
Succinct Non-interactive Arguments of Knowledge from
Supersingular Isogenies

Paulo L. Barreto1, Marcos A. Simplicio Jr2, Gustavo H. M. Zanon1

1 University of Washington — Tacoma.
Tacoma (WA), US
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Abstract. A succinct non-interactive argument of knowledge (SNARK) enables
a party to convince another of some statement (typically, knowledge of some in-
formation) by means of a short argument, while ensuring it is infeasible for an
adversary to create a short argument of the opposite statement. We hereby de-
scribe a SNARK for CSI-FiSh signatures, whose security stems from hard prob-
lems involving supersingular isogenies. Although the scheme looks analogous to
a SNARK for conventional Schnorr signatures, it is non-trivial in that, as we also
show, a similar SNARK for another isogeny-based signature scheme (SQISign)
is not viable. As a bonus, we also discuss how to drastically reduce the memory
needed to implement the CSIDH framework required by CSI-FiSh signatures.

1. Introduction
A succinct non-interactive argument of knowledge (SNARK) is a protocol designed to
allow a user to prove that some statement is true via an argument of soft-polynomial size
in the length of the statement. Typically, this is meant to argue about the knowledge of
some information without revealing it, either in part or in full. If the protocol reveals
nothing about that information, it is called a zero-knowledge SNARK (zk-SNARK). A
plain SNARK might involve revealing part of the information, but in such a way that it is
infeasible to retrieve the remaining part.

Although a plain SNARK cannot be used when traceability is a concern (e.g. to
obtain fully anonymous credentials, which should not be traceable), it is useful in situa-
tions when that is a desirable or required feature. This is the case of delegated or proxy
credentials: in that scenario, Alice delegates to Peter a credential to act as her proxy, and
it is important that, even though Alice’s identity may remain hidden, Peter can be traced
down to conduct actions corresponding to her, and her alone (rather than being able to,
say, impersonate another anonymous user Bob on a par with Alice). It is also the case of
one-time credentials: Alice can give Peter a credential that remains anonymous for one
single application, since it becomes traceable when used more than once. Credential del-
egation may involve Alice creating for Peter a signature that he will need to keep partially
or entirely private, despite being necessary in his role as a proxy. In other words, Peter
must resort to a SNARK of such a signature.

Full zero-knowledge SNARKs of Fiat-Shamir signatures [Fiat and Shamir 1987]
are possibly overkill. For instance, they might involve computationally expensive and



complex garbled circuits or homomorphic operations to compute hash values, and con-
sequently, also group/ring/field arithmetic. The use of a plain SNARK as a credential,
whenever possible, may offer a substantial computational advantage1.

To address this and other scenarios, we focus our attention on the problem of
obtaining SNARKs for isogeny-based signature schemes. This is a much less explored
area than other more well-known settings like lattices, and arguably more challenging
due to the exquisite algebraic framework it involves. Yet, it is also an area that has been
attracting growing interest on its own, and for its closer relationship to rich pre-quantum
schemes like those based on elliptic curves.

Contributions. We show how to construct a SNARK of Commutative Supersin-
gular Isogeny-based Fiat-Shamir (CSI-FiSh) digital signatures [Beullens et al. 2019], a
signature scheme whose security stems from hard computational problems involving su-
persingular isogenies, particularly CSIDH [Castryck et al. 2018]. Our proposal is similar
to a SNARK for conventional Schnorr signatures, but it is non-trivial because: (1) CSI-
FiSh signatures typically use not a single private signing key, but a whole collection of
them; and (2) a corresponding construction for another isogeny-based signature scheme,
namely SQISign [De Feo et al. 2020], not only fails to work but apparently cannot be
built along the same lines. We also describe a technique to reduce drastically (by a factor
of at least 18 for lower-security parameters, and increasingly more so for higher security
levels) the work space needed to implement the CSIDH framework required by CSI-FiSh
signatures.

Remark. The recent Castryck-Decru attack [Castryck and Decru 2022] against
SIDH very specifically depends on knowledge of isogeny images at two torsion base
points, and thus does not apply to the CSIDH and CSI-FiSh schemes on which this work
builds as no such points are ever revealed nor needed.

