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Abstract. Biclique cryptanalysis is the only known method faster than brute
force for some block ciphers, such as the AES. The main phase of the attack
is the Preparation phase in which the attacker selects the two families of key
differences and chooses ways to partition the key space and the cipher. In the
versions of biclique cryptanalysis used in literature, the selection of both fam-
ilies of key differences is done over the same set of key bits. We introduce our
novel technique that involves a new concept of generator set of key differences
where each key difference can be chosen from distinct sets of key bits. This also
influences the way that the key space is partitioned, allowing for new possible
bicliques with better time or data complexities. To demonstrate the power of this
new technique, we present in this work an attack on the Serpent-256 that uses a
negligible amount of data and remains close in terms of time complexity when
compared to the best biclique attack applied to the cipher.

1. Introduction
Biclique Cryptanalysis was created in 2011 by Bogdanov et al. [Bogdanov et al. 2011]
The publishing of this method was really impactful given that it was applied to the
AES at the time, one of the most used ciphers even nowadays. There had never been
an attack faster than brute force for the full round AES until then. In the follow-
ing years after its initial success, the method was applied to a variety of ciphers such
as HIGHT [Hong et al. 2011], TWINE [Çoban et al. 2012], SQUARE [Mala 2014] and
ARIA [Chen and Xu 2014]. However, besides Rijndael (the original name of the AES),
Biclique Cryptanalysis was applied to no other AES finalist, until the year 2020 when de
Carvalho and Kowada [de Carvalho and Kowada 2020] attacked Serpent-256.

The biclique attack is divided in four phases: Preparation, Biclique Building, Ob-
taining plaintexts and Meet-in-the-Middle phases. The Preparation phase, our main focus,
is composed of three steps: the selection of the key differences, the key partitioning and
the cipher decomposition. The selection of the key differences is the most important step,
since it is on this step that the key differences ∆K

i and ∇K
j are chosen in a way that they

are independent through some rounds of the cipher, meaning that the bits affected by their
propagation through the cipher must not share non-linear transformations. The key par-
titioning is the transformation of the key space into groups of keys in which each group
has a Base Key, which is a key in the group that, when XORed with the key differences,
generates all the keys in the group. The cipher decomposition is the step in which the
cipher E is arranged as a composition of three subciphers E = f ◦ g ◦ h : the biclique
structure is built in either f or h and the meet-in-the-middle is done over g and the other.

In practice there are no rules for which step should be done first in the Prepa-
ration phase. One way is to choose a set of key bits (usually a round key) and try to



build independent key differences propagating from it. The part of the cipher in which
the differentials are independent becomes the subcipher where the biclique will be built,
whereas to the rest of the cipher will be applied the meet-in-the-middle. Another way to
do so is to first choose the key differences in the best way possible and then choose the
set of bits to partition the key space. We show in this work that the latter broadens the
possibilities and we demonstrate it, by applying the process to the Serpent cipher.

The Serpent cipher is, along with MARS, RC6, Twofish and Rijndael, one of the
AES process finalists [Nechvatal et al. 2001] and has not had, since its proposal, its full
round versions attacked. It is a Substitution Permutation Network (SPN) with 32 rounds,
128 bit block size and accepts keys of sizes 128, 192 and 256 bits. It has been targeted
by several cryptanalysis [Kelsey et al. 2000, Biham et al. 2001b, Biham et al. 2001a,
Biham et al. 2003, Collard et al. 2007b, Collard et al. 2007a, Nguyen et al. 2011] since
the year 2000, but no one was able to get results on the full cipher, until the year 2020
when de Carvalho and Kowada [de Carvalho and Kowada 2020] attacked the Serpent-256
using the Biclique Cryptanalysis.

Our Contributions. It is standard in literature that both ∆K
i and ∇K

j key differ-
ences are chosen from the same subkeys on the cipher. We argue this approach limits the
possible bicliques that can be searched, thus making it more likely that more data is used
than necessary or that the biclique is not as long as is could have been.

Here, we also define the concept of generator set of key differences and use it to
show the limitations of using the same generator set for both ∆K

i and∇K
j key differences.

We show that using this same generator set as base key for identifying the key groups in
the key partitioning phase also limits the possible bicliques that can be found for a given
cipher.

