled with the
physical nature of the vote record, complicates attacks against this system. It is simply
inefficient to physically modify a significant number of votes, and such attacks are easy to
detect due to oversight and auditing by multiple non-cooperating parties. For instance, a
voting administrator may attempt to attack this system by discarding or modifying ballots,
yet this attack is expensive, as a large number of ballots must be modified in order to have
a substantial impact on the election’s outcome. Any physical attack – particularly a large-
scale attack – will necessarily generate a fair amount of physical evidence. Typically,
processes are in place which detect and respond to such attacks: Administrators of varied
political interests monitor the elections, ballots are audited afterward, and so forth. This
traditional system is not absolutely secure, of course, since its security is no better than the
design and implementation of the policies that govern the elections. Security is therefore

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 113



burdened by human shortcomings and the expense of training voting administrators, who
are often volunteers. Furthermore, the actual physical storage and transmission of votes is
costly and potentially inaccurate with respect to digital alternatives. An improved voting
system shall reduce these expenses, improve accuracy, and maintain a comparable level
of security.

In an electronic voting system, the voter indirectly records his vote by means of
some computer, hereafter referred to as the voting terminal. Electronic voting is attrac-
tive due to its convenience and efficiency, but these advantages may be usedagainstthe
system. If the system is not secure, then an adversary may execute successful, automated
attacks against it conveniently and efficiently. An adversary who tampers with a voting
terminal may modify or replace its software, thereby impacting a great quantity of votes
while leaving negligible physical evidence of the attack. The voting system therefore
extends trust to these voting terminals as well as all parties with the capacity to access
and modify the voting terminals. In such a system, administrators must apply expensive,
cumbersome policies to secure the system. In practice, these policies are often poorly en-
forced. The vast number of voting terminals and the cost of proper policy implementation
guarantees that a significant number of machines are left unattended and unsecured prior
to an election. The policies additionally limit the voting system’s availability, preventing,
for example, Internet voting through public computers. We propose a solution that ad-
dresses these concerns, securing the voting system such that it promotes both confidence
and increased accessibility.

Many schemes have been proposed which allow users to vote both securely and
anonymously, limiting the trust that must be placed in other entities [Okamoto, 1997,
Hirt and Sako, 2000]. While these theoretical approaches do satisfy some important re-
quirements of the voting problem, other practical concerns, such as usability, are virtually
ignored. Similarly, Chaum’s voting protocol [Chaum, 2004] and Prêtà Voter [Ryan, 2005]
require a voter to perform additional verification and auditing tasks to ensure his vote is
counted, and even these countermeasures do not absolutely guarantee the integrity of the
vote. In many other schemes, the voter is responsible for performing complex mathemati-
cal operations that require the use of a computer. The voting terminal can clearly perform
the operations, but then the user is again forced to trust the terminal. One solution which
has been proposed is the use of a personal trusted and tamper-resistant device. Through
a secure registration process, each voter obtains a trusted voting device that is capable of
performing the necessary computations on his behalf. Such devices can be more easily
audited than large-scale voting systems.

If the voter is able to directly interact with the trusted device, then the system
works. However, in most cases, such devices are not capable of performing such interac-
tions due to issues of form factor and cost. The voter instead connects the trusted device
to an untrusted terminal, which may or may not faithfully relay messages between the two
parties. Such a terminal could modify votes in a completely automated fashion, changing
votes for one candidate to votes for another. In brief, this system lacks a trusted path from
the human to the voting device.

If such a device is to be useful, there must be a system that allows a human voter
to transmit votes to a trusted device across an untrusted medium in such a way that it is
difficult for the votes to be automatically modified, discarded, or forged. Furthermore,
the system must be easy for voters to use. This paper introduces a secure, easy-to-use
system based on a one-time random substitution and the use of hard artificial intelligence
problems. Section 2 describes background concepts needed to understand the system.
Section 3 outlines the protocol itself, giving specific examples. Section 4 analyzes the

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 114



security aspects of the protocol.

