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Abstract. A significant amount of IoT devices are essentially powered by bat-
teries and implements mechanisms to save energy, such as the sleep mode. The
decision-making process deployed in IoT devices to enter to and exit from sleep
mode can be exploited by remote users through sleep deprivation attacks, reduc-
ing the battery’s lifetime and causing a denial of service. This paper presents
a new defensive technique to mitigate and prevent sleep deprivation attacks. It
is based on the local battery consumption data, that is an input to control the
sleep mode. Performance evaluation carried out in a system based on an ESP32
showed that the technique could increase the battery’s lifetime by 51.2% in a
scenario under a sleep deprivation attack.

1. Introduction
The Internet of Things (IoT) comprises heterogeneous devices (e.g., movement sensors,
baby monitors, cameras, smartwatches, smartphones) interconnected through different
communication technologies. Estimates show that there will be over 10 billion con-
nected IoT devices by the end of 2021 and this number tends to increase in the following
years [Statista 2022]. A significant part of these devices is powered essentially by batter-
ies. The IoT battery market points out a growth from USD 9.2 billion in 2020 to USD 15.9
billion in 2025 [Markets and Markets 2020], attracting the attention to design efficient and
optimized solutions for using batteries in IoT devices.

IoT devices are prone to attacks [Lima et al. 2009, Rodriguez and Batista 2020].
These devices usually run software developed by third-parties and they are connected to
the Internet, making them easy targets due their limitations in design, implementation
and resources, such as batteries. A well-known attack against IoT devices lies in sleep
deprivation [Pirretti et al. 2006, Nguyen et al. 2019]. An attacker creates means to
generate an unwanted increase in battery consumption and prevent the device to switch to
the sleep mode. This counters the device to save energy, reducing its active lifespan.

Sleep deprivation attacks become critical when applied against sensitive devices,
such as wearable personal fitness trackers (used for personal telemetry) and implantable
medical devices (IMD), because they continuously monitor physical signs, and failures
can result in serious physical harm to the user. There are defensive techniques against
sleep deprivation attacks specific to these sensitive devices. Some of them involve replen-
ishing batteries [Siddiqi et al. 2021], which may not be feasible in all battery constrained
systems. Some techniques rely on external software or hardware to reduce the chances of
a successful attack [Abdullah et al. 2019] [Hei et al. 2010] and others propose detection



models based on network analysis or network architecture [Monnet et al. 2015] [Alam-
palayam and Kumar 2003]. There are also proposals of Intrusion Detection Systems
(IDS) oriented to specifically detect battery exhaustion attacks [Nash et al. 2005] [Jacoby
and Davis 2004], but they do not consider real low-powered devices used in IoT neither
consider a precise estimation of power consumption.

This paper presents a technique, based on attack and security models developed
by us, that handle the sleep mode and battery usage to manage energy drain and mitigate
sleep deprivation attacks. The technique manages to have a sleep mode that cannot be
interrupted by radio communication or programmable sensor/device, and real-time en-
ergy consumption data from the battery. Data consumption is recorded into a moving
average array which calculates the average power consumption. If the power consump-
tion surpasses a predefined threshold, the device calculates and enters to the sleep mode
for the time it needs to rectify its consumption. Compared to related works [Hei et al.
2010, Monnet et al. 2015, Alampalayam and Kumar 2003, Abdullah et al. 2019, Nash
et al. 2005, Jacoby and Davis 2004], the proposed technique runs directly on low-power
sensors, without depending on external agents, regardless a network architecture to pre-
vent a sleep deprivation attack of having effect on the sensor battery lifetime.

Results from experiments with an ESP32, a popular low-power microcontroller,
show that the proposed technique keeps the battery of the microcontroller within its ex-
pected lifetime and that ESP32 was able to regulate its own sleep. For instance, when
ESP32 had the WiFi Power Saving mode enabled and under a sleep deprivation attack,
battery has depleted along approximately 4 hours and 29 minutes in a scenario in which
the proposed technique is employed, compared to approximately 2 hours and 58 minutes
in the original implementation of ESP32. This means that the proposed technique has
increased the ESP32 lifetime of 51.2%.