Finally, we create an attack on the cipher Serpent-256 with the intent to show the
potential of using multiple generator sets. This yields an attack with with time complexity
of 2255.34 Serpent full computations while using only 16 pairs of texts, which compares
favourably to the previously found attack on literature from de Carvalho and Kowada
[de Carvalho and Kowada 2020] since it needs 288 pairs of texts and is only slightly faster
at 2255.21 Serpent full computations.

Paper structure. Section 2 gives an overview of the biclique cryptanalysis while
Section 3 details each important step involved on the biclique attack. This includes our
main theoretical contributions on Section 3.2. Section 4.1 describes the Serpent cipher
and the notations used in the paper for handling it. Section 4 describes the attack we
created to demonstrate the proposed technique. Finally, Section 5 concludes the article.

2. Overview of the Biclique Cryptanalysis
The original attack, as presented by Bogdanov et al. [Bogdanov et al. 2011], is
a d−dimension biclique. Nowadays there are many other variations such as the
Star-based Bicliques [Canteaut et al. 2013, Bogdanov et al. 2014] and LDC Biclique
[Ahmadi et al. 2014], but the overview of the attack is still the same. It is divided into:
Preparation, Biclique Building, Obtaining texts and Meet-in-the-Middle phases. We now
look at each of these steps:

• Preparation phase. An adversary partitions the key space into groups of keys.



Each key group is associated with a matrix K, where each element K[i, j] repre-
sents a key in the group. Let E be the attacked cipher, which is a composition of
the subciphers f , g and h, E = f ◦ g ◦ h. The three steps below are then applied
for each key group.

1. Biclique Building phase. A biclique structure is built either over the subcipher f
or h. Assume it is constructed over f . This results in a structure that satisfies the
following condition

∀i, j : Sj
K[i,j]−−−→

f
Ci,

where Sj are internal states of the cipher and Ci are ciphertexts. We call internal
state any block of the cipher after applied an operation. Section 3.1 explains that
the biclique is a structure that satisfies this condition.

2. Obtaining plaintexts phase. Since this is a chosen ciphertext attack, we have at
our disposal a decryption oracle, which is used to obtain the plaintext Pi for each
ciphertext Ci.

∀i : Ci
decryption oracle−−−−−−−−−−→

E−1
Pi.

3. Meet-in-the-Middle phase. For each key K[i, j] in the group it is tested if

∃i, j : Pi
K[i,j]−−−→
g ◦ h

Sj.

If one of the K[i, j] is the secret key, then the above condition is satisfied. There-
fore, every key that satisfies it is a candidate to the secret key. Section 3.3 shows
a way, created by Bogdanov et al. [Bogdanov et al. 2011], to do this faster than a
simple meet-in-the-middle approach, called Matching with Precomputations.

3. The steps of the Biclique Attack
3.1. Bicliques
First presented by Bogdanov et al. [Bogdanov et al. 2011], we now look at the balanced
biclique structure applied to the cipher E = f ◦ g ◦ h. Let f be the subcipher that maps
an internal state S to the ciphertext C using the key K (i.e. fK(S) = C). A dimension d
biclique over f is the triple ({Sj}, {Ci}, {K[i, j]}), where 0 ≤ i, j < 2d and

∀i, j : fK[i,j](Sj) = Ci.

One way to achieve this condition is using related-key differentials. It is important
to highlight the fact that this is a single key attack. The related-key model is used only
within the key groups.

Let K[0, 0] be the base key, i.e. the key that maps the internal state S0 to the
ciphertext C0. This is called the base computation

S0
K[0,0]−−−→

f
C0.

The next step is defining the ∆i-differentials and ∇j-differentials using related-
key differentials.



∆i-differentials map the input difference 0 to the output difference ∆i, using the
key difference ∆K

i , where ∆0 = ∆K
0 = 0 and 0 ≤ i < 2d,

0
∆K

i−−→
f

∆i, ∆0 = ∆K
0 = 0.

In contrast, ∇j-differentials map the input difference ∇j to the output difference
0, using the key difference∇K

j , where ∇0 = ∇K
0 = 0 and 0 ≤ j < 2d,

∇j

∇K
j−−→
f

0, ∇0 = ∇K
0 = 0.

If both sets of differentials are independent (do not share non-linear components,
such as S-boxes), then it is possible to combine them into (∆i,∇j)-differentials

∇j

∇K
j ⊕∆K

i−−−−−→
f

∆i.

Being independent means that an internal state or subkey of f is affected by ∇j-
differentials if and only if it is not affected by ∆i-differentials.