2. Definitions and Related Work

Let Alice be a human voter who wants to take part in an election. She will choose some
candidatec from the set of candidatesC = [c1, c2, . . . , cn]. Alice must conveyc to the
tallier, Trent, without compromising her anonymity, while also proving to Trent that a vote
for c was cast by a registered voter. We assume that Alice obtains a voting token through
a secure registration process. Furthermore, this token is a trusted computing device that
performs any necessary computations on Alice’s behalf, depending on the exact method
of vote counting. For example, in a blind signature voting scheme [Okamoto, 1997], this
device must blind the votes, send them to the registrar along with Alice’s identity, then
send the signed votes to Trent.

We assume that Alice and Trent cannot directly interact. This is a reasonable as-
sumption in any large-scale voting system: Direct interaction with Trent would require a
very large number of verifiably high assurance voting machines with trusted paths – se-
cured at all layers, from physical to application. This approach is clearly cost prohibitive.
Consequently, the voters must centralize trust in a remote tallying system. Because Alice
and Trent cannot directly interact, they must use an untrusted terminal to relay messages
to each other. We will refer to the untrusted terminal as Mallory; she is capable of inter-
cepting, modifying, or fabricating any message transmitted between Alice and Trent.

The objective here is to securely transmitc from Alice to Trent, henceforth assum-
ing that all other election procedures are secure, including the distribution of voting tokens
and the actual tallying process, as these problems are adequately addressed elsewhere. To
accomplish this stated goal, we will construct a protocol that uniquely combines the tools
listed below.

2.1. CAPTCHA

The CAPTCHA is a relatively recently defined tool, introduced in [von Ahn et al., 2003],
and its applications as a security primitive have yet to be fully explored. Because it is
a very useful tool in preventing automated attacks, it is sensible to use this tool to com-
bat automated attacks accompanying the transition from traditional to electronic voting
systems. Indeed, CAPTCHAs are often used to deter ballot stuffing in web-based polls.
However, since the security requirements of political elections are much more stringent,
we shall see that a traditional application of CAPTCHAs cannot solve their problems.

CAPTCHAs are used in challenge-response protocols in order to distinguish hu-
mans and computers. Typically, a human is presented with a problem that modern artifi-
cial intelligence cannot solve, such as a computer vision problem, and the human responds
with a solution to the problem. For instance, the human may identify an object within a
randomly generated and randomly distorted image. Commercial web site operators have
found this tool invaluable in averting automated attacks. More specifically, CAPTCHAs
have successfully defended email service providers by preventing the automated registra-
tion of email accounts.

We have already established that the primary difference between electronic and
traditional voting lies in an adversary’s ability to automate attacks efficiently and without
fear of detection. While it may appear that CAPTCHAs offer a sound defense, a trivial
application of CAPTCHAs is inadequate. Suppose that a voter must solve a traditional
CAPTCHA to vote. Trent randomly generatess, a string of text, andT (s), an image
wherein this text appears mangled and unreadable by a machine, but readable by a human.

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 115



Trent transmitsT (s) to Alice through Mallory, and Alice responds withs andc, Alice’s
chosen candidate. While this does prove to the tallier that each vote is associated with
a human, it does not prove that the voter actually cast the specified vote; Mallory may
have accepted the Alice’s response to the CAPTCHA,s, while also tampering with the
vote,c. Since the steps of voting and human authentication are separate, in this case, the
simple challenge-response protocol is vulnerable. It fails becausec is not protected from
Mallory’s modification. We shall address this vulnerability by combining the CAPTCHA
with one-time random substitution.

2.2. One-time random substitution

One method Alice and Trent can use to communicate securely is a one-time random sub-
stitution. In this case, Alice and Trent pre-arrange a set of messagesM , which may
be public, and a secret bijective mappingK : C → M . If Alice wishes to vote for a
candidateci, she sends the messagemi = K(ci). Mallory can modifymi in transit, but
without knowing the meaning of the message (given by the mappingK), she cannot make
a meaningful modification. This scheme is a simplified version of the protocol given in
[Stabell-Kuløet al., 1999].