This paper proceeds as follows. Section 2 overviews the related works. Sections 3
and 4 describe the followed methodology and the proposed solution. Section 5 details
the performance evaluation experiments and results. Section 6 concludes the paper and
highlights future directions.

2. Related Works

Abdullah et al. [Abdullah et al. 2019] wrote about security challenges in the Percep-
tion, Network and Application layers of IoT architecture. They also provided security
requirements and techniques for each layer. The perception layer, for instance, presents
as challenges: Unauthorized Access to the Tags, Tag Cloning, Eavesdropping, Spoofing,
and Radio Frequency (RF) Jamming. The network layer is prone to Sybil Attack, Sleep
Deprivation, Denial of Service, Malicious Code Injection, and Man-in-the-Middle. The
application layer presents vulnerabilities to Malicious Code Injection, Denial of Service,
Spear-Phishing, and Sniffing. Abdullah et al. described that sleep deprivation attacks can
occur in the Network layer, since sensors in a Wireless Sensor Network (WSN) are pow-
ered by limited lifetime batteries and nodes are restricted to sleep to extend their lifetimes.
A sleep deprivation attack can lead to an early shutdown on a node, limiting the capabil-
ities of a WSN. The work in [Abdullah et al. 2019] presents as a solution against all of
these attacks, a blockchain technology. According to the authors, this would keep secu-
rity, confidentiality, integrity and proper authentication in communications. Similar to our



work, Abdullah et al. proposed a solution to mitigate sleep deprivation, but ours will not
be based on blockchain. We focused on a solution based on local decisions, without need
to trust in external agents to mitigate the attack.

In WSNs, the denial of service attacks can affect the network after the attack, not
only during the attack, because some sensors can be low-powered and have this energy
completely depleted. Depending on the network’s topology, this unplanned shutdown of
some sensors can affect the availability of the network. In [Monnet et al. 2015], Monnet
et al. proposed to use traffic monitoring agents in a clustered WSN to detect potential
DoS attackers in the network. These agents need to be trusted, and they need to be elected
considering the residual energy of all the nodes inside a cluster to prevent the election
itself from being responsible for a DoS. To guarantee a fair election, the authors propose
an interactive process that imposes a load balancing between all the nodes and evaluates
information obtained from previous communications to avoid suspicious nodes’ election.
When compared to a (pseudo)-random election, the proposed process was able to increase
the lifetime of the network and to avoid that compromised nodes were always selected
as a monitoring agent (In the experiments, these compromised nodes were elected only
during 12% of the simulation time). Different from our work, Monnet et al. did not
focus on mitigate the attack. Besides, their solution requires external communication
among the nodes during the process of detection. Our proposal does not depend on such
communications and take all the decisions locally.

Hei et al. [Hei et al. 2010] detailed a resource depletion (RD) attack, its effects
on Implantable Medical Devices (IMD), and a solution based on machine learning to
detect such attacks. The studied attack is forced authentication, which is triggered by
an external reader attempting to connect to the IMD. The authentication process on the
device requires communications and computations to be performed, consuming battery
power and storage, with every authentication attempt being logged on the device. As
a solution, it was proposed to shift the authentication process towards a more capable
device, a cellphone, and to create SVM classification models based on the patient’s IMD
access pattern. The proposed models, both linear and non-linear, achieved a detection
rate of over 90% of the RD attacks. Different from our proposal, this solution does not
mitigate the attacks. Besides, our proposal does not depend on a second device.