By definition, the base computation conforms to both sets of differentials and
hence, it is possible to substitute it to the combined differentials

S0 ⊕∇j

K[0,0]⊕∇K
j ⊕∆K

i−−−−−−−−−→
f

∆i ⊕ C0.

By letting
Sj = S0 ⊕∇j,

Ci = ∆i ⊕ C0 and

K[i, j] = K[0, 0]⊕∇K
j ⊕∆K

i

we have the definition of a dimension d biclique over f .

Building a biclique this way costs only 2d+1 computations of f , since it is possible
to choose the key differences and base computation, and then, independently, compute
the ∆i-differentials and ∇j-differentials.

3.2. The Preparation Phase

This phase is when the theoretical steps of the attack are described. Once this phase is
complete, the other phases can be easily implemented.

3.2.1. Defining the key differences

As seen in section 3.1, there are two families of key differences that must be chosen, ∆K

and ∇K . They must be chosen in a way that the families of differentials generated from
the propagation of their bits (namely ∆ and ∇), through the key schedule and internal
states of the cipher, are independent in part of the cipher, either in the beginning or the



end in most cases. We call this part of the cipher as subcipher f . This means that those
differentials do not share non-linear components with each other inside of f , thus making
it possible to combine them creating an independent biclique over f .

Each family of key differences is defined over a set of key bits (usually one or
more round keys) that is sufficient to generate all key bits of the key schedule. We call
that a generator set of the key schedule. For example, any round key of the AES-128
cipher is a set of key bits capable of generating all others.

To define the family of key differences, one must choose a generator set and set all
bits of it to 0, except for the active bits i.e. the bits that we want to propagate throughout
the cipher. Those bits are unique to each key difference in the family. The active bits of a
key difference can then be concatenated to form a unique integer that in turn, identifies it.
In the context of the biclique attack, we have two families, ∆K and∇K , and each of their
elements is addressed as ∆K

i and ∇K
j .

These families are the backbone of the independent bicliques as seen in Section
3.1, as they both enable the independence of the bicliques and define the dimension of it.
The latter is true because the log2 of the cardinality of the families defines the dimensions
of the biclique. If both families have the same cardinality d then the biclique is balanced
(d−dimensional biclique), else the biclique is unbalanced.

The standard in literature is that the chosen generator set is the same to both ∆K

and ∇K . We argue that this is not going to necessarily yield the best results because it
limits the possible bicliques that can be searched, making it more likely that more data is
used than necessary or that the biclique is not as long as is could have been.

Choosing two different generator sets, one for each of ∆K and ∇K , can generate
longer bicliques for the balanced biclique approach (the same approach used on the orig-
inal attack of Bogdanov et al. [Bogdanov et al. 2011]) when applied to certain ciphers.
This can be done by choosing a generator set more distanced from the edge of f (either
beginning or end of the cipher depending on where the biclique is constructed) for the
∆K family and a closer to the edge of f for the ∇K family. If they are still independent,
it makes so that the ∆i− and ∇j− differentials activate the most possible bits in the bi-
clique, which does not affect the time complexity of the attack since the biclique building
phase has a quadratic gain over the biclique dimension. The work of de Carvalho and
Kowada [de Carvalho and Kowada 2020] already uses this concept, although not to its
fullest potential, using only slightly different generator sets.

On the low data complexity method, choosing different generator sets can be used
to improve the time complexity of the recomputation phase, while maintaining the data
complexity really low, since there are more possibilities to find key differences capable of
activating fewer bits on the rest of the cipher. First, we choose the generator set of the ∆K

near the edge of f . This is required to keep the data complexity low. The generator set of
∇K is then chosen to be the most distanced as possible from the edge in order to activate
the most bits of f , and to propagate more slowly to the rest of the cipher.

As an extreme example, we could define the generator set of the ∆K family as
being the round key $10 of the AES, while the generator set of∇K could be $0. The only
condition to be satisfied is that inside of either f or h, both families are able to build an
independent biclique.



3.2.2. The key partitioning

The key partitioning phase is where the key groups are defined, that is, the key space is
partitioned into groups of keys that are disjoint. During the attack, each of these groups is
tested separately to find secret key candidates. This is what enables a parallel approach.

For every group, there is one key that is capable of generating all others through
the XOR with the families of key differences ∆K and ∇K , and therefore, it identifies the
group. This key is called base key. The group is represented by the matrix K, where
the base key is the element K[0][0]. All other keys are the elements K[i][j] = K[0][0] ⊕
∆K

i ⊕∇K
j .