This system has several drawbacks. One is that Alice and Trent must agree upon
the secret mappingK beforehand. If the candidateci is ever revealed to Mallory, then
the mappingK is trivial for her to compute. Thus a given mapping should be used only
once, making pre-agreement even more burdensome. The ease with which such a system
can be used is also poor. Alice must remember or carry with her the mappingK and vote
indirectly using that mapping. Further below, we shall see that CAPTCHAs enable Trent
to securely transmitK to Alice.

2.3. KHAP

The Keyed Hard AI Problem (KHAP) protocol [King et al., 2004, King and dos Santos, 2005]
is designed to transmit messages securely from a human to a computer across an untrusted
medium. Like CAPTCHAs, the protocol relies on the difficulty computers have in solv-
ing certain hard artificial intelligence problems. Alice and Trent pre-arrange a key, the
exact nature of which depends on the AI problem being used. Alice transmits her vote to
Trent in an insecure fashion. Trent then returns an instance of a hard AI problem which
embeds both her vote and the key. For example, if Alice’s vote is ”Alice” and her key is
”bananas”, Trent may respond with a two-dimensional rendering of a 3-D scene showing
a picture of Alice and a picture of a banana. The intent is that Mallory can neither pro-
duce a forged image (because she doesn’t know the key, and cannot extract it from the
scene) nor modify the image to carry a different message (because of the complexity of
the scene). Thus Alice believes that Trent correctly received her vote. She then signals
success to Trent by sending a confirmation message; the message can be pre-arranged or
embedded in the returned image.

While this protocol satisfies the requirements of a voting system, it also suffers
from the pre-arrangement of the key. Though a single key may be used multiple times,
repeated use increases the chance that the details of the key may be extracted by Mallory.
The protocol is also much more complex for Alice to use. Not only must she remember
and recognize her key, but there is now an additional step for her to perform. Previously,
she needed only transmit her vote; now she must verify and confirm Trent’s message.

3. Proposed Solution
We have explained several methods whereby a human, Alice, may transmit a vote across
an untrusted medium, Mallory, to a trusted tallier, Trent. Unfortunately, each of the so-

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 116



lutions referenced creates obstacles that might impede a practical implementation in an
actual election. Here, we shall take inspiration from two techniques explained above. The
goal is to empower the human voter with the ability to encrypt a message such that it
cannot be deciphered or forged by a computer adversary. This shall be achieved through
a process that is entirely transparent and natural to the user. In this scheme, Trent will
transmit a CAPTCHA-encrypted, human-readable key to Alice, which Alice will use to
implicitly encrypt her vote without additional effort. We assume that all messages be-
tween Mallory and Trent are transmitted through a secure channel, and all messages from
Alice to Trent are authenticated using Alice’s voting token according to the blind signa-
ture scheme referenced in Section 2.

3.1. Protocol

The actors in the protocol are, as described above, Alice, Trent, and Mallory. Now, we
may formally state the data and functions required by each actor to participate in the
protocol:

• Each actor in the protocol knows the public list of candidatesC = [c1, c2, . . . , cn].
• Each actor in the protocol knows the public set of random elementsR = [r1, r2, . . . , rm]

such thatm ≥ n.
• Trent can create a random mapping of candidates to random elementsK : C 7→ R.

Since this is a random mapping, for alli andj, the probabilityP (K(c) = ri) is
equal toP (K(C) = rj). K has the inverse mappingK−1 : R 7→ C. As a one-
time pad, this function performs simple substitution on a candidatec to yield a
random elementr.

• Trent can encrypt an arbitrary messagem using the CAPTCHA test encryption
function T (m) such that Mallory cannot derivem from T (m), although Alice
may obtainm from T (m).

