
Evaluation of modular multiplication techniques for
Supersingular Isogeny Schemes on ARMv8 cores

Vitor Satoru Machi Matsumine1, Félix Carvalho Rodrigues1, Décio Gazzoni Filho1,
Caio Teixeira1, Julio López1, Ricardo Dahab1

1 Institute of Computing – University of Campinas (Unicamp)
Av. Albert Einstein, 1251 – 13083-852 – Campinas – SP – Brazil

{vitor.matsumine,caio.teixeira}@students.ic.unicamp.br
{felix.rodrigues,ra264965,jlopez,rdahab}@ic.unicamp.br

Abstract. This paper focuses on the evaluation of different modular multipli-
cation implementation techniques on 64-bit ARMv8 systems for the third-round
NIST alternate candidate SIKE. The benchmarks were performed on four de-
vices: an Orange Pi WinPlus featuring the Cortex-A53 processor, an NVIDIA
Jetson Nano with a Cortex-A57, a Raspberry Pi 4 with a Cortex-A72 and a Mac-
book Air based on an Apple M1 chip. Throughout these platforms we observed
that the two-level Karatsuba Comba method performs better on most Cortex-
A processors but the Operand Scanning method presented a performance im-
provement ranging from 10% to 43% for the multiplication procedure and a 7%
to 25% improvement for the modular reduction on the Apple M1 for all SIKE
security levels, resulting in an overall improvement ranging from 8% to 28% for
the SIKE KEM operations on this architecture.

1. Introduction

Recent developments in quantum computing brought to attention the possibility that the
current standards in public-key cryptography, based on the hardness of integer factoriza-
tion and discrete logarithms may be broken in a near future by a sufficiently large quantum
computer running Shor’s algorithm [Shor 1999]. This led the cryptography community to
seek new mathematical problems that could be used for public-key cryptography resistant
to both classical and quantum cryptanalysis, and that could be implemented in our current
classical computers, giving rise to the field of post-quantum cryptography.

In this context, we have the National Institute of Standards and Technology (NIST)
Post-Quantum Standardization Process [NIST 2017], which seeks to set new standards
for post-quantum cryptography. Currently in its third round, this competition has the
Supersingular Isogeny Key Encapsulation (SIKE) protocol as one of its alternate can-
didates. SIKE has its origins on the Supersingular Isogeny Diffie-Hellman (SIDH)
scheme [De Feo et al. 2014] and is based on the hardness of computing isogenies between
supersingular elliptic curves.

Since its initial inception, several improvements have been made to the SIKE pro-
tocol and in this paper we highlight the improvements made to the ARMv8 implemen-
tation of SIKE [Jalali et al. 2019, Seo et al. 2020]. These improvements have been fo-
cused mainly in the base field arithmetic operations, with its most costly operation being
modular multiplication, consisting in multi-precision multiplication followed by modular
reduction.

Throughout the history of improvements in modular multiplica-
tion [Jalali et al. 2019, Seo et al. 2020], special attention was brought to the multi-
plication techniques used for each security level, with the use of Operand Scanning and
Product Scanning techniques, as well as the use of the Karatsuba multiplication. These
different techniques are applied to the multi-precision multiplication procedure and the
internal multiplications of the modular reduction

In this work we investigate the software implementation of these multiplication
techniques when applied to the SIKE protocol on different ARMv8 platforms, including
members of the Cortex-A family and the more recent Apple M1. For each ARMv8 plat-
form, we compare our optimized hand-written assembly implementation with the state-
of-the-art reference implementation of SIKE.

In light of a recently discovered efficient key recovery attack on
SIDH [Castryck and Decru 2022], the current NIST submission of SIKE may be
considered insecure. However, the results and discussions in this paper are still applicable
to other schemes that utilize modular multiplication over large prime characteristic fields.

1.1. Our contributions

In this paper we evaluated the multi-precision multiplication techniques based on Operand
Scanning, Product Scanning and Karatsuba multiplication for the different security pa-
rameters of the NIST PQC competition’s third-round alternate candidate SIKE on dif-
ferent 64-bit ARMv8 platforms. We developed hand-written A64 assembly implemen-
tations for the multi-precision multiplication and reduction procedures of the base field
arithmetic for the SIKE protocol. The first implementation consists in the multiplica-
tion with Operand Scanning. The second is the multiplication with two-level Karatsuba
Comba (Product Scanning) with a different instruction interleaving when compared to the
current state-of-the-art of the SIKE implementation for ARMv8 (present in the Microsoft
PQCrypto-SIDH 3.5 version) and the use of SIMD registers as cache memory to substitute
intermediate memory operations. For the third implementation, we optimize Montgomery
reduction for the SIKE protocol with Operand Scanning for its internal multiplications.

Our source code was compiled with ARMv8 Clang and GCC compilers and its
performance was evaluated on an Orange Pi WinPlus (Cortex-A53), an NVIDIA Jetson
Nano (Cortex-A57), a Raspberry Pi 4 (Cortex-A72) and a Macbook Air based on an Apple
M1 chip. Our benchmarks show that:

1. on the Cortex-A family: the two-level Karatsuba Comba method was the fastest
throughout most processors;

2. on the Apple M1: the Operand Scanning method was the fastest;
3. on Cortex-A53: Montgomery reduction with Operand Scanning was the fastest;
4. on the Apple M1: Montgomery reduction with Operand Scanning was the fastest.