Organization. The rest of this paper is organized as follows. Sec. 2 reviews
the notions of SNARKs and zk-SNARKs. Sec. 3 reviews Schnorr signatures, how they
can be used as a zk-SNARK of a discrete logarithm, and how to obtain a SNARK of a
Schnorr signature itself, preparing the reader for its isogeny-based counterpart. Sec. 4
proposes a supersingular isogeny-based SNARK of the CSI-Fish signature scheme (de-
fined in Sec. 4.1), which can be itself viewed as a zk-SNARK of (a set of) private isogenies
between supersingular curves. Sec. 5 briefly considers another isogeny-based signature
scheme (SQISign), showing why it fails to yield a SNARK built under the same principles.
Sec. 6 suggests a work space (and, to some extent, time) improvement for the decomposi-
tion of class group actions with large exponents in terms of efficiently computable ideals
with small exponents. This technique has independent interest, and applicable in the im-
plementation of other CSIDH-style cryptosystems. Sec. 7 concludes the work.

2. Succinct non-interactive arguments of knowledge

Hereafter we very closely follow Groth [Groth 2010] in the definitions of a SNARK and
a zk-SNARK (see also [Camenisch and Lysyanskaya 2004] and [Ganesh et al. 2021]).

1Creating a zk-SNARK for other kinds of signatures may be simpler, as is the case of many pairing-
based signature schemes like BBS+ [Au et al. 2006]. However, no such scheme seems to be currently
known in a post-quantum setting.
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Let R be an efficiently computable binary relation. For pairs (C,w) ∈ R we call
C the statement and w the witness. Let L be the NP-language consisting of statements
with witnesses in R. For statements of size N , these are written respectively LN and RN .

Intuitively, a non-interactive argument of knowledge for R will consist of three
algorithms Setup, Prove and Verify that run in probabilistic polynomial time:

• On input a security parameter λ the Setup algorithm produces a common reference
string σ.

• On input (σ,C,w), the Prove algorithm produces an argument of knowledge π.
• On input (σ,C, π), the Verify algorithm outputs 1 if the argument is acceptable

and 0 otherwise.

Formally, the tuple (Setup,Prove,Verify) is called a non-interactive argument of
knowledge for R if it satisfies the following properties of completeness and soundness. It
is called a SNARK if it also satisfies the following property of succinctness. Finally, it
is called a zero-knowledge non-interactive argument of knowledge if it also satisfies the
ensuing property of being zero-knowledge.

• Perfect completeness. Completeness captures the notion that an honest prover
should be able to convince an honest verifier that the statement is true. For all
adversaries A that output (C,w) ∈ R:

Pr
[
σ ← Setup(1λ); (C,w)← A(σ);π ← Prove(σ,C,w) : Verify(σ,C, π) = 1

]
= 1.

• Computational soundness. Soundness captures the notion that it should be in-
feasible (in respect to security parameter k) for an adversary to come up with an
accepting argument for a false statement. For all non-uniform polynomial-time
adversaries A:

Pr
[
σ ← Setup(1λ); (C, π)← A(σ) : C /∈ L ∧ Verify(σ,C, π) = 1

]
≲ 2−k.

• Succinctness. For any (C,w) ∈ R, the length of the proof π is |π| = poly(λ) ·
polylog(|C|+ |w|).

• Perfect zero-knowledge. Intuitively, an argument is zero-knowledge if it does not
leak any information besides the truth of the statement. If so, it can be indistin-
guishably replaced by a simulator where there is no information at all to be leaked.
We say a non-interactive argument of knowledge (Setup,Prove,Verify) is perfect
zero-knowledge if there exists a polynomial time simulator S := (S1, S2) such
that S1 outputs a simulated common reference string σ and a simulation trapdoor
τ , while S2 takes the common reference string, the simulation trapdoor and a
statement as input and produces a simulated argument, and all stateful interactive
adversaries A that output (C,w) ∈ R:

Pr
[
σ ← Setup(1λ); (C,w)← A(σ);π ← Prove(σ,C,w) : A(π) = 1

]
=

Pr
[
(σ, τ)← S1(1

λ); (C,w)← A(σ);π ← S2(σ, τ, C) : A(π) = 1
]
.