Let us assume that it is possible for the CAPTCHA functionT to encrypt a rep-
resentation of the mappingK in a human-readable format. This is denoted byT (K).
In practice, to aid Alice in evaluatingK(c), the elements ofR may be related to the
CAPTCHA transformation, although this is not a requirement of the protocol. Examples
below will elaborate on how this is done.

The protocol is defined as follows:
1. Trent generates and sends an encrypted ballot.

1.1. Trent creates the random, bijective mappingK : C 7→ R.
1.2. Trent evaluatesT (K), encrypting the mapping using the CAPTCHA trans-

formation.
1.3. Trent transmitsT (K) to Alice through Mallory.

2. Alice responds with the encrypted candidate.
2.1. Alice decryptsT (K) using her cognitive and perceptual abilities.
2.2. Alice evaluatesK(c) to obtainr.
2.3. Alice transmitsr to Trent through Mallory.

3. Trent decrypts Alice’s preferred candidate.
3.1. Trent evaluatesK−1(r) to obtainc.

Trent first generates the mappingK; this is a one-time substitution cipher. This
mapping is used as the input of a CAPTCHA function. The output of the CAPTCHA
function is a representation of the mapping that Alice can easily understand, and Alice
therefore easily obtainsr, which she sends to Trent. Since Trent has defined the mapping
K, he has the inverse mappingK−1, and he uses this to determine Alice’s chosen candi-
datec. This outlines a procedure that enables communication between Alice and Trent
through Mallory, but we must additionally prove that Mallory cannot compromise this
communication. In Section 4, we shall evaluate the security of this protocol, demonstrat-
ing how it prevents attacks that would otherwise threaten an electronic voting system.

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 117



3.2. Examples

Due to the vast variety of CAPTCHAs, this protocol gives us a great amount of flexibility
in developing secure voting systems. It is clear that a voting system using this protocol
must afford a reasonable interface to ensure availability among all eligible voters. The
use of a CAPTCHA implies that Alice has particular cognitive and perceptual abilities.
Furthermore, the ballot embedded in this CAPTCHA must present a clear mapping be-
tweenC andR. The implementation of a CAPTCHA voting system must consider these
implications carefully. To further specify what this may entail, we shall introduce the
following examples.

3.2.1. Text CAPTCHA

The traditional, text-based CAPTCHA is the most familiar CAPTCHA domain, and it
would therefore serve as a sound basis for this first example of a CAPTCHA-based vot-
ing system. In this example, suppose that the CAPTCHA functionT renders the names
of the candidatesc1, c2, . . . , cn in a two-dimensional image. The positions and orienta-
tions of these names in the image are randomly generated, and the region in the image
occupied by each name is an element ofR. Each element ofR is therefore a random, non-
overlapping range of image coordinates. This clearly expresses the mappingK : C 7→ R.
Additionally, the CAPTCHA functionT adds to the image some amount of noise suffi-
cient to render the resulting images unreadable to Mallory. This noise consists of arbitrary
lines, shapes, and distortion filters. The resulting image isT (K).

Trent sends this image to Mallory, who displays it to Alice. Alice may be oblivious
to the mapping between candidates and image regions; she simply acknowledges that
she may securely cast her vote by identifying and selecting her chosen candidate in the
image. For instance, Alice might touch the name of the candidate, which is displayed on a
touchscreen interface. Once Alice selects the regionr of the image containing candidate
c. Alice then sendsr to Trent through Mallory. Since Trent producedK, he may easily
obtain the inverse mapping. He evaluatesK−1(r), determining which candidate name
was rendered in the specified image region. Trent thus acquiresc, and he records Alice’s
vote.