For the SIKE KEM operations on the Apple M1 with Operand Scanning for mul-
tiplication and Montgomery reduction, we also observed an improvement of 28% for
SIKEp434, 8% for SIKEp503, 14% for SIKEp610 and 8% for SIKEp751.

1.2. Paper organization

Section 2 presents a brief description of the SIDH and SIKE protocols. Section 3 in-
troduces the ARMv8 architecture and the cores targeted by our experiments. Section

4 describes the implementation techniques for multi-precision multiplication and Mont-
gomery reduction. Section 5 describes our experiments and presents benchmarks for our
implementations. Section 6 presents our concluding remarks.

2. Isogeny Based Cryptography

Isogeny-based cryptography has its roots in Elliptic Curve Cryptography (ECC), with
its first reported instance being presented in 1997 by Couveignes in his notes on “Hard
Homogeneous Spaces” which were rejected by CRYPTO97 and later published in
2006 [Couveignes 2006]. It would be later independently rediscovered by Rostovtsev and
Stolbunov in [Rostovtsev and Stolbunov 2006]. These schemes were based on isogenies
between ordinary curves and presented significant performance issues.

The development of subexponential-time quantum algorithms capable of comput-
ing isogenies between ordinary elliptic curves motivated the work of [De Feo et al. 2014]
on the development of a Diffie-Hellman-like scheme relying on the conjectured difficulty
of finding isogenies between supersingular elliptic curves. The resulting scheme, named
Supersingular Isogeny Diffie-Hellman (SIDH), brought significant performance improve-
ments to isogeny schemes, as well as security improvements, with the fastest quantum
attack remaining exponential. Since its initial proposal, several performance improve-
ments, in regards to both its running time and key size, were made, which resulted in
the Supersingular Isogeny Key Encapsulation (SIKE), a Key Encapsulation Mechanism
(KEM) based on SIDH.

2.1. SIDH

The SIDH protocol makes use of primes of the form p = leAA leBB ·f ±1 for small primes lA
and lB, positive integers eA and eB, and a small cofactor f . For this prime p we define the
extension field Fp2 from which the initial supersingular elliptic curve E with cardinality
#E = (leAA leBB · f)2 is defined. On this curve, we denote by PA, QA and PB, QB the
basis points that generate, respectively, the torsion subgroups ⟨PA, QA⟩ = E[leAA] and
⟨PB, QB⟩ = E[leBB].

On the SIDH key exchange, Alice takes a random integer mA ∈ Z/leAA Z as her
secret key and calculates the point RA = PA+[mA]QA, which is then used to calculate the
isogeny ϕA : E → EA with ⟨RA⟩ as its kernel. Alice then evaluates the points PB and QB

through her isogeny ϕA and publishes her public key {ϕA(PB), ϕA(QB), EA}. Similarly,
Bob takes a random integer mB ∈ Z/leBB Z, calculates the point RB = PB + [mB]QB and
the isogeny ϕB : E → EB, evaluates the points PA and QA through ϕB and publishes his
public key {ϕB(PA), ϕB(QA), EB}.

Once Alice obtains Bob’s public key, she calculates the point RAB = ϕB(PA) +
[mA]ϕB(QA) which is used to calculate the isogeny ϕAB : EB → EAB with kernel ⟨RAB⟩.
Alice then takes the j-invariant of the curve EAB as her shared key. Similarly, Bob takes
Alice’s public key to calculate the point RBA = ϕA(PB) + [mB]ϕA(QB), calculates the
isogeny ϕBA : EA → EBA with kernel ⟨RBA⟩, and takes the j-invariant of curve EBA as
his shared key with Alice. Since the curves EAB and EBA are isomorphic, they produce
the same j-invariant and thus this value can be used as the secret shared key between
Alice and Bob.

2.2. SIKE
The Supersingular Isogeny Key Encapsulation protocol is based on the Public Key
Exchange (PKE) obtained from SIDH [De Feo et al. 2014] with the application of the
Hofheinz, Hövelmanns and Kiltz transform [Hofheinz et al. 2017] in order to obtain an
actively secure IND-CCA KEM.

In a similar manner to SIDH, SIKE takes a prime of the form p = 2eA · 3eB − 1
which is used to define the extension field Fp2 . The initial supersingular curve is defined
as E0/Fp2 : y2 = x3 + 6x2 + x, where E0 has cardinality (2eA · 3eB)2. The public
basis points are defined as ⟨PA, QA⟩ = E0[2

eA] and ⟨PB, QB⟩ = E0[3
eB]. SIKE’s key

encapsulation mechanism is based on three procedures: key generation, encapsulation
and decapsulation.

Key generation: Alice takes a secret random integer skA ∈ Z/2eAZ and a random
bitstring s ∈ {0, 1}t. She then calculates the isogeny ϕA : E0 → EA with kernel ⟨PA +
[skA]QA⟩ and computes her public key pkA = {EA, ϕA(PB), ϕA(QB)}.