Alampalayam et al. [Alampalayam and Kumar 2003] conceptualized an adaptive
security scheme against the denial of service threat in mobile agent (MA) systems based
on wireless ad hoc network environment. They proposed an Adaptive Security Model
(ASM) that addresses protection to and from agents and hosts, provides continuous mon-
itoring, detection and appropriate protection against different active and passive attacks,
such as denial of service, packet mistreatment and routing attacks. It is not restricted to
a specific type of network domain, and it adapts within a framework to different types
of network and application providing flexibility to users for specifying their desired se-
curity prevention policies under a given attack scenario. The ASM is composed by three
frameworks, Formulation of Vulnerability Metric Framework, System State Characteriza-
tion and Vulnerability Level Evaluation Framework and Protection Framework. The work
simulated the model on an ad hoc network using GloMosim and MATLAB and trained a
neural network to fit the security policies and security level specified by users based on
network metrics when a denial of service attack is carried out. Different from our work,



its results focus primarily on detection, not on mitigating threats.

IDSs oriented to detect anomalies in the battery consumption were previously
proposed in [Nash et al. 2005] and [Jacoby and Davis 2004]. In [Nash et al. 2005], the
authors used the relation between energy consumption and system load to propose an IDS
that detects battery exhaustion attacks. A linear regression model based on parameters
such as CPU load and disk accesses was designed. However, the model is not precise and
was derived considering a laptop. In our proposal, we consider real low-powered devices
used in IoT systems and use specialized sensors to retrieve more precise power consump-
tion values. The battery-based intrusion detection (B-bid) presented in [Jacoby and Davis
2004] is an early warning system based on battery consumption that runs locally in the
device. Similar to [Nash et al. 2005], the proposal does not consider low-powered devices
and relies on an imprecise estimation of the power consumption.

3. First Step: The Attack Model
The first step towards the mitigation of a sleep deprivation attack against a sensor powered
by battery was to model the attack. Modeling the attack allows its understanding, which
is employed to guide a solution. We describe the sleep deprivation attack using three
different modeling techniques [Al-Mohannadi et al. 2016]: Diamond Model, Kill Chain
and Attack Graph. These techniques focus on different aspects of attack modeling and
can be combined to complement each other. The Diamond Model focuses on mapping
the motivations behind the attacks; the Kill Chain details the steps that make the attack
possible; and the Attack Graph gives an overview of the attack in which the damages
caused become more evident. The next subsections describe the sleep deprivation attack
following each one of those techniques.

3.1. The Diamond Sleep Deprivation Attack Model
In a nutshell, the attack model following the Diamond technique comprises the Adversary,
Capability, Infrastructure and Victim components. Their relationship follows: (i) the
Adversary uses Infrastructure and develops Capability; (ii) the Capability exploits the
Victim; (iii) the Infrastructure connects to the Victim. In this model, the motivations are
more important than the actions taken to generate a security incident.

The diamond presented in Fig. 1 illustrates the key components behind a sleep
deprivation attack. The motivation, traced by the Attack Path, may connect to other dia-
monds in a multiple stage attack, but in our case, it simply shows that the motivation may
be a vulnerable infrastructure. The role of each component is depicted below:

• Adversary: orchestrates attacks in which they use a compromised part of a larger
system (e.g., sensors, IMD, wearables) to reinforce the damage or control the
Victim. Sleep deprivation may not have any immediate effect. An incident could
take effect over weeks or months.

• Capability: usually sleep deprivation would not be performed over the Internet,
since the target devices should have their traffic secured over a firewall. The at-
tack is most likely to be carried out by another RF-able device in somewhat close
proximity to the sensors. In case of WiFi, the proximity would be under 100 me-
ters in outdoor communications. This device would send specially crafted radio
messages to the target sensors, preventing them from entering sleep. The attack
would be done over the course of weeks or months.



• Infrastructure: RF-able devices and their connected networks are necessary for
the attack. The device must also be able to enter sleep and must have a battery-
restricted energy supply. The Adversary could use some basic knowledge about
the network to replay and spoof messages to keep the attack.

• Victim: in case of IMDs and Wearables, the victim may be a Politically Exposed
Person (PEP) or the company, and services that control the devices. The company
responsible for the Infrastructure as well as the population being serviced by the
systems which the sensors are part of are the targets.