3.2.2. 3D Animation CAPTCHA

Now, we consider the domain of three-dimensional animation. A CAPTCHA based in
this domain presents Mallory with a challenging computer vision problem. In this sce-
nario, Trent’s CAPTCHA functionT renders a three-dimensional environment. In this
3D scene,T randomly generates a background setting and some objects that contribute to
the noise of the scene; the amount of noise is adequate to prevent Mallory from extracting
any useful information from the scene. Additionally, every candidate inC has a 3D repre-
sentation; these 3D representations of the candidates are randomly distributed throughout
the scene, maintaining some reasonable distance from each other. These candidate rep-
resentations might be 3D objects resembling the candidate, the symbol of the candidate’s
party, the name of the candidate, or some combination of these. Finally, the “camera” of
the 3D scene is animated such that its path traverses the scene in a random manner, yet
this path is defined such that the camera approaches and focuses on each candidatec for
some distinct set of animation framesr. In this example,K is therefore the mapping of
candidates to sets of frames. The rendering of this animation isT (K).

Trent sendsT (K) to Mallory, who plays the animation for Alice. The animation

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 118



individually displays each candidate’s representation in a 3D environment. Alice again
unconsciously deciphers the mapping; a particular candidate is shown in a particular set of
frames of the animation, but Alice is not required to acknowledge the underlying mapping
and security protocol. When Alice sees her preferred candidatec represented in the scene,
she notifies Mallory. Mallory then transmits the current frame identifierf to Trent. Trent
determines thatf ∈ r, and he calculatesK−1(r) = c. Trent may easily perform this
calculation; since he rendered the animation, he may determine which candidate was
displayed in the specified frame. Finally, Trent records the vote.

3.2.3. Audio CAPTCHA

Speech recognition is another difficult problem for Mallory, while it is a trivial problem
for Alice, and therefore we may employ speech synthesis in the CAPTCHA transforma-
tion T [Kockhanski et al., 2002]. This approach is quite similar to the previous example
in that it relies upon a temporal mapping of candidates.T represents each candidatec
through speech synthesis. In the resulting audio, each candidate is represented during a
distinct set of audio time codesr. K thereby maps each candidatec to a distinctr. In
addition to synthesizing the speech representations of candidates,T must also generate
audio noise as an obstacle to Mallory, who may attempt to acquireK. The composite
audio output isT (K).

Trent transmitsT (K) to Mallory, who plays the audio for Alice. Once again, it
is not necessary for Alice to understand the mapping between candidates and time codes;
Alice listens to the audio, notifying Mallory at timet when she hears the name of her
preferred candidate. Mallory transmitst to Trent, who recognizes thatt ∈ R. Thereafter,
it is simple for Trent to determine which candidate’s name was spoken at this particular
moment in the audio. Trent calculates Alice’s vote,K−1(r) = c, which he proceeds to
record.

4. Analysis

Here we shall characterize the threats leveled by Mallory against the protocol defined
above in the context of an electronic voting system. We will evaluate how the proposed
system performs when confronted with various types of attacks, ultimately judging the
protocol’s security according to a reasonable evaluation criterion: Is the security of the
proposed system comparable to that of a traditional voting system?

Fabricated Vote through GuessedK Mallory may attempt to challenge the integrity
of Alice’s vote, replacing her votec with a vote for Mallory’s preferred candidatec′.
With no information as to the mappingK, Mallory must transmit to Trent somer′ such
that K−1(r′) = c′. Let us assume that Mallory has access to bothC = [c1, c2, . . . , cn]
and R = [r1, r2, . . . , rn]. Lacking the mappingK, Mallory cannot directly calculate
K−1(r′), and she is left with no recourse but to select an arbitraryr′′ ∈ R. Trent evaluates
K−1(r′′) = c′′. If c′′ = c′, Mallory has voted for her preferred candidate. We may trivially
evaluate the probability of this event in the case thatm = n. BecauseK is a random
mapping, it mapsck ∈ C to rk ∈ R with uniform proability, and soP (c′′ = c′) = 1

n
.