Encapsulation: Bob generates a random message m ∈ {0, 1}t, concatenates m with
pkA and hashes m||pkA with SHAKE256 obtaining a hash digest r. Bob then uses r as
his secret key skB, calculates the isogeny ϕB : E0 → EB with kernel ⟨PB+[skB]QB⟩ and
generates his public key c0 = {EB, ϕB(PA), ϕB(QA)}. Bob then uses Alice’s public key
pkA to calculate the isogeny ϕBA : EA → EBA with kernel ⟨ϕA(PB)+[skB]ϕA(QB)⟩ and
takes the j-invariant of curve EBA. This j-invariant is then hashed with SHAKE256 and
the digest h is obtained. The message m is then XORed with h to obtain c1. Lastly, Bob
concatenates m with (c0, c1) and hashes the result with SHAKE256 to obtain the digest
K, which will be used as the session key. The tuple (c0, c1) is then sent to Alice.

Decapsulation: Alice takes Bob’s public key c0 and uses it to calculate the isogeny
ϕAB : EB → EAB with kernel ⟨ϕB(PA) + [skA]ϕB(QA)⟩, takes the j-invariant of EAB

and hashes it with SHAKE256 to obtain the digest h. Alice then obtains the message
m′ by XOR’ing h with c1, and validates Bob’s public key by concatenating m with
her public key pkA, arriving at the secret value r′. Alice then proceeds to calculate
the isogeny ϕ′

B : E0 → E ′
B with kernel ⟨PB + [r′]QB⟩ and generate the public key

c′0 = {E ′
B, ϕB(PA)

′, ϕB(QA)
′}. If the calculated c′0 matches the received c0, then the pub-

lic key is considered valid and the session key K is calculated by hashing m′ concatenated
with (c0, c1) using SHAKE256. Otherwise, Alice hashes s (obtained in the key generation
phase) concatenated with (c0, c1), thus invalidating the session key K.

Security parameters: SIKE’s security parameters are based on the size of the prime
p that defines the finite field Fp2 and consequently defines the cardinality #E = (2eA ·
3eB)2 of the supersingular elliptic curves employed in the protocol. Consequently, they
also define the size of the torsion subgroups E[2eA] and E[3eB] from which the secret
points that generate the kernel for the secret isogeny are derived. On Table 1 we show
the different SIKE security levels, with the size of the prime p in bits being given by
“SIKEp<bitlenght of p>”, in addition to their corresponding NIST security level
and the number of 64-bit words needed to represent elements of the base prime field Fp

for each security level.

Efficiency aspects: since the initial proposal of the SIDH protocol and the current
version of SIKE, several improvements have been made in order to optimize the per-

Table 1. SIKE parameters

Prime NIST Security Level Number of 64-bit words
SIKEp434 Level I 7
SIKEp503 Level II 8
SIKEp610 Level III 10
SIKEp751 Level V 12

formance of the protocol. Here we highlight the following contributions: use of x-
coordinate-only arithmetic with Montgomery curves for both point arithmetic and isogeny
operations [Costello et al. 2016]; optimized Montgomery reduction and the three-point
ladder from [Faz-Hernández et al. 2017]; and the optimized SIKE implementations for
ARMv8 [Koziel et al. 2016, Jalali et al. 2017, Jalali et al. 2019, Seo et al. 2020], which
were focused on writing optimized hand-written assembly implementations of the base
field arithmetic on Fp, with a special regard to the multi-precision multiplication tech-
niques and the modular reduction implementation.

3. ARMv8 Architecture

In 2011, the ARMv8 architecture added support for 64-bit operations to the ARM family
of processors. This architecture is known as AArch64, while its instruction set is called
A64. We will analyze the performance of the Cortex-A family of processors and the Apple
M1 based on this architecture for our implementation of the multi-precision multiplication
techniques. In this section we introduce the target cores for our experiments and highlight
some of the instructions used for building our implementations.

3.1. Target cores

The Cortex-A53 is one of the first ARM cores to implement the ARMv8 architecture.
It is a power-efficient 2-way superscalar processor with an in-order, 8-stage, dual-issue
pipeline featuring 8 to 64 KB of L1 cache memory and 128 KB to 2 MB of L2 cache
memory.

Another target core for our implementations is the Cortex-A57. A more powerful
alternative to the Cortex-A53, the Cortex-A57 features the ARMv8 architecture in a 3-
way superscalar processor with an out-of-order, speculative execution pipeline with 48
KB of L1 I-cache memory, 32 KB of L1 D-cache memory and 512 KB to 2 MB of L2
cache memory.

In the higher-end of the Cortex-A family of processors we have the Cortex-A72,
which was designed as a successor to the Cortex-A57 core with improved power efficiency
and performance. This processor features an out-of-order, speculative execution 3-way
superscalar execution pipeline and includes 48 KB of L1 I-cache memory, 32 to 64 KB
of L1 D-cache memory and 512 KB to 4 MB of L2-cache.