Figure 1. Illustration of the diamond sleep deprivation attack model

From the diamond, one infers that the attack path may jump from the Victim’s
sensor to another target, most likely an IoT system infrastructure and that a battery con-
strained RF-able sensor may be all that is needed to carry out an attack.

3.2. The Kill Chain Sleep Deprivation Attack Model

The Kill Chain technique has seven steps, i.e., the attackers need to go through those
steps to achieve their goals. The seven steps are: reconnaissance, weaponization, delivery,
exploitation, installation, command and control, and action on objectives. It focuses on
establishing the actions taken to generate an incident. This technique represents common
steps in an attack and their relationship, different from the Diamond Model, which focuses
on motivations between attacker and victim. This representation is useful in stopping an
attack flow as the disruption of any of the steps will cause the chain to be unsuccessful
and the attacker to not reach his/her objectives. Each step of the Kill Chain technique
considering the sleep deprivation attack is described as follows:



1. Reconnaissance: the attacker searches about the company that owns the sensors
and is knowledgeable about where the sensors are located and their accessibility.
The attacker would also know the routine of the team members in charge of the
sensors maintenance and their reaction towards battery depletion. If the sensor is
wearable or an IMD, the attacker also has information about the person carrying
the sensor.

2. Weaponization: the attacker programs devices to continuously send specially
crafted radio signals to keep the sensor from sleeping. If battery constrained,
these devices should have a longer lifetime than their target.

3. Delivery: devices are placed by the attacker in proximity to their targets and do
not need any interaction from the victim to start the attack. The victim would not
perceive the attack at its beginning.

4. Exploitation: devices start to keep the sensors out of sleeping and battery life
begins to degrade. Personnel monitoring the sensor may notice that its battery is
draining faster.

5. Installation: battery is significantly drained. The next step, realized by the Vic-
tim, would be to change the sensor battery, if that is possible, or adapt the system
which the sensor is part of to work without it.

6. Command and Control: the attacker would not be able to control any resources
in this attack, but s/he may intentionally disrupt the system which the sensor inte-
grates to leverage an automatic response.

7. Action on objectives: the victim is forced to take an action which the attacker
was expecting, opening new unwanted attack vectors.

The Victim can not see how the attacker attempts an attack. It could only be
anticipated from the kill chain technique that the attacker has taken those steps. Going
reverse order to the chain, from the attack, could become clear that the attacker took
time to search about the devices before acting. Once the attack is recognized, one can
understand all the steps and find patterns to identify or prevent it.

The Kill Chain shows us the steps that an attacker took to reach his/her goals,
meaning that if we can prevent any of these steps, we prevent the attack from reaching a
successful outcome. If we stop the battery from draining at an increasing rate, the attack
should have no effect.

3.3. The Sleep Deprivation Attack Graph

This technique provides an overview of the attack represented by paths taken to its suc-
cess. Much like the Kill Chain, it describes the steps taken to execute an attack with the
advantage of providing relations between the items modeling the attack. Fig. 2 illustrates
the attack graph model for the Sleep Deprivation attack. The oval shapes denote targets
and the arrows show the relationships between actors and components, both indicated by
rectangles. The attacker seeks to damage or leverage the target company infrastructure
or devices. S/He does so by researching the infrastructure targeting sensors. The attack
on the sensors compromises batteries and affect the IoT system. This damages the com-
pany infrastructure, but it also prompts an action from the maintenance team, which the
attacker may use to trigger another exploitation. The attacker may intercept credentials
that the maintenance team uses for their activities, for instance.



Figure 2. Illustration of the Sleep Deprivation Attack Graph

The attack graph shows us that if we stop the battery from draining at an increasing
rate, the company’s infrastructure or devices will not be damaged or exploited.