Consequently, in this scenario Mallory has a1
n

probability of voting for her pre-
ferred candidate and an−1

n
probability of voting for another candidate. Mallory clearly

cannot influence the final tally in her favor, and therefore she has little incentive to adopt
this strategy. It is impossible to attack a traditional voting system in this fashion, yet we

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 119



should note that the attack cannot reliably sway the tally toward any particular candidate,
but instead it “randomizes” Alice’s vote.

In the case where the number of candidates,n, is less than the number of random
elements,m, the probability that Mallory will guess the correct element ofR is less than
1
n
. Instead, it is entirely possible thatK−1(r′′) is undefined, sincer′ does not necessarily

map to a candidate. The probability of this event ism−n
m

, and the probability that Mallory
will guess the correct element ofR is 1

m
. If Mallory selects an invalidr′′ (somer′′ such

thatK−1(r′′) is undefined) Trent detects the attack, and it is thereby thwarted.

If Mallory modifies a single vote in this manner, the impact on the election is
insignificant; it is much more likely that Mallory will attempt to modify many votes,
which will result in a disproportionately high number of invalid votes. These invalid votes
may be detected during the election or during an auditing process to verify the accuracy
of the election, investigate attacks, and, if necessary, discard the questionable votes.

Fabricated Vote through CrackedT In the above scenario, we assumed that Mallory
had no knowledge ofK due to the encryption of the CAPTCHA functionT . Recall
that T is essentially a cipher whose key is composed of some set of human cognitive
and perceptual abilities. Suppose that Mallory can simulate these abilities; then she has
crackedT and may thus obtainK. Having obtainedK, Mallory may evaluateK(c′) = r,
and send this result to Trent. Alice’s vote was thus stolen in an automated fashion, and
she cannot detect the attack. The security provided by the voting system in this case is
no greater than the security of current electronic voting systems. Moreover, if Mallory is
capable of intelligently analyzing the output ofT , even if she cannot obtainK, she may
increase the probabilityP (K(r′) = c′) and thereby influence the election in her favor.

However, this attack is based on the assumption thatT is insecure. It is asserted
in [von Ahn et al., 2003] that it is impossible to prove the security of a CAPTCHA due
to frequent advances in the field of artificial intelligence. However, it is also noted that
cracked CAPTCHAs may be easily replaced with CAPTCHAs based upon harder prob-
lems, and CAPTCHAs have a successful history of securing commercial applications.

Unfortunately, there is a fundamental difference between standard CAPTCHAs
and those described in the examples above. Standard CAPTCHAs issue a random chal-
lenge to the human, generally in the form of a text string; in the examples detailed above,
the CAPTCHA transmitted by Trent expresses the nonrandom setC. The security of these
examples depend on Mallory’s inability to identify elements ofC the CAPTCHA, yet the
nonrandom components of these CAPTCHAs are presumably easier to identify than the
random components of standard CAPTCHAs. This disadvantage may be counterbalanced
by increasing the difficulty of the CAPTCHA, as suggested by [von Ahn et al., 2003].

Cracking T through a Human Adversary We have assumed heretofore that Mallory,
a computer, is responsible for all threats to the voting systems. Depending on the context,
collaboration between a human adversary and Mallory could lead to successful exploita-
tion of the voting process; Mallory could forwardT (K) to the human collaborator, who
may easily acquireK and cast a vote with the stolen ballot. Alice’s actual vote is then
discarded by the voting terminal. The security of this system is similar to that of a tra-
ditional voting system; the modification of ballots is possible, but it requires a manual
effort on the part of the attacker. One important difference is that the human attacker may
modify ballots without leaving any physical trace; the adversary has no fear of negative
repercussions. While this threat is disheartening, it may be mitigated through a common

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 120



countermeasure.

Following the example of current voting systems, policies may be established to
prevent the human adversary from interfering with the communication between Alice,
Mallory, and Trent. These policies could physically restrict access to the voting com-
munication network during the election and prevent communication between the voting
network and any outside parties. This would unfortunately disable Internet voting, yet
it does have advantages over current implementations of electronic voting systems: It is
relatively secure and reduces the cost of administering the election.