Our final target of interest is the M1, a new ARMv8-based system on a chip (SoC)
developed by Apple. It features an unusually large 8-way superscalar pipeline with out-of-
order execution and a reorder buffer size conjectured to exceed 600 entries, while main-
taining significant power efficiency. It features eight cores, evenly split between perfor-
mance and efficiency cores. It implements the ARMv8.4-A instruction set and features
L1 cache memories of 192 KB (instruction) and 128 KB (data) per performance core and

128 KB (instruction) and 64 KB (data) per efficiency core, as well as shared L2 cache
memories of 12 MB for the performance cores and 4 MB for the efficiency cores.

3.2. A64 Instructions

Here we highlight and describe some of the main A64 instructions used in our implemen-
tations of the multi-precision multiplication procedures:

1. MUL X0, X1, X2 [X0 ← L(X1×X2)]. Unsigned multiplication, low part;
2. UMULH X0, X1, X2 [X0 ← H(X1 × X2)]. Unsigned multiplication, high

part;
3. ADD X0, X1, X2 [X0 ← X1 +X2]. Unsigned addition. To raise potential

carry flags during the addition, we use the ADDS instruction; to perform the addi-
tion with a carry we use the ADC instruction; to perform both simultaneously, we
use the ADCS instruction;

4. SUB X0, X1, X2 [X0 ← X1 − X2]. Unsigned subtraction. Following a
similar pattern for the borrow handling as with the addition carry flag, we have the
instructions SUBS, SBC and SBCS.

5. MOV X0, Vd.d[index]. Moves the 64-bit value present in the scalar regis-
ter X0 to the SIMD register Vd on a specific lane index. The instruction MOV
Vd.d[index], X0 can be used to move the value present in Vd.d[index]
back to the X0 register;

4. Implementation Techniques
In this section, we will describe the multi-precision multiplication implementation tech-
niques that are used in our implementations of multiplication and modular reduction pro-
cedures for the different SIKE parameters on ARMv8. For the descriptions, we consider
C = A · B = (C[2n − 1], · · · , C[1], C[0]) as the product of two n-words operands
A = (A[n− 1], · · · , A[1], A[0]) and B = (B[n− 1], · · · , B[1], B[0]).

4.1. Karatsuba multiplication

The Karatsuba method is a multiplication technique in which a multiplication of two m-
bit operands is replaced by three multiplications of (m/2)-bit operands and some addition
and subtraction operations. Using this method, a product C = A · B, where A and B are
n-words operands can be performed by first splitting A into low and high parts, given by
A = AH · 2n/2 + AL, and similarly for B. The multiplication can then be performed
through the following equation for the additive (1) and subtractive (2) formulations of
Karatsuba multiplication:

AH ·BH · 2n + [(AH + AL) · (BH +BL)− AH ·BH − AL ·BL] · 2
n
2 + AL +BL (1)

AH ·BH · 2n + [AH ·BH + AL ·BL − |AH − AL| · |BH −BL|] · 2
n
2 + AL +BL (2)

This technique can then be further applied on the intermediate multiplications,
giving rise to the two-level Karatsuba multiplication.

Implementation: to exemplify the implementation, we will focus on the additive Karat-
suba multiplication. We begin by calculating the sums (AH + AL) and (BH + BL), and
saving the carry bits cA and cB that may be generated by each. These carry bits could

generate an additional word that would involve a costly additional iteration in the multi-
plication of (AH +AL) · (BH +BL); however, since this additional multiplication would
be either a product of 2n/2 · (AH + AL), 2n/2 · (BH + BL) or the sum of both, we can
instead conditionally add (AH +AL), (BH +BL) or (AH +AL) + (BH +BL) shifted by
2n/2 words given the carry bits cA and cB as follows:

1. cA, AH+L ← AH + AL

2. cB, BH+L ← BH +BL

3. ABH+L ← (AH + AL) · (BH +BL)
4. if cA = 1 and cB = 1, then ABH+L ← ABH+L + 2

n
2 · (AH+L +BH+L)

5. else if cA = 1, then ABH+L ← ABH+L + 2
n
2 · (BH+L)

6. else if cB = 1, then ABH+L ← ABH+L + 2
n
2 · (AH+L)

To prevent side-channel timing attacks, this procedure must be performed in constant
time. For that end, in order to avoid conditional statements that could result in a variable
execution time, we calculate conditional masks from the values of cA and cB and apply
them to the words of AH+L +BH+L:

1 //mask calculation
2 sub M_B, xzr, c_A
3 sub M_A, xzr, c_B

1 //word masking
2 and A_HL_0, A_HL_0, M_A
3 and A_HL_1, A_HL_1, M_A
4 ...
5 and A_HL_n/2, A_HL_n/2, M_A
6 and B_HL_0, B_HL_0, M_B
7 and B_HL_1, B_HL_1, M_B
8 ...
9 and B_HL_n/2, B_HL_n/2, M_B

We then combine the carry bits and add the masked values together. The carry bit
of this sum is then added to the combined carry bits:

1 //combined carry
2 and c_AB, c_A, c_B

1 //add masked values
2 adds sum_AB_0, A_HL_0, B_HL_0
3 adcs sum_AB_1, A_HL_0, B_HL_0
4 ...
5 adcs sum_AB_n/2, A_HL_n/2, B_HL_n/2
6 adc c_AB, c_AB, xzr

This procedure has the following effect: if a carry bit has value 1, the resulting
mask has value 0xfff...ff, therefore the masked value would remain unchanged.
Otherwise, if a carry bit has value 0, the resulting mask has value 0x000...00 and the
masked value would be set to 0. By adding these masked values of AH+L and BH+L

together, the resulting sum would be as follows

1. cA = 1, cB = 1→ sum ABH+L = AH+L +BH+L

2. cA = 1, cB = 0→ sum ABH+L = BH+L

3. cA = 0, cB = 1→ sum ABH+L = AH+L

4. cA = 0, cB = 0→ sum ABH+L = 0

We can then proceed to calculate (AH +AL) · (BH +BL) and add the masked sum shifted
by 2n/2 words to this result. We then conclude this calculation by adding the carry of this
sum to the combined carry cAB.

Then, we calculate the product AL ·BL. The lowest order n/2 words of the result
consist in the n/2 lowest order words of the full product C and can be directly stored. We
then compute the subtraction (AH +AL) · (BH +BL)− (AL ·BL) and subtract a possible
borrow from this calculation from cAB. Next, we calculate the product AH ·BH , compute
(AH + AL) · (BH + BL)− (AL · BL)− (AH · BH) and subtract a possible borrow from
this calculation from cAB.

Finishing our calculations, we add the n/2 highest order words of AL · BL to the
n/2 lowest order words of (AH +AL) · (BH +BL), and add the n/2 lowest order words
of AH · BH to the n/2 highest order words of (AH + AL) · (BH + BL). We also must
adequately handle the carry propagation between these sums and also add the combined
carry cAB to the next word after (AH +AL) · (BH +BL). With this, the full product C is
calculated using additive Karatsuba multiplication.

4.2. Operand Scanning

The Operand Scanning method (also referred as Schoolbook or Row-wise) is a straight-
forward way of performing large integer multiplication. In this method we fix a word
B[j] and iterate through the words of A while performing the multiplication A[i]× B[j],
for 0 ≤ i, j < n, saving the intermediate values and adding them to the appropriate ac-
cumulators corresponding to the words of C. The result of the A[i]×B[j] multiplication
consists in a low part L(A[i] × B[j]) and a high part H(A[i] × B[j]) (respectively, the
first and second words of the full result). The low part must be added to the accumulator
for the word C[i + j] and the high part must be added to the accumulator for the word
C[i+ j + 1].

In this method, we load the n words of A and keep all of them in registers, load
at least one word of B for the current iteration and store the intermediate results in n
registers that are stored in a ring buffer; i.e., once the current lowest order word of C
is calculated, the result is stored and the corresponding accumulator is used to store the
result of the next highest order word of C.

Implementation: in our Operand Scanning implementation, we sought to maximize
the instruction level parallelism by interleaving multiplication instructions with addition
and memory accesses while minimizing the register dependency between these instruc-
tions. For SIKEp434’s multi-precision multiplication, elements of Fp are unsigned inte-
gers, each being represented by seven 64-bit words. Thus, the elements A and B of the
multiplication are represented as A = (A6, A5, · · · , A0) and B = (B6, B5, · · · , B0), with
A6 representing the word with the most significant bits and A0 the least significant bits.
We begin the multiplication as follows.

For the p434 multiplication with Operand Scanning, we use one register for the
current B operand, seven registers for the words [A0, · · · , A6], three registers for the
partial results of the multiplication [PART0, · · · ,PART2] and seven registers that are used
as the accumulators for the values of C named [ACC0, · · · ,ACC6]. These accumulators
are then cycled once a calculation of a word of C is finished.

For this procedure, we begin by loading B0 into the register B. This register will

1 ldr B, [ADDR_B0] // B <- B0
2 sub sp, sp, (8*N_REG)
3 ldp A0, A1, [ADDR_A0]
4 str PART0, [sp, 0]
5 mul ACC0, A0, B // ACC0 <- L(A0 x B0)
6 ldp A2, A3, [ADDR_A2]
7 mul ACC1, A1, B // ACC1 <- L(A1 x B0)

be used to store the word of B being processed during the current iteration of the multi-
plication. We then proceed to subtract 8 · N REG, where N REG is the number of registers
we want free, ranging from x19 to x30, and store the contents of this register into the
stack, as these registers need to be returned to their original state when the function is
finished. We interleave this procedure and the loading of the next words of A with the
beginning of the multiplication A · B, given by the low parts of A0 × B0 and A1 × B0,
named L(A0 ×B0) and L(A1 ×B0).