4. Second Step: The Security Model
Attack modeling helps us to provide mitigation solutions to stop attacks from being suc-
cessfully carried out. There can be many mitigation or security solutions to one kind
of attack, we based our solution directly on the sensor, because it would be architecture
agnostic, it would work for any sensor network that has battery powered sensors, and it
would not rely on a centralized management system, such as an operations center for a
facility. The solution adds some computation to be done on the side of the sensor, how-
ever it consists of collecting sensor data and calculating a moving average which do not
make its implementation resource usage intensive, nor it adds computational lag to the
sensor. The proposed solution adds a requirement for the sensor to have its own power
consumption data, not adding much complexity to sensor or battery circuit.

With the knowledge obtained by the attack model, the next step is to provide a
security model. Babar et al. [Babar et al. 2010] presented a generic security model for IoT
considering privacy, security and trust. This is a conceptual approach, however, focusing
more on the data being processed by IoT devices and systems than the software running
to keep those devices operational. We define a security model that enforces a policy and
dictates how battery resources should be used. The policy specifies a threshold in power
consumption which the device must not surpass. If the consumption surpasses this limit,
the device recalculates and enters in a period of sleep to preserve power.



The model balances availability, power consumption and sleep. The device must
remain available for communications for a given period of time. It will not be always
available due to sleep, but these availability periods should be informed by the device to
the rest of the system it is part of. There is a limit specified by a policy about how much
energy the device can consume in a given amount of time. This limit is employed to ac-
tivate the sleep mode whenever the consumption exceeds the limit. Sleep mode will be
used to control the device power consumption also making it unavailable for communica-
tions. Before entering in sleep mode the device must inform for how long its sleep cycle
will be in effect so that the system it is part of may deal with its unavailability.

The security model defined for the sleep deprivation attack can be translated to
an algorithm (Algorithm 1) run by the device to control its sleep cycle based on energy
consumption. Algorithm 1 presents the sleep cycle to control the device sleep, ensuring
that power consumption stays bellow what is defined in the security policy. A set of vari-
ables assists in the policy management. Their values must be beforehand specified by the
applied policy and device specifications. Respectively, these variables are defined as fol-
lows. MAS, the moving average size, sets the number of samples of power consumption
the moving average array holds. It must be larger than 2. SAMPLING PERIOD is the
period of time when power consumption measures are collected. POLICY PERIOD
is the amount of time the device runs until a policy check is made. POLICY POWER
is the threshold that the device must not pass and is verified from time-to-time. It must not
be lower than the value of SLEEP POWER. SLEEP POWER is the device power
drain when in sleep mode. It should remain constant as processing power is only used to
keep states and program variables.

The algorithm works by collecting power measurements from the sensor and stor-
ing them to a moving average array, each time the power is measured, the average power
variable avgpower is updated, as well as the avg array. When a POLICY PERIOD
amount of time passes, the average power is compared to POLICY POWER and if the
average power is found greater, both the moving average at avg and avgpower are up-
dated until the average power value goes below the one defined by POLICY POWER,
thus the sleep time is calculated as how many iterations it takes to decrease the consump-
tion by entering sleep mode. Lastly the device updates the time variable and enters sleep
mode for a period defined by sleep time. With this algorithm, the device is able to keep
its battery life as specified by the policy.

5. Experiments and Results
In order to apply the security model and test its effectiveness, we have designed a cir-
cuit using an ESP32 [Espressif Systems 2022] microcontroller in which its total power
drain is measured and used to calculate the sleep time of the sensor, i.e., the ESP32 itself.
It follows the Algorithm 1 proposed by us to enforce the policy defined by the security
model. The experiment comprises ESP32, model ESP-WROOM-32 with a 802.11n WiFi
antenna, an INA219 power monitor, a 3.2V LiFePO4 battery and a laptop to program the
ESP32 and carry out attacks. The sensor firmware was built using Arduino IDE with bi-
naries provided by Espressif and runs a PubSubClient MQTT client, version 2.8.0, which
publishes the power measurements to a mosquitto MQTT broker, version 2.0.10, on the
laptop. The laptop OS is Arch Linux with 4.19.20-1-vfio-lts kernel and the laptop’s WiFi
antenna is Qualcomm Atheros QCA9377 802.11ac.



