
Using Virtal Machines to increase honeypot security
Eduardo Fernandes Piva1, Paulo Lı́cio de Geus1

1Laboratório de Administração e Segurança de Sistemas
Instituto de Computação

Universidade Estadual de Campinas (UNICAMP)
Caixa Postal 6176 – CEP 13084-971

Campinas – SP – Brazil

Abstract. This work in progress discuss how virtual machines can be used to
implement a data capture system for a honeynet. The main advantage of this
approach is that the data capturing is done outside the honeypot kernel, making
it practivally impossible to be detected and disabled by the intruder. By achiving
this goal, a honeypot can be deployed in a safer environment, mitigating risks
involved when using a honeynet.

1. Introduction
Since the proposal of the concept in the early 90’s, the honeypot has become pop-
ular among security professionals and is considered a tool that can be used against
blackhats[The Honeynet Project 2003a, Spitzner 2002].

Since then, the technology applied to deploy honeypots continued to evolve.
Such evolution is necessary to keep up with advances in the techniques developed
by the blackhat community, designed to detect and disable a honeypot[Corey 2004b,
Dornseif and Klein 2004, Corey 2004a], and so allowing a protection of the honeynet.

Currently, the state of the art in honeypot technology is based on the second-
generation honeynets[The Honeynet Project 2003b] (also known as GenII honeynet). The
GenII honeynet uses a tool that is capable of capturing data (such as keystrokes and down-
loaded files) inside the honeypot, even if the intruder is using an encrypted connection.
This is feasible because the data is captured inside the Kernel of the operating system,
after the data is decrypted. This tool is called Sebek[The Honeynet Project 2003c].

The GenII honeynet architecture has worked well since it was developed, but more
and more the blackhat community is developing knowledge on how to detect, disable and
even use a GenII honeynet as a starting point of an attack.

This work in progress describes a technique that is being implemented, through
the use of virtual machines, that can decouple the data capturing system from the OS,
preventing a blackhat from disabling and taking over the data capture system.

The data capture system used in this work is HECK, a tool developed by Martim
Carbone[Carbone and de Geus 2004], which captures a large group of syscalls then Sebek
does, and is able to capture all data that is modified in the honeypot filesystem by the
intruder.

The next section of this paper summarizes how a GenII honeynet works and how
it can be detected and disabled. Section 3. describes how this ongoing work uses HECK
and virtual machines to achive its goal. Section 4. concludes and points to further devel-
opments.

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 249



2. GenII Honeynets
As defined by the Honeynet project, a GenII honeynet is made from a Data Capture sys-
tem, a Data Control system and an Alert system. The Data Capture part is responsible
for capturing data inside the honeypot, acting in the Operating System (OS) Kernel. The
Data Capture System of a traditional GenII honeynet is implemented by Sebek.

Sebek works by intercepting some syscalls in the OS. During this interception,
captured data is sent through the network to a storage server and then the original syscall
is called. Figure 1 illustrates this functionality.

Figure 1. Diagram that shows how Sebek intercept a syscall.

Thanks to a modification done in the network driver through Sebek, data sent is
invisible to sniffer programs. This is possible because data is filtered before the iptables
hooks, which are used by sniffer programs, like those based on libpcap1.

Although Sebek works, it can be detected and disabled. This is true because the
intruder of the honeypot is supposed to become root of the machine, hence it will be able
to control and inspect everything. A few examples are given throughout this section to
elucidate how this can be done.

As a first example, suppose an attacker take over a honeypot, but does not manage
to become root. Sebek may be detected by exploring the fact that all data is transmitted
through the network. If the intruder forces the transmission of an unusual amount of data,
for example by copying large files, a network instability will be created and will probably
be detected by the intruder[Dornseif and Klein 2004].

If the data is being sent over a dedicated network, it is still feasible to detect
the Sebek or any modification in the kernel. By inspecting the device /dev/kmem or
even inspecting the system kernel through a kernel module, a honeypot system may be
detected[Corey 2004b].

1http://libpcap.sf.net/

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 250



As previously noted by some authors, a modified syscall can be replaced by a legit-
imate syscall to disable the honeypot system[Dornseif and Klein 2004]. It is also possible
to disable the system and attack the data collection system, without the honeynet admin-
istrator knowing this, because the data capture system will be disabled[Corey 2004a].

3. Virtual Machines and honeypots
Since an intruder can detect and disable the data capture system, mainly because it is
running in the same machine that was compromised, we propose a technique to implement
a data capture system using virtual machines.