1 mul PART0, B1, A0 // PART0 <- L(A0 X B1)
2 mul PART1, B1, A1 // PART1 <- L(A1 X B1)
3 adds ACC1, ACC1, PART0 // C[1] <- C[1] + L(A0 X B1)
4 mul PART2, B1, A2 // PART2 <- L(A1 X B2)
5 adcs ACC2, ACC2, PART1 // C[2] <- C[2] + L(A1 X B1) + carry

We seek to maintain the interleaving of multiplication instructions with addi-
tion instructions whenever possible, while also minimizing the register dependencies
that could cause a pipeline stall. Observe that in this step of the computation, C1 =
H(A0 ×B0) +L(A1 ×B0) +L(A0 ×B1) finishes calculating once L(A0 ×B1) is accu-
mulated into ACC1.

1 mul PART0, B1, A6 // PART0 <- L(A6 X B1)
2 adcs ACC6, ACC6, PART2 // C[6] <- C[6] + L(A5 X B1) + carry
3 str ACC1, [ADDR_C, 8] // store C[1]
4 umulh PART1, B1, A0 // x18 <- H(A0 X B1)

Since C1 was fully calculated, we interleave the storing of this word with the
remaining calculations.

1 umulh PART0, B1, A5 // x2 <- H(A5 X B1)
2 adcs ACC6, ACC6, PART2 // C[6] <- C[6] + H(A4 X B1) + carry
3 ldr B2, [ADDR_B, 16] // load B2
4 adcs ACC0, ACC0, PART0 // C[7] <- C[7] + H(A5 X B1) + carry

When all the calculations involving a word of B are finished, we replace it while
interleaving the load operation with arithmetic operations. We repeat this pattern of inter-
leaving multiplies, additions and memory accesses throughout the remaining iterations of
the multi-precision multiplication, as well as the cycling between the accumulator regis-
ters, until the full product C is calculated.

4.3. Product Scanning
The Product Scanning method, also known as Comba or Column-wise multiplication, is
a multi-precision multiplication method that aims to reduce the number of intermediate
results that need to be stored throughout the calculation.

In this method, we prioritize the calculation of all the intermediate products that
are part of a word C[i] (for 0 ≤ i < n) and immediately add the results on an accumulator
corresponding to the word C[i]. The carry bits generated during the accumulation are
added to the accumulator that corresponds to the word C[i+ 1]. Once C[i] is fully calcu-
lated, the result is stored and we proceed in a similar manner to calculate and accumulate
the intermediate products of the word C[i+ 1].

Implementation: for the implementation of the Product Scanning method, we exem-
plify it with a small instance using two word elements A = [A1, A0] and B = [B1, B0] for
a product C = A · B = [C3, C2, C1, C0]. The product scanning method focuses on fully
calculating the words of C in order to reduce the number of intermediate accumulators
for these words. We can see that each word of C consists of the following sums:

C0 = L(A0 ×B0),

C1 = H(A0 ×B0) + L(A1 ×B0) + L(A0 ×B1),

C2 = H(A1 ×B0) +H(A0 ×B1) + L(A1 ×B1),

C3 = H(A1 ×B1).

We start by loading the operands and performing the initial multiplications.

1 // loading operands
2 ldp A0, A1, [ADDR_A, 0]
3 ldp B0, B1, [ADDR_B, 0]

1 //first multiplications
2 mul C0, A0, B0
3 mul C1, A1, B0
4 umulh C2, A1, B0
5 umulh C3, A1, B1

We then proceed to store the first word C0 that was already fully calculated and
continue with the calculation of C1, while we calculate the partial multiplications for C2.
The word C1 can then be stored as we progress to the calculation of C2 and propagate the
carry bits to C3, finishing the calculation.

1 // store C0 and calculate C1
2 mul TMP0, A0, B1
3 umulh TMP1, A0, B0
4 adds C1, C1, TMP0
5 str C0, [ADDR_C]
6 adc C2, C2, xzr
7 mul TMP0, A1, B1
8 adds C1, C1, TMP1
9 adc C2, C2, xzr

10 umulh TMP1, A0, B1

1 // calculate C2 and propagate
2 // carry
3 adds C2, C2, TMP0
4 adc C3, C3, xzr
5 str C1, [ADDR_C, 8]
6 adds C2, C2, TMP1
7 adc C3, C3, xzr
8 stp C2, C3, [ADDR_C, 16]

4.4. Modular reduction
To perform a modular multiplication over a field Fp, the multiplied values must be re-
duced modulo p through a modular reduction. This procedure is often done in two man-
ners: interleaved reduction or lazy-reduction. For the interleaved reduction, we perform
the modular reduction on the intermediate products during the calculation of the multipli-
cation and we obtain the fully reduced value at the end. For the lazy-reduction, the full
multiplication product is calculated first and then reduced. This method often produces
savings in the modular multiplication, as the number of registers are limited and the in-
terleaved method often demands more memory accesses to retrieve the modulus of the
reduction.

Implementation: in our implementation, we used Montgomery reduction as our mod-
ular reduction method with lazy-reduction. The implementation follows the current most
efficient method for computing the modular reduction in SIKE, given by the REDC al-
gorithm for a λ-Montgomery-friendly modulus presented in [Faz-Hernández et al. 2017]
with the shifted modulus representation of [Seo et al. 2020]. For the internal multipli-
cations, we used the Operand Scanning method following the instruction interleaving
presented in Section 4.2.