Result: Moving average stored in avg array and average power
consumption in avgpower

1 for i ∈ 1..MAS do
2 avg[i]← 0;
3 end
4 time← get time();
5 sleep time← 0;
6 while true do
7 time diff ← get time();
8 if time diff − time % SAMPLING PERIOD then
9 measured power ← get power();

10 avgpower ← −avg[MAS];
11 for i ∈MAS..2 do
12 avg[i]← avg[i− 1];
13 avgpower ← avgpower + avg[i];
14 end
15 avg[1]← measured power/MAS;
16 avgpower ← avgpower + avg[1];
17 if time diff − time % POLICY PERIOD and

avgpower > POLICY POWER then
18 while avgpower > POLICY POWER do
19 avgpower ← −avg[MAS];
20 for i ∈MAS..2 do
21 avg[i]← avg[i− 1];
22 avgpower ← avgpower + avg[i];
23 end
24 avg[1]← SLEEP POWER/
25 MAS;
26 avgpower ← avgpower + avg[1];
27 sleep time← sleep time+ SAMPLING PERIOD;
28 end
29 time← get time();
30 end
31 end
32 enter sleep mode(sleep time);
33 sleep time← 0;
34 end

Algorithm 1: Sleep cycle algorithm



Fig. 3 shows how we connected the ESP32 board with the INA219 and the battery.
Note that we did not use AA batteries, we used a single LiFePO4 battery, but merely left it
on the diagram to illustrate the connections. ESP32 presents both a hybrid sleep mode and
a deep sleep mode. In the hybrid sleep mode, the ESP32 antenna remains active during
sleep, whereas in the deep sleep mode, only the co-processor chips are kept powered on.
The hybrid sleep mode is vulnerable to sleep deprivation attacks. In order to test the
security model, a malicious traffic is sent to the device WiFi antenna to increase its power
consumption. The malicious traffic lies in sending a controlled number of TCP SYN
packets. The experiments have employed the hping [Salvatore Sanfilippo 2006] program
to generate packets every millisecond. As expected, when our mitigation technique is
employed, the device is able to detect the increase in power usage and enter in the deep
sleep mode for a period of time that would rectify its power consumption. The device
does not power its antenna during sleep, ensuring no sleep deprivation could be carried
out.

Figure 3. ESP32 Dev Kit board connected with the INA219

The experiments employ an array with size 32 for the moving average samples, a
sampling period of 1 second, a policy period of 60 seconds, a power (policy) threshold of
180mW and calculated the device sleep power consumption at 0.5mW. Table 1 shows how
long the sensor battery took to deplete over WiFi power saving mode (vulnerable to sleep
deprivation) and sleep mode (protected by Algorithm 1). By the results, it is possible to
see that the Security model was effective in the experimental scenario. Comparing the
environment under attack without the mitigation technique and with the mitigation tech-
nique, the mitigation technique was capable to increase the battery’s lifetime by 51.2%.

6. Conclusions and Future Works

Depending on the IoT devices configuration, sleep deprivation attacks can significantly
compromise critical systems, such as eHealth systems that depend on implantable medi-
cal devices. This paper presented a security model and a sleep cycle algorithm to mitigate
sleep deprivation attacks permanently. Performance evaluation carried out in a system
based on an ESP32, a popular low-power microcontroller, showed that the technique
could increase the battery’s lifetime by 51.2% in a scenario under a sleep deprivation



Table 1. Total time until battery depletion under WiFi power saving and sleep
mode

With Mitigation Scenario Battery Time(s)

No WiFi Power Saving 15533
WiFi Power Saving under attack 10672

Yes Sleep Mode 16211
Sleep Mode under attack 16137

attack. Future works may address some attack scenarios where the sensor is in hybrid
sleep, with its radio antenna still in operation, or where the attack detection is made out-
side the sensor’s hardware. There should also be considerations made about the sensors
availability and denial of service attacks that aim to put the sensor into sleep mode and if
traditional denial of service mitigation still applies.
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