This data capture system will work similarly Sebek, intercepting syscalls, with
the difference that it will act like a hardware interceptor, becoming even more difficult to
inspect and detect that the system is monitoring the honeypot. The system will implement
the functionality presented in HECK, introduced shortly in the next paragraph.

HECK[Carbone and de Geus 2004] is a tool based on Sebek, acting inside the
Linux Kernel. While Sebek intercepts syscalls to implement a logging system, with some
additional features like viewing downloaded data into the honeypot, HECK intercepts
syscalls that modifies the filesystem. With this approach, it is possible to create a copy
of the filesystem at any given timestamp of the attack. This feature, together with Sebek,
enables the simulation of the events of an attack, such as filesystem modifications after
the execution of malicious code.

With the use of virtual machines, a syscall can be monitored as if it were a hard-
ware monitor, introducing a new layer of abstraction if compared to Sebek and HECK.
For this work in progress, User Mode Linux2(UML) is used as the virtual machine im-
plementation to be adapted as a honeypot virtual machine. This implementation is used
mainly because it is open source, which can be freely modified for our purpose and also
because of previous experience of the team.

The approach used by UML to implement a virtual machine is to modify the Ker-
nel of the virtual machine so that it can understand how to interact with the host operating
system. All the interaction is done mainly over a ptrace process that intercepts all the
interruptions generated by the virtual machine process. The ptrace process is the father
of all the virtual machine’s processes, and since the interception of syscalls are all done
in this layer, no code is added inside the address space of the virtual machine.

When a process in the virtual machine tries to execute a syscall, it will generate
an interruption. This interruption will cause the execution to flow to the Kernel space
of the host operating system, where it will follow the execution to the ptrace process,
since the virtual machine is a child process of the ptrace process. The ptrace process
can inspect all data in the virtual machine, and after all data was inspected and correctly
logged, the execution is passed to the virtual machine process.

Since inside the UML it is impossible to access any host operatng system process,
the data capture system is invisible and can’t be disabled by an intruder. This can be
guaranteed with the help of SKAS[Carella et al. 2004] on the host operating system.

With this approach, we can capture all information that HECK already could, but

2http://user-mode-linux.sf.net

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 251



with the following advantages:

• No data is sent through the network.
• The data capture system works outside the honeypot kernel
• The data capture system is implemented as a user process. This makes it much

simpler to implement than a kernel module and also allows the use of features like
database connections and thread support.

4. Conclusion and Future Work
With the proposed implementation, we will be able to separate the data capture imple-
mentation from the honeypot system, creating a more secure environment.

Further work includes a study of the impact the migration of data capture systems
can cause to virtual machines. Such work will say a lot about feasiblity of implementing
the proposed technique on the variety of honeynet system available.

As the implementation is all done in user space, in the ptrace process, another
possible work would be the study of the impact of the modularization of this implementa-
tion. That is, a system that can install or remove honeypot modules on-the-fly in a virtual
machine.

References
Carbone, M. d. P. d. A. and de Geus, P. L. (2004). A Mechanism for Automatic Digital

Evidence Collection on High-Interaction Honeypots. In Proceedings from the 5th IEEE
SMC Information Assurance Workshop, pages 1–8, West Point, NY, USA.

Carella, C., Dike, J., Fox, N., and Ryan, M. (2004). Uml extensions for honeypots in the
ists distributed honeynet project. In Proceedings from the 5th IEEE SMC Information
Assurance Workshop, pages 130–137, West Point, NY, USA. IEEE Computer Society
Press.

Corey, J. (2004a). Advanced honeypot identification. Phrack Inc. (edição falsa), 11(63).

Corey, J. (2004b). Local honeypot identification. Phrack Inc. (edição falsa), 11(62).

Dornseif, M. and Klein, T. H. C. N. (2004). NoSEBrEaK–Attacking Honeynets. In
Proceedings from the 5th IEEE SMC Information Assurance Workshop, pages 123–
129, West Point, NY, USA.

Spitzner, L. (2002). Honeypots: Tracking Hackers. Addison-Wesley, Boston, MA, USA.

The Honeynet Project (2003a). Know your enemy: Defining virtual honeynets.
Disponı́vel em World Wide Web (Agosto de 2004): <http://www.honeynet.org/
papers/honeynet/index.html>.

The Honeynet Project (2003b). Know your enemy: Genii hon-
eynets. Disponı́vel em World Wide Web (Setembro de 2004):
<http://www.honeynet.org/papers/gen2/index.html>.

The Honeynet Project (2003c). Know your enemy: Sebek.

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 252