3. The Schnorr signature scheme
In what follows, let G be a (multiplicative) group of prime order n where the discrete
logarithm problem is assumed to be hard, let Zn := Z/nZ denote the ring (actually the
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field) of integers modulo n, and let Hk : Gk → Zn and H∗
k : Gk × {0, 1}∗ → Zn be

random oracles. Also, let x← Zn denote the act of picking x ∈ Zn uniformly at random.

The Schnorr identification scheme [Schnorr 1990] for a group generator g ∈ G
and a public key y ∈ G (corresponding to a private signing key s ∈ Zn) is a challenge-
response protocol where, given a commitment u ∈ G and a challenge c ∈ Zn, the response
z ∈ Zn satisfies u = gzyc. It can be made non-interactive by redefining c = H3(g, y, u).

The corresponding signature scheme includes the message m ∈ {0, 1}∗ in the
challenge as c = H∗

3(g, y, u,m), yielding a short transcript (c, z) ∈ Z2
n satisfying

c = H3(g, y, u) with u = gzyc. Equivalently, one can define the signature as the short
transcript (u, z) ∈ G× Zn satisfying u = gzyc with c = H3(g, y, u).

3.1. ZK-proving knowledge of discrete logarithms
In this section we essentially follow Camenisch [Camenisch 1998, Definitions 3.1
and 3.3] with a slightly different notation.

A zk-SNARK of the discrete logarithm s ∈ Zn of a group element y ∈ G to the
base g ∈ G, denoted SPK{(s) : y = gs}, consists simply of a Schnorr signature, that is,
a pair (c, z) ∈ Z2

n satisfying c = H3(g, y, u) with u = gzyc.

A zk-SNARK of t simultaneous discrete logarithms sj ∈ Zn of correspond-
ing group elements yj ∈ G to the respective bases gj ∈ G, denoted SPK{(sj) :
yj = g

sj
j | 1 ≤ j ≤ t}, consists of a tuple (c, z1, . . . , zt) ∈ Zt+1

n satisfying
c = H3t(g1, . . . , gt, y1, . . . , yt, u1, . . . , ut) with uj = g

zj
j y

c
j for all 1 ≤ j ≤ t, implying t

signatures sharing the same challenge. If some components are repeated in some scenario,
one can simplify the computations by shortening the hash argument list by convention,
omitting the repetitions. For instance, if the generator g is the same for all simultaneous
discrete logarithms, one could set c = H1+2t(g, y1, . . . , yt, u1, . . . , ut) instead.

The above constructions could equivalently adopt the alternative form of Schnorr
signatures. For instance, one could define SPK{(sj) : yj = g

sj
j | 1 ≤ j ≤ t} as a

tuple (u1, . . . , ut, z1, . . . , zt) ∈ Gt × Zt
n satisfying uj = g

zj
j y

c
j for all 1 ≤ j ≤ t, with

c = H3t(g1, . . . , gt, y1, . . . , yt, u1, . . . , ut).

From this point onward, call Alice the entity who creates a zk-SNARK of a private
signing key corresponding to a given public key (that is, Alice is the original signer), and
call Peter the entity who creates a SNARK of a signature generated by Alice for some
message.

3.2. SNARK of a Schnorr signature
One can obtain a SNARK of a full Schnorr signature that is written in the equivalent form
(u, z) ∈ G×Zn by revealing only uwhile keeping z private, redefining the message space
to Zn, and replacing the message m by rm := gm as an argument to the hash function,
that is, redefining c = H4(g, y, u, rm). Specifically, from g, y, u, and m, Peter creates a
SNARK of z and m by using these two quantities as Schnorr signing keys for the public
keys rz := gz = u/yc and rm := gm, with c = H4(g, y, u, rm). This is the idea underlying
the signature scheme described in [Galindo and Garcia 2009].