Taking SIKEp434’s modular reduction as an example, its prime p is a 3-
Montgomery-friendly prime. We chose B = 3 for the REDC algorithm and we perform
two 192x256-bit multiplications and one 64x256-bit multiplication, shifting the position
of the 64-bit operand by two words. These multiplications were implemented using the
Operand Scanning method, while also interleaving multiplies with additions to the inter-
mediate result T . For p434’s reduction, we obtained better results without the use of the
shifted representation. For higher security levels, we used the shifted representation and
also interleaved the shift correction of intermediate products with the load operations of
the operands for the next intermediate multiplication.

5. Results

For each SIKE security parameter set, we implemented the different techniques for multi-
precision multiplication and collected benchmarks on four different platforms, represent-
ing a range of ARMv8 cores. In this section we describe our experiments, present bench-
mark results for our implementations of multi-precision multiplication and Montgomery
reduction, and analyze our results.

5.1. Experiments

For each set of SIKE security parameters, we implemented two handcrafted A64 assembly
procedures for the multi-precision multiplication, one implementing the Operand Scan-
ning method and the other implementing the two-level Karatsuba Comba (Product Scan-
ning) method, both using the instruction interleaving technique described in Section 4.
We compare our implementation with the current SIKE reference implementation for
ARMv8, present in the Microsoft PQCrypto-SIDH 3.5 version library, which also im-
plements the two-level Karatsuba Comba method. Our implementation of this method
differs in the instruction interleaving methods and the use of the mov instruction to SIMD
registers as a substitute to some intermediate store and load routines.

For the Montgomery reduction implementation, we used the Operand Scanning
method for the internal multiplications as presented in Section 4 and compare our im-
plementation with the reference reduction implementation present in PQCrypto-SIDH,
which uses the Comba method for its internal multiplications.

The performance of our implementations were measured using the Google Bench-
mark framework on four different devices: an Orange Pi WinPlus with four ARM Cortex-
A53 running at a clock frequency of 1008 MHz; an NVIDIA Jetson Nano with four ARM
Cortex-A57 running at 1479 MHz; a Raspberry Pi 4 with four ARM Cortex-A72 running
at 1500 MHz; and an Apple Macbook Air featuring the Apple M1 chip, with eight cores
(four performance cores and four efficiency cores) with a maximum CPU clock rate of
3.2 GHz.

Table 2. Multi-precision multiplication benchmarks

Core
Operand
Scanning

(ns)

2-level
Karatsuba
Comba (ns)

Reference
(ns)

Operand
Scanning

(ns)

2-level
Karatsuba
Comba (ns)

Reference
(ns)

p4
34

A53 385 359 364

p5
03

512 413 416
A57 232 182 182 304 210 211
A72 229 176 180 299 206 208
M1 15.8 21.7 22.7 20.7 25.6 25.7

p6
10

A53 778 744 742

p7
51

1195 987 1014
A57 474 375 376 697 477 478
A72 467 366 366 673 461 464
M1 32.2 39.0 38.7 46.6 51.8 51.7

Table 3. Modular reduction benchmarks

Core
Operand
Scanning

(ns)

Reference
(ns)

Operand
Scanning

(ns)

Reference
(ns)

p4
34

A53 249 271

p5
03

319 342
A57 133 133 167 167
A72 131 131 165 162
M1 9.46 11.9 16.3 17.7

p6
10

A53 457 514

p7
51

702 751
A57 261 257 368 376
A72 257 252 361 366
M1 24.0 25.8 32 35.2

For our benchmarks, we compiled our implementations of the multiplication
and reduction procedures alongside the ARMv8 field arithmetic implementation from
PQCrypto-SIDH on each target platform. We benchmarked the calls to the multiplica-
tion procedures with both implemented techniques and the reference implementation, and
present the results on Table 2. For the reduction procedure, we benchmarked our reduc-
tion implementation with Operand Scanning and the reference implementation, present-
ing our results on on Table 3. In the Apple M1, we also benchmarked our implementation
of the SIKE KEM with Operand Scanning for both the multiplication and reduction pro-
cedures and compared it to the PQCrypto-SIDH implementation, presenting our results
on Table 4.

5.2. Discussion

For the multi-precision multiplication, we can observe that across all security levels in the
Apple M1, the Operand Scanning technique results in the best performance with speedups
of 43%, 24%, 20% and 10% for SIKEp434, SIKEp503, SIKE p610 and SIKEp751,
respectively, when compared to the reference implementation. We can also observe
a similar trend for the Montogmery reduction with internal multiplications using the
Operand Scanning technique in the Apple M1, with a 25% performance improvement
for SIKEp434, 8% for SIKEp503, 7% for SIKEp610 and 10% for SIKEp751.