The matrix K of the current group being tested is the one used both in the building
of the biclique and the matching with precomputations thus being of uttermost impor-
tance.

Up to this day, within what we could find in literature, all attacks implicitly assume
that two assertions are true:

1. The base keys are defined as one or more round keys of the cipher;
2. The base keys and the generator sets of the key differences have to be defined over

the same round keys.

The first assertion is not true because all that is needed is a set of bits capable of
generating all key bits of the cipher, in turn being able to encipher a plaintext into the
corresponding ciphertext. On the other hand, it is usually easier to use one or more round
keys to define this set.

The second one is false, for all that is needed is that:

1. the key groups are disjoint and their union forms the whole key space and
2. each element of each group is K[i][j] = K[0][0] ⊕ ∆K

i ⊕ ∇K
j for the base key

K[0][0].

That means that it is possible to, for instance, use the subkey $10 of the AES to
define the family of key differences ∆K , $0 to define∇K and $8 to define the key groups,
if it is capable of generating an independent biclique over f or h and satisfy the above
conditions.

The above example, would create a biclique attack that needs a small amount of
data (since it depends only on the bits activated by ∆K of the ciphertext/plaintext) and
that is more efficient time-wise in the recomputation step because the recomputation of
the text up to the intermediate variable depends heavily on the amount of bits activated by
∇K (More information about the recomputation step in the Section 3.3).

3.2.3. The cipher decomposition

The cipher decomposition is in which the attacked cipher E is partitioned, first into two
sub ciphers E = F ◦ H and then into three subciphers E = f ◦ g ◦ h. This happens
because first one must decide if the biclique is going to be built in the beginning or the
end or the cipher. If it is the beginning, then F = f ◦ g and H = h, else F = f and
H = g ◦ h.



This decision takes into account the properties of the cipher E which may facilitate
the independence of the differentials in one end or the other. For example, SPN ciphers,
such as AES and Serpent, use a XOR with another subkey in the last round instead of
applying a linear transformation, which makes it more advantageous to build the biclique
over f than over h.

Assuming that we want to build the biclique over f , it is always advantageous to
try and make f as long as possible, while maintaining the independence of the biclique.
This means that the more internal states of the cipher there are in f , the less states will
need to be recomputed on the Matching Phase. This makes the attack faster, because the
recomputation step is the most time consuming of the entire attack.

The second partitioning, the one that encompasses g, depends on the choice of the
intermediate value v to be used on the Matching with Precomputaions phase, since v is
either where h ends and g begins (if the biclique is in f ) or where g ends and f begins.

3.3. Matching with Precomputations

This technique [Bogdanov et al. 2011] uses the knowledge that only parts of the cipher
are affected by the differentials of the biclique to do the meet-in-the-middle faster.

This can be further exploited if instead of meeting an entire internal state, we meet
in only a part of the state, namely v. This way we only look at the parts affected by the
differentials and that affect v.

Let E = f ◦ g ◦ h, where the biclique was built over f and that the size of ∆K is
d1 and of ∇K is d2. An adversary then computes and stores 2d1 + 2d2 full computations
of the cipher up to the variable v: 2d1 computations of h and 2d2 computations of g−1

∀i : Pi
K[i,0]−−−→

h
v1i and ∀j : v2j

K[0,j]←−−−
g−1

Sj.

This means that every internal state of and subkeys used in g and h up to v have to be
stored. This is the precomputation phase.

Then comes the recomputation phase, where the parts that differ from the stored
values must be recomputed. These parts are the ones influenced by the key bits activated
by ∇K on h and the key bits activated by ∆K on g−1. This is true because the parts that
are not affected by neither of them were already stored in the precomputation phase, as
well as the parts affected only by ∆K on h and the ones affected only by∇K on g−1.

The time cost of this method is heavily dependant on the recomputation phase,
since this step is done for all keys in the group, meaning that it is done 2d1+d2 times, while
the precomputation is done 2d1 + 2d2 times. Therefore, the most important measures to
diminish the time complexity of the whole attack are the ones that reduce the amount of
computation done in this step. This can be done through longer bicliques and choosing
key differences that activate the least possible amount of bits in g and h. The choice of v
also influences this cost, as the bigger the bit size of v, the more bits of the internal states
are necessary to compute it. On the other hand, the smaller the bit size of v the more
false positives are generated in average, which means that more key candidates have to be
tested in each group.