The desired SNARK of a Schnorr signature (u, z) for a message m, verifiable
under the public key y given u, is denoted SPK{(z,m) : rz = gz∧rz = u/yc∧rm = gm∧
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c = H4(g, y, u, rm)}(u) and consists of a tuple (u, rm, d, wz, wm) ∈ G2 × Z3
n satisfying

d = H5(g, rz, rm, vz, vm) with c := H4(g, y, u, rm), rz := u/yc, vz := gwzrdz , vm :=
gwmrdm. Notice that this contains a zk-SNARK of two simultaneous discrete logarithms,
z and m.

Our construction of a SNARK of a CSI-FiSh signature will be inspired on this
construction, after some important differences between Schnorr and CSI-FiSh signatures
are taken care of.

4. CSI-FiSh signatures, SNARKs and zk-SNARKs
Like in the CSI-FiSh scheme [Beullens et al. 2019], start by computing a prime p :=
4
∏n

j=1 ℓj − 1 for some n, as follows: for j < n, the set of ℓj are picked as the first
n − 1 odd primes; then, ℓn > ℓn−1 is picked as the smallest prime such that p computed
in this manner is prime. The target size of p depends on the underlying CSIDH structure;
for example, for CSIDH-512 [Castryck et al. 2018], one would have ⌈lg p⌉ = 511. Let
Eℓℓ be the set of Fp-isomorphism classes of supersingular elliptic curves with Fp-rational
endomorphism ring O. Any element of Eℓℓ can be represented by some Montgomery
curve [Montgomery 1987] EA : y2 = x3 +Ax2 + x, where A ∈ Fp and #EA = p+1 (in
particular, E0 : y

2 = x3 + x is such a curve), and O = EndFp(E0) can be seen as the set
of all Fp-isogenies from E0 to itself. The (quadratic) twist of such a curve EA for A ̸= 0
is the curve E ′

A := E−A. For convenience, define the map ψ : Eℓℓ→ Fp as ψ(EA) := A.

The ideal class group of O, denoted Cl(O), which is the quotient of the group of
fractional invertible ideals in O by the principal fractional invertible ideals, acts freely
and transitively on Eℓℓ. The action of an ideal a ∈ Cl(O) on a curve E ∈ Eℓℓ corre-
sponds to applying to E an isogeny whose kernel is the intersection of all kernels of the
endomorphisms in a. Of particular interest are the ideals lj := ⟨ℓj, π − 1⟩ (where π is
the Fp-Frobenius endomorphism), which correspond to isogenies with kernels of order ℓj
defined over Fp. These are easily computable using Vélu’s formulas. We will henceforth
assume the CSIDH/CSI-FiSh setting whereby the class group Cl(O) is cyclic of known
order N := #Cl(O) generated by the class of some ideal g. For instance, for CSIDH-
512, where ⌈lg p⌉ = 511 and ⌈lgN⌉ = 258, one could take g = l1 = ⟨3, π − 1⟩. Thus,
any ideal has the form a = ga for some a ∈ ZN , and its action on a curve E can be
conveniently written as [a]E := a ∗ E = ga ∗ E.

The following property is responsible for an efficiency improvement in CSI-FiSh
signatures, to be discussed later in the context of a SNARK of such signatures:
Property 1. For any a ∈ ZN and any A ∈ Fp such that EA is supersingular,
ψ([−a]E−A) = −ψ([a]EA), i.e., [a]EA = EB ⇒ [−a]E−A = E−B.

Remark 1. Computing the group action [a]E0 is carried out by expressing ga ∈ Cl(O) as
a short(ish) vector on the lattice defined by the easily computable actions of the ideals lj ,
i.e., writing ga =

∏
j l

ej
j for small(ish) integers ej , e.g. by applying Babai’s nearest-plane

algorithm — especially when combined with the decomposition technique to eliminate
multiple-precision floating-point arithmetic described in Section 6.

4.1. The CSI-FiSh scheme
We now succinctly describe the original CSI-FiSh scheme. Some modifications will be
made latter to obtain variants more amenable to SNARKs and zk-SNARKs.
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• Setup: Choose a suitable CSIDH parameter set, with known class group order
N := #Cl(O), together with a Fiat-Shamir security parameter t and a number
C of curves. For convenience, the message space is ZN , and the hash function is
now a mapH∗

t : Ft
p × ZN → {−C + 1, . . . , C − 1}t.