On the other hand, for the multiplication on the Cortex-A family, the two-level
Karatsuba Comba technique presented the best results, which comes in agreement with

Table 4. SIKE benchmarks on the Apple M1

Operand
Scanning

(µs)

Reference
(µs)

Operand
Scanning

(µs)

Reference
(µs)

p4
34

Key
Generation 1024 1316

p5
03

Key
Generation 1725 1864

Encapsulation 1673 2149 Encapsulation 2809 3073
Decapsulation 1789 2297 Decapsulation 3008 3271

p6
10

Key
Generation 3120 3576

p7
51

Key
Generation 5526 5979

Encapsulation 5783 6772 Encapsulation 8903 9693
Decapsulation 5887 6653 Decapsulation 9606 10412

the approach taken in the reference SIKE ARMv8 implementation. For the multi-
precision multiplication, the more aggressive instruction interleaving and use of the SIMD
registers for intermediate storage presented small performance improvements of 2% or
less.

For the Montgomery reduction in the Cortex-A family, we could observe consis-
tent improvements with Operand Scanning in the in-order Cortex-A53 processor, with
performance improvements ranging from 6% to 8%. Comparing the performance of the
SIKE KEM implementations in the Apple M1, the Operand Scanning method provided
performance improvements of 28% for SIKEp434, 8% for SIKEp503, 14% for SIKEp610
and 8% for SIKEp751 across the Key Generation, Encapsulation and Decapsulation pro-
cedures.

6. Conclusion

In this paper, we presented an evaluation of multi-precision multiplication techniques for
the ARMv8 implementation of SIKE across its different security levels. We performed
this evaluation on different ARMv8 platforms, including processors from the Cortex-A
family and the Apple M1 SoC.

We observed that our implementation of the Operand Scanning technique for the
multiplication resulted in significant performance improvements in the Apple M1 when
compared to the reference implementation. For the Cortex-A family of processors, the
Product Scanning (Comba) approach with two-level Karatsuba multiplication performed
better. Our implementation of the two-level Karatsuba Comba, with more careful in-
struction interleaving and use of the SIMD registers as temporary storage for intermedi-
ate values, matched the reference implementation’s performance on most cases. For the
Montgomery reduction with Operand Scanning, we observed consistent improvements
for the Apple M1 and Cortex-A53 when compared to the reference implementation.

From the results, we infer that the observed performance improvements could
be originated from a better synergy of the straightforward Operand Scanning implemen-
tation with the Apple M1 out-of-order execution and its significant number of reorder
buffers. We leave this observation as a future work and also propose evaluations of differ-
ent approaches for multi-precision multiplication such as a hybrid between Operand and
Product Scanning, as well as the evaluation of the Karatsuba multiplication with different
levels and multiplication techniques. We also point to the development and evaluation of

different techniques that fully take advantage of the new ARMv9 architecture.

Acknowledgments
Part of results presented in this work was obtained through the “Post-Quantum Cryptog-
raphy” project, funded by Samsung Eletrônica da Amazônia Ltda., under the Brazilian
Informatics Law 8.248/91.

References
Castryck, W. and Decru, T. (2022). An efficient key recovery attack on sidh (preliminary

version). Cryptology ePrint Archive.

Costello, C., Longa, P., and Naehrig, M. (2016). Efficient algorithms for supersingular
isogeny Diffie-Hellman. In Annual International Cryptology Conference, pages 572–
601. Springer.

Couveignes, J.-M. (2006). Hard homogeneous spaces. Cryptology ePrint Archive.

De Feo, L., Jao, D., and Plût, J. (2014). Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. Journal of Mathematical Cryptology, 8(3):209–
247.

Faz-Hernández, A., López, J., Ochoa-Jiménez, E., and Rodrı́guez-Henrı́quez, F. (2017).
A faster software implementation of the supersingular isogeny Diffie-Hellman key ex-
change protocol. IEEE Transactions on Computers, 67(11):1622–1636.

Hofheinz, D., Hövelmanns, K., and Kiltz, E. (2017). A modular analysis of the Fujisaki-
Okamoto transformation. In Theory of Cryptography Conference, pages 341–371.
Springer.

Jalali, A., Azarderakhsh, R., Kermani, M. M., Campagna, M., and Jao, D. (2019). ARMv8
SIKE: Optimized supersingular isogeny key encapsulation on ARMv8 processors.
IEEE Transactions on Circuits and Systems I: Regular Papers, 66(11):4209–4218.

Jalali, A., Azarderakhsh, R., Kermani, M. M., and Jao, D. (2017). Supersingular isogeny
Diffie-Hellman key exchange on 64-bit ARM. IEEE Transactions on Dependable and
Secure Computing, 16(5):902–912.

Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., and Mozaffari-Kermani, M. (2016).
NEON-SIDH: Efficient implementation of supersingular isogeny Diffie-Hellman key
exchange protocol on ARM. In International Conference on Cryptology and Network
Security, pages 88–103. Springer.

NIST, N. (2017). Post-Quantum Cryptography. https://
csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization.

Rostovtsev, A. and Stolbunov, A. (2006). Public-key cryptosystem based on isogenies.
Cryptology ePrint Archive.

Seo, H., Sanal, P., Jalali, A., and Azarderakhsh, R. (2020). Optimized implementation
of SIKE round 2 on 64-bit ARM Cortex-A processors. IEEE Transactions on Circuits
and Systems I: Regular Papers, 67(8):2659–2671.

Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM review, 41(2):303–332.