The memory complexity of the method is dominated by the precomputation phase
being equal to the amount of bytes necessary to store all internal states and subkeys used
in the computation of both g and h for all 2d1 +2d2 tests. This usually ends up in the order
of magnitude of megabytes, which is irrelevant nowadays.

3.4. Complexities

This attack can be seen as an improved exhaustive search, since every key will be tested,
but not the whole cipher will be computed in each step. Three types of complexities are
of interest: memory, data and time.

The memory complexity is dominated by the Precomputation Phase of the Match-
ing with precomputations method due to requiring the storage of whole states of many
rounds of the cipher.

The data complexity depends only on how many bits of Ci are affected by the ∆i-
differentials, which depends essentially on the amount of rounds covered by the cipher as
well as on the dimension and diffusion properties of the cipher.

Finally, the time complexity is where most of the analysis is necessary. It is basi-
cally the number of key groups times the time complexity of each iteration. Each iteration
builds the biclique and then does the matching with precomputations, which is divided
into precomputation phase and recomputation phase. If there are 2d1 ∆K

i key differences
and 2d2 ∇K

j key differences we have

Ctime = 2k−d1−d2(Cbiclique + Cprecomp + Crecomp + Cfalsepos).

The false positives are the keys that pass on the test in the recomputation phase,
meaning that they are secret key candidates. Thus it is necessary to check if they are the
secret key.

4. Applying the new method to the Serpent Cipher

4.1. The Serpent Cipher

To show the potential of this attack, we apply it to the AES finalist Serpent. Serpent is
a 32-round SPN Cipher. Each internal state and each subkey has 128 bits, divided into
4 words of 32 bits each, while the secret key may have 128, 192 or 256 bits. We call
Serpent-128 the version of this cipher with 128-bit key and similarly for the other key
sizes. The description of the cipher can be found in the seminal paper [Biham et al. 1998]
and will not be addressed here due to space constraints.

4.2. Defining the key differences

First, we must define the families of key differences ∆K and ∇K . As stated in Section
3.2.1, we can choose any two generator sets of the key schedule, one for each family, that
best suits our initial conditions.

These conditions refer to time complexity or data complexity, meaning that we
can minimize either one or the other. It is also possible to minimize one while restricting
the other. For our attack, the objective is to find a biclique with smallest time complexity
while maintaining the data complexity in 24, since the Serpent Cipher works with nibbles.



To carry out the attack, we built a Java program that searches all possible ∆K and
∇K such that their generator sets are built from two consecutive keys in the cipher and a
4-dimensional independent bicliques is created from them.

There were 18056 possible bicliques. To choose the one with the smallest time
complexity, it was necessary to define a nibble of some internal state of the cipher as the
variable v for the matching with precomputations phase of the attack. Depending on the
chosen v, one or other biclique could be the best.

By choosing v as the nibble 31 of state #75, the best time complexity is associated
to the following families of key differences:

• ∆K : The keys K31 and K32 with the nibble 6 of K31 activated, form the generator
set of ∆K .

• ∇K : The keys K18 and K19 with the nibble 11 of K18 activated, form the genera-
tor set of∇K .

4.3. Key Partitioning

The key partitioning is the second step of the preparation phase. In this step, the main
objective is to define a base key, which is a set of key bits capable of creating all keys
groups such that:

1. the key groups are disjoint and their union forms the whole key space and
2. each element of each group is K[i][j] = K[0][0] ⊕ ∆K

i ⊕ ∇K
j for the base key

K[0][0].

To conform to these conditions for the Serpent cipher, it is enough to choose two
consecutive subkeys, in which all nibbles, except for two, vary through all possible values.
The two nibbles that are exceptions are the ones affected only by ∆K

i and∇K
j . One being

affected by only ∆K
i and the other only by∇K

j .

To find candidates for the base key, we tested all nibbles affected by the ∆K
i key

differentials and∇K
j key differentials, but not by both at the same time, to find all nibbles

that go through all possible values only once. If both nibbles exist in two consecutive
subkeys, than we can choose them as base key.

The program that made the tests outputs all possible nibbles that can be chosen as
base key. Since any of them can be chosen, we chose subkeys K16 and K17 as the base
key. Nibbles 9 and 19 of K16 are fixed to zero, since those are the ones that go through
all possibilities only when the XOR with ∆K

i and ∇K
j is done. The values of all other

nibbles define which key group is being tested at any given time.