• Key generation: Pick C − 1 private keys sk ← ZN (corresponding to ideals
sk := gsk) and compute EAk

← [sk]E0. The key pair collection is sk := (sk | 1 ≤
k < C) ∈ ZC−1

N , pk := (Ak | 1 ≤ k < C) ∈ FC−1
p . Curve twists are implicitly

used as well, with the convention s−k := −sk (and s0 := 0), and corresponding
public keys E−Ak

:= [−sk]E0 (and E0 itself), for a total of 2C − 1 key pairs.
• Signing and verification: A valid CSI-FiSh signature for a message m ∈ ZN

is a tuple (c1, . . . , ct, a1, . . . , at) ∈ {−C + 1, . . . , C − 1}t × Zt
N such that

(c1, . . . , ct) = H∗
t (B1, . . . , Bt,m), where Bj := ψ([aj]EAcj

) for all 1 ≤ j ≤ t.

This is obtained by sampling t nonces rj ← ZN , computing Bj := ψ([rj]E0),
hashing (c1, . . . , ct) ← H∗

t (B1, . . . , Bt,m), and setting aj ← rj − scj (mod N)
for 1 ≤ j ≤ t.

4.2. Signatures as zk-SNARKs of private keys

Using a Schnorr signature as a zk-SNARK of the private signing key is straightforward
because, among other things, there is only a single key to prove. We propose to apply the
same basic principle to CSI-FiSh signatures as a zk-SNARK of the private signing key(s),
but need to handle some small yet relevant differences.

For a scheme like CSI-FiSh, although using a single private key is possible, it
would typically incur efficiency issues (a larger number of repetitions of the implicit
challenge-response protocol and larger signatures), so in general the actual signing key is
an entire collection of individual but related keys, namely, isogenies from the same start-
ing curveE0. This means that a CSI-FiSh signature is a succinct non-interactive argument
of knowledge of some of those individual keys, but not necessarily all of them. For in-
stance, the proposed setting [Beullens et al. 2019, Table 3] where C = 2 and t = 56, that
is, with a single private signing key and a public key consisting of curves E±A and E0,
is arguably a SNARK of that private key. In contrast, in the setting where C = 215 and
t = 7, that is, with 215 − 1 private keys and only 7 implicit iterations of the underlying
identification scheme, one may be left with the impression that a SNARK would not cover
all of the keys but rather only 7 of them at best.

From a practical point of view, this is not really an issue. The challenge (that is,
the actual choice of a public-key curve to come from in order to reach the commitment
curve) is not only unknown to the signer beforehand but uncontrollable as well. Thus
the probability of successfully forging a signature when some but not all private keys
are known can be made as low as desired. This means that what a CSI-FiSh signature
is actually a SNARK of is not an individual private key, but the whole set, as though it
were an equivalence class. Yet, for an application where the signature plays the role of
a SNARK it makes more sense to impose tighter constraints on the allowed parameters.
For the λ-bit security level, we thus require that the number t of iterations of the implicit
challenge-response protocol be larger than the number of private keys by at least λ/2.
This means the probability of any individual private key in the set never being considered
is no larger than 2−λ/2. Asking for a larger margin is possible, but less meaningful due to
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the unavoidable possibility of birthday collisions. Of course, there is always the possibil-
ity that a private key is left untouched by sheer chance, but this could happen even in the
single-key case (namely, it is possible if unlikely that the challenge will be repeated every
time), and going too far beyond the proposed parameter constraint will incur a substantial
performance penalty.

In summary, we henceforth plausibly and sensibly require t ≥ C − 1 + λ/2 for
any CSI-FiSh signature that is meant as a zk-SNARK of the corresponding private key.
This being said, we can proceed and state analogous definitions for zk-SNARKs of private
isogenies in the form of ideals in the class group.

4.3. ZK-proving knowledge of (sets of) ideals

Again, we essentially follow Camenisch [Camenisch 1998, Definition 3.3], this time
adapting the notation to the CSI-FiSh isogeny setting. We use parametrized hash func-
tions Hk,t,C : Fk

p2 → {0, . . . , C − 1}t and H∗
k,t,C : Fk

p2 × ZN → {−C + 1, . . . , C − 1}t.
Contrary to the discrete logarithm setting, only the knowledge of a number of simulta-
neous ideals need to be considered, since CSI-FiSh already typically uses more than one
private isogeny. For brevity, we only state the definition for the former hash, Hk,t,C ; the
latter case is completely analogous.