To enable Internet voting, the system could simply accept the potential for remote
human collaborators. We must note that the voting protocol is time-dependent: Mallory
and human collaborators may only steal Alice’s vote while Alice is engaged in the proto-
col, since the vote must be signed by Alice’s voting token. Consequently, not only must
human collaborators manually solve cast each vote, these votes must be synchronous with
a voter’s use of a compromised terminal. To significantly influence the election, the ad-
versary requires assistance from many human collaborators, all of whom may remotely
communicate with many compromised voting terminals. In this case, both the organized
group of attackers and large number of malicious terminals greatly increase the likelihood
that the attack is detected by voting administrators. Since traditional voting systems face
similar threats from large and highly coordinated groups of attackers, an Internet voting
system may be viable. However, it must still address the problem of coercion.

Fabricated Ballot CAPTCHAs are by definition publicly available, and while Mallory
cannot decrypt the CAPTCHA encryption function, she may easily obtainT . Further-
more, it is trivial for Mallory to generate a fabricated mappingK ′ : C 7→ R. Then, Mal-
lory displaysT (K ′) to Alice, who cannot discern between this fabricated ballot and the
legitimateT (K). Alice therefore responds as she normally would, transmittingr′ to Mal-
lory. Mallory may then calculateK ′−1(r′) = c; this gives Mallory knowledge of Alice’s
preference. Since the voting process is anonymous, this tactic alone is inconsequential, as
it does not compromise Alice’s vote. However, this approach may be effectively used in
conjunction with other attacks.

Selective Denial of Service Now, we assume that Mallory cannot obtainK through
weak CAPTCHA encryption or a human collaborator. Mallory may successfully exe-
cute an undetectable denial of service attack against Alice, but the impact of this attack
indiscriminately discards votes without regard for the candidates voted for. Because Mal-
lory doesn’t know Alice’s preference, she may be throwing away votes for her preferred
candidate,c′.

In order to perform a useful denial of service, Mallory must learn about Alice’s
voting preference. She may do this with the aid of some heuristic – using Alice’s and
Mallory’s geographical location, for instance. If the location typically has the preference
for one candidate, then discarding votes from that location will favor other candidates
overall.

Mallory may also use a fabricated ballot to learn Alice’s preference. She can then
deny Alice’s vote if it does not coincide with Mallory’s preference. However, there is a
complication. If Mallory does not want to deny Alice’s vote, she must still submit the
vote. Because of the transformationT , Mallory cannot submit the vote herself. However,
Alice’s vote is only valid for the fabricated ballot, not for the real ballot sent by Trent.
Thus, Mallory must present Alice with the real ballot and ask her to re-submit her vote.

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 121



This may indicate to Alice that Mallory is cheating. Unfortunately, since Mallory and
Alice share a common goal – to vote for a particular candidate – Alice may or may not
respond to the detected attack. This situation is highly unlikely, however, since it as-
sumes that Alice is aware and complicit with this abuse, whereas voters supporting other
candidates are ignorant of the attack.

If multiple votes are being cast, each with its own CAPTCHA ballot, Mallory
doesn’t have to worry about this scenario. She can use a fabricated ballot to learn Alice’s
preference for the first vote. This can give Mallory a reasonable chance at guessing Alice’s
preferences for future votes (e.g., if Alice votes along party or ideological lines). The
simplest solution to this is for all votes to be cast as part of a single transformed ballot.

While Mallory may attack the system in this automated fashion, it is possible for
Alice and Trent to detect a dropped vote. To drop Alice’s vote, Mallory has two options:
sending a random, fake vote or sending nothing. If Mallory arbitrarily guessesr′′, there
is a probability ofm−n

m
that thisr′′ is invalid, as shown above, and Trent therefore detects

the attack. If Mallory simply ceases communication with Trent, refusing to cast Alice’s
vote, then Alice may detect this denial of service by contacting the registrar and learning
whether a vote was cast on her behalf.