4.4. The cipher decomposition

The cipher must be decomposed into E = f ◦g ◦h where, in our case, the biclique is built
on the subcipher f . It is the computation from state #91 up to the end of the cipher, state
#96. It covers the last two rounds of the cipher excluding the operation AK30. In other
words, it is two rounds minus one application of L.

The subcipher h covers the computation from the plaintext up to #75, while g
is the computation from #75 up to #91. This is the case because the variable v of the
matching phase is set on state #75.



4.5. The Definition of the Biclique

First, an adversary sets C0 = 0 and calculates S0 = f−1
K[0,0](C0), where K[0, 0] is the base

key of the group. Then, the ∆i-differentials are computed using the key differences ∆K
i on

the subkeys K31 and K32. The ∇j-differentials are computed using the key differentials
∇K

j on the subkeys K18 and K19. As stated in Section 4.2, the key differentials were
chosen in such a way that the ∆i-differentials and∇j-differentials are independent inside
of f .

Figure 1 shows the ∆i-differentials and ∇j-differentials generated from the key
differences over f . It is easy to see that they are independent, i.e. they share no non-linear
components of the cipher (Sboxes).

K32

K31 K31
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93

94

95

CC

∆i-differentials ∇j-differentials

S,L S,L

AK AK

AK AK

S S

K32

91

93

94

95

Figure 1. ∆i-differentials and ∇j-differentials in the 4−dimension biclique.

The nibbles of the ciphertext C affected by the ∆i-differentials determine the
amount of possible ciphertexts, and respective plaintexts, are necessary to carry the at-
tack. Since there is only one nibble, the data complexity of this attack is only 24 = 16
chosen ciphertexts.

4.6. Matching with Precomputations

In this part of the attack, we check if the secret key belongs to the group {K[i, j]}, i.e.
if Ksecret ∈ {K[i, j]}. First we precompute 24 values of v1i,0 from Pi and precompute
24 values of v20,j from Sj . We define v as being the nibble #7531. Then, they are saved,
together with all internal states and subkeys involved in these precomputations. Now we
have

Pi
K[i,j]−−−→

h
v1i,j and v2i,j

K[i,j]←−−−
g

Sj

for each i and j, recomputing only those parts that differ from the ones saved in memory.
If v1i,j = v2i,j , then K[i, j] is a key candidate.



4.6.1. Forward Recomputation

Here we observe the difference between the computation of Pi
K[i,j]−−−→ v and the precom-

puted values of Pi
K[i,0]−−−→ v, given by the influence of ∇K

j on all the subkeys from K0 up
to K24 on the variable v, to calculate how many Sbox recomputations must be done. All
observations of this section can be seen on Figure 2.

All nibbles influenced by the keys K0 to K22 affect the computation of v and,
since we apply Sboxes to all key nibbles, they have to be counted, resulting in 213 Sbox
recomputations. On the other hand, not all nibbles of subkeys K23 and K24 need to be
recomputed, only those that affect v. So, although there are 20 and 26 active nibbles of
K23 and K24 respectively, only 13 nibbles of K23 and 5 nibble of K24 affect v. Totalling
213 + 18 = 231 Sbox recomputations.

In addition to the recomputations on the subkeys, there are the recomputations of
the active nibbles of the cipher. Only the states #T where T ≡ 1 mod 3 are relevant
due to they being the states that precede the operation S. State #1 is influenced only by
the nibbles of subkey K0 and therefore has 14 active nibbles. All other 22 relevant states
from #4 up to #67 have all of their nibbles being active. On states #70 and #73, only
a few nibbles affect the computation of v, so, only these matter. For #70 there is a total
of 22 active nibbles and #73 has only 5. The total is 14 + 33 ∗ 22 + 5 = 745 Sbox
recomputations.

Hence, the total cost of the forward recomputations is 231 + 745 = 976 Sbox
recomputations.

4.6.2. Backward Recomputation

Similarly to the forward recomputation, we look at the difference between v
K[i,j]←−−− Sj

and the precomputed v
K[0,j]←−−− Sj , given by the influence of ∆K

i in the subkeys between
K25 and K30. All observations of this section can be seen on Figure 2.

We begin by looking at the active nibbles of the subkeys K30, K29 and K28 since
they are relevant to the computation of v. Only 1, 5 and 4 nibbles of the keys K30, K29

and K28, respectively, are active. There are 4 nibbles of key K27 that affect v, 2 nibbles
of K26 and none of K25. This sums up to 16 Sbox recomputations.