A zk-SNARK of C − 1 simultaneous ideals gsj , represented by sj ∈ ZN and
specifying isogenies from a starting curve EA0 ∈ Eℓℓ to curves EAj

∈ Eℓℓ, is denoted
SPK{(sj) : EAj

= [sj]EA0 | 1 ≤ j < C} and consists of a tuple (c1, . . . , ct, a1, . . . , at) ∈
{0, . . . , C−1}t×Zt

N satisfying (c1, . . . , ct) = HC+t,t,C(A0, . . . , AC−1, B1, . . . , Bt), with
Bj := ψ([aj]EAcj

) for all 1 ≤ j ≤ t. This implies t single-key CSI-FiSh signatures
sharing the same challenge. It also immediately generalizes to a zk-SNARK of more than
one set of private keys.

4.4. Toward a SNARK of a CSI-FiSh signature

In the case of Schnorr signatures, the underlying principle to obtain a SNARK of a signa-
ture is that one signature component, namely z ∈ Zn, has precisely the same nature as the
private signing key itself, s ∈ Zn. We now show how to apply the same basic principle to
obtain a SNARK of a CSI-FiSh signature.

In a CSI-FiSh signature, the sequence c := (c1, . . . , ct) ∈ {−C + 1 . . . C − 1}t
indicates which keys are used for each signature component. The number of times each
key appears on this list varies at random, but overall the keys are partitioned into 2C − 1
equivalence classes. To obtain a SNARK of a CSI-FiSh signature along similar lines to
a SNARK of a Schnorr signature, Peter might think of committing to 2C − 1 curves
E ′

j := [ζj]EAj
with ζj ← Z/n and−C+1 ≤ j ≤ C−1, and then using 2C−1 CSI-FiSh

signatures to perform one step of a zk-SNARK of all signature components associated to
the starting curve EAj

at once, for all j ∈ {−C + 1, . . . , C − 1}. The number of protocol
repetitions would depend on how many curves constitute each equivalence class, and
revealing c would actually make this a SNARK rather than a zk-SNARK, but the idea is
promising. However, it does have issues, as we will see (and handle them).

Example 1. We will use here a simple color code to make it easier to keep track of related
information.
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Let C = 3 and t = 15 so that c ∈ {−2 . . . 2}15, and consider a public
key consisting of curves EA, and EA′ , their respective twists E−A and E−A′ , and the
curve E0. On average, each value from {−2,−1, 0, 1, 2} occurs roughly t/(2C −
1) = 3 times on c. Suppose that, for some specific signature, the hash value is
c = (0, 2, 1, 2,−1,−1, 0, 0,−2,−1, 1, 1,−2, 0, 2). This corresponds to the choice

(E0, EA′ , EA, EA′ , E−A, E−A, E0, E0, E−A′ , E−A, EA, EA, E−A′ , E0, EA′)

of public-key curves for that specific signature, and these in turn are the starting curves of
isogenies leading to the signature curves

(EB1 , EB2 , EB3 , EB4 , EB5 , EB6 , EB7 , EB8 , EB9 , EB10 , EB11 , EB12 , EB13 , EB14 , EB15),

in that order. That is, EB1 = [a1]E0, EB2 = [a2]EA′ , EB3 = [a3]EA, and so on. Thus, if
Peter commits to a curve E ′

−2 := [ζ−2]E−A′ for a secret ζ−2 ← Z/n, he can respond to
a challenge to reach E ′

−2 from any of E−A′ , EB9 , or EB13 . Similarly, if he commits to
E ′

−1 := [ζ−1]E−A for ζ0 ← Z/n, he can reach E ′
−1 from any of E−A, EB5 , EB6 , or EB10 .