Educated Guessing Mallory may also use her knowledge of Alice’s preference to in-
crease her own chances of successfully casting a vote for her preferred candidate. Assume
that Mallory has guessed Alice’s preferencec (through a fabricated vote or other means),
and that it is not equal to Mallory’s preference,c′. Mallory intercepts and discards Alice’s
transmission ofK(c) = r. She now knows thatK(c′) 6= r, increasing the likelihood of
successfully guessingK(c′) to 1

m−1
. This threat can be mitigated by keepingm large.

5. Conclusions and Future Work

The current state of electronic voting is problematic; despite the changing nature of threats
against the system – specifically, undetected, automated attacks – the current voting sys-
tems attempt to employ strategies associated with traditional voting systems, security
policies based in the physical domain. We have sought to improve upon this system
through the introduction of an enhanced voting protocol tailored to address these new
threats. The protocol presented combines a unique application of a burgeoning coun-
termeasure, the CAPTCHA, with a provably secure one-time pad. The combination of
these tools yields a protocol that enables humans to easily peform encryption with secure
key transmission. This has direct applications in the domain of electronic voting, where
a human must securely transmit a message to a trusted party across an untrusted chan-
nel. Due to the proposed voting system’s use of CAPTCHAs, the system requires human
interaction, protecting it from automated attacks that reliably sway the vote tally. Auto-
mated, selective denial of service attacks may succeed in stealing individual votes, yet
large-scale attacks have a high chance of detection. It is interesting to note that traditional
attacks against traditional voting systems share this security property, and therefore we
may conclude that the security of these systems is comparable.

Many related issues demand further exploration. Research in this area is largely
driven by practical concerns, namely a human’s lack of computational and storage re-
sources needed to easily perform encryption. Due to this emphasis on practicality, it is
important to obtain quantitative usability data regarding CAPTCHA-encrypted ballots to
ensure the system’s fairness; it must be equally usable by all eligible voters. To this
end, feasibility testing of implementations of the described example systems will help

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 122



us identify an ideal balance of usability and security. Simultaneously, it is important to
consider threats from breakthroughs in the field of artificial intelligence. Finally, we may
generalize our research, applying the protocol defined herein to new scenarios.

References

Chaum, D. (2004). E-voting: Secret-ballot receipts: True voter-verifiable elections.IEEE
Security & Privacy, 2(1):38–47.

Hirt, M. and Sako, K. (2000). Efficient receipt-free voting based on homomorphic en-
cryption. InAdvances in Cryptology – EUROCRYPT ’2000, pages 539–556. Springer-
Verlag.

King, J. and dos Santos, A. (2005). A user-friendly approach to human authentication of
messages. InProceedings of FC05, Financial Cryptography and Data Security.

King, J., dos Santos, A., and Xuan, C. (2004). KHAP: Using keyed hard AI problems to
secure human interfaces. InProceedings of IV Workshop em Seguranca de Sistemas
Computacionais, Gramado, RS, Brasil.

Kockhanski, G., Lopresti, D., and Shih, C. (2002). A reverse turing test using speech.
In Proceedings of the International Conference on Language Processing, Denver, Col-
orado.

Okamoto, T. (1997). Receipt-free electronic voting schemes for large scale elections.
Proc. of Workshop on Security Protocols ’97, pages 25–35.

Ryan, P. Y. A. (2005). A variant of the chaum voter-verifiable scheme. InWITS ’05:
Proceedings of the 2005 workshop on Issues in the theory of security, pages 81–88,
New York, NY, USA. ACM Press.

Stabell-Kulø, T., Arild, R., and Myrvang, P. H. (1999). Providing authentication to mes-
sages signed with a smart card in hostile environments. InUSENIX Workshop on
Smartcard Technology.

von Ahn, L., Blum, M., Hopper, N., and Langford, J. (2003). CAPTCHA: Using hard AI
problems for security. InProceedings of Eurocrypt 2003.

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 123