Now we focus on the active nibbles of the internal states. Only states of the type
#T where T ≡ 2 mod 3 are relevant, since they come right after the application of the
operation S (we could also have used #T where T ≡ 0 mod 3). State #88 has 5 active
nibbles, while #85 has 25 and #82 has 22. Finally, #79 has 5 active nibbles while #76
has only one. In total we have 58 Sbox recomputations.

In total, the sum of the recomputations of the subkeys and internal states we have
16 + 58 = 74 Sbox recomputations.
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Figure 2. Forward recomputation and backward recomputation of the
4−dimension biclique. The lighter nibbles are the ones that are affected
by the key differences, but does not affect the recomputation.

4.7. Complexities
Firstly we have

Ctotal = 2k−2d(Cbiclique + Cprecomp + Crecomp + Cfalpos).

On average, there will be 24 false positives per iteration (Cfalpos = 22d/2|v| = 28/24).
We also know that Cbiclique = (24 + 24) ∗ (5/96) = 20.736965594166206 and Cprecomp =
24 ∗ (91/96) = 23.922832139477540. It remains to find Crecomp. For that, we shall count each
S-box computation done in the recomputation phase and compare the total number of S-
box computations involved in the computation of the whole cipher. In this way, we know
which percentage of the cipher is computed in each iteration, observing only the number
of S-boxes, due to the fact that this is the most expensive operation of the cipher.

Once it is not necessary to observe the nibbles that do not influence the recompu-
tation (due to the fact that the key schedule only computes the S-boxes after calculating
all words of the subkeys), the total of S-box computations done by the forward recom-
putation is 976, while the backward recomputation only does 74, as seen in subsections
4.6.1 and 4.6.2 respectively, totalling 1050 S-box computations. Since the entire cipher
computes 2080 S-boxes, then Crecomp = 28 · (1050/2080) = 27.013805799525030.

In the end, we obtain approximately

Cattack = 2248 · (20.74 + 23.92 + 27.01 + 24) = 2255.34

Serpent-256 computations.



In terms of memory, the attack is upper limited by 24 computations of h and 24

computations g, since h and g together are much bigger than f and thus, much more
memory is necessary to store all of their internal states and subkeys than storing the 28

states necessary for the biclique. The full computation of h consists of 75 internal states
and 24 subkeys while g has 16 internal states and 6 subkeys, with 16 bytes each. Therefore
the memory complexity is (24 · (75+24)+24 · (16+6)) ·16 = 214.92 bytes approximately.

The most important aspect of this attack is the fact that only 24 = 16 pairs of
plaintexts/ciphertexts are necessary.

5. Conclusions
Our work focuses on expanding the boundaries of what is possible inside the biclique
method. Specifically, the focal points are the selection of the families of key differences
∆K and ∇K and the key partitioning step of the Preparation Phase, where the base keys
are selected as the representative of the key groups. We show that, through our new
concept of generator set of key differences, it is possible to choose distinct generator sets
for each family of key differences, as well as for the base keys. This broadens the spectre
of possible bicliques that can be built.

To demonstrate it, we presented here an attack to the full round Serpent-256 us-
ing this new concept. It was capable of using far less data than the previous attacks
to the cipher from de Carvalho & Kowada [de Carvalho and Kowada 2020] while be-
ing slightly slower in comparison. Our attack uses only 16 pairs of plaintext/ciphertext
and has a time complexity of 2255.34. This is favourably compared to both attacks in
[de Carvalho and Kowada 2020]. Their slowest attack has a data complexity of 260 and
time complexity of 2255.45, while the fastest attack has 260 and 2255.21 respectively. This
means that our attack is only slightly slower than the fastest one while requiring a really
small amount of data, compared to the huge amount necessary for both the attacks.

Future work involves identifying in which types of ciphers this technique is most
useful and which it is not. For instance, our current method has the data complexity lower
bounded by the smallest word used in the cipher on the non-linear step. In the case of the
Serpent, the nibble is the smallest word size on the last round. It may also be possible
to create faster attacks using the whole space of data, by choosing appropriate generator
sets for the key differences. Although this creates unfeasible attacks, it may be useful
to compare this technique to the classic ones applied to other ciphers, such as the AES,
PRESENT, HIGHT and many others.
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