If he commits to E ′
0 := [ζ0]E0 for ζ0 ← Z/n, he can reach E ′

0 from any of E0, E±B1 ,
E±B7 , E±B8 , or E±B14 . If he commits to E ′

1 := [ζ1]EA for ζ1 ← Z/n, he can reach E ′
1

from any of EA, EB3 , EB11 , or EB12 . And if he commits to E ′
2 := [ζ1]EA′ for ζ1 ← Z/n,

he can reach E ′
2 from any of EA′ , EB2 , EB4 , or EB15 .

One complicating issue is that the 2C − 1 equivalence classes of curves are
likely of different sizes, making the corresponding CSI-FiSh parameters highly hetero-
geneous. In Example 1, Peter would have to create a SNARK from 2C − 1 = 5 sets
of “public keys” derived from the signature Alice created for him: {E−A′ , EB9 , EB13},
{E−A, EB5 , EB6 , EB10}, {E0, E±B1 , E±B7 , E±B8 , E±B14}, {EA, EB3 , EB11 , EB12}, and
{EA′ , EB2 , EB4 , EB15}. This means that different hash functions and number of implicit
iterations of the challenge-response protocol would have to be adopted for each key equiv-
alence class.

While this feature is theoretically not an issue, it may be a practical hindrance. At
the very least, security levels and matching parameters depend on how many curves there
are in a set of such “public keys” and the smallest one would be a bottleneck, making the
larger ones into sources of inefficiency as they would contribute far too many more curves
than needed.

For that reason, we will make a threefold homogenizing assumption, namely:

1. The technique of using twists, which is only available when the starting curve
is E0 (as a consequence of Property 1), is avoided altogether for the CSI-FiSh
signatures that constitute the SNARK, though it is still an option for the signatures
one wishes to create a SNARK for;

2. CSI-FiSh parameters are chosen so that 2C − 1 | t, that is, ρ := t/(2C − 1) is an
integer;

3. The hash functions HC+t,t,C : FC+t
p2 → {0, . . . , C − 1}t and H∗

C+t,t,C : FC+t
p2 ×

ZN → {−C+1, . . . , C−1}t are redefined so that each value in {−C+1, . . . , C−
1} occurs exactly ρ times, that is, the hash values are permutations of the sequence
(−C + 1, . . . , C − 1)t.

8



Obtaining hash functions as required in the last item above is not hard. One can
start from a simpler hash that maps to ZM or ZM∗ , where M := t!/(ρ!)C is the number of
permutations of the C values from {0, . . . , C − 1} and M∗ := t!/(ρ!)2C−1 is the number
of permutations of the 2C − 1 values from {−C + 1, . . . , C − 1}. From the simpler
hash value one can easily obtain a unique permutation from the required sequence via
permutation unranking [Ruskey 2003]. As for the simpler hash itself, it can be obtained
from a conventional hash function (say, a cryptographic sponge [Bertoni et al. 2008]).

Example 2. Consider the same setting as in Example 1, but now using the three-
fold homogenizing assumption above. Then each value from {−2,−1, 0, 1, 2} occurs
exactly t/(2C − 1) = 3 times on c. For instance, the hash value might be c =
(0, 2, 1, 2,−1,−1, 0,−2,−2,−1, 1, 1,−2, 0, 2). This corresponds to the choice

(E0, EA′ , EA, EA′ , E−A, E−A, E0, E−A′ , E−A′ , E−A, EA, EA, E−A′ , E0, EA′)

of public-key curves for that specific signature, and these in turn are the starting curves of
isogenies leading to the signature curves

(EB1 , EB2 , EB3 , EB4 , EB5 , EB6 , EB7 , EB8 , EB9 , EB10 , EB11 , EB12 , EB13 , EB14 , EB15),

in that order. That is, EB1 = [a1]E0, EB2 = [a2]EA′ , EB3 = [a3]EA, and so on. This
implies the new equivalence classes are {E−A′ , EB8 , EB9 , EB13}, {E−A, EB5 , EB6 , EB10},
{E0, EB1 , EB7 , EB14}, {EA, EB3 , EB11 , EB12}, and {EA′ , EB2 , EB4 , EB15}, all with the
same number of keys, namely, t/(2C − 1) + 1. Thus, if Peter commits to a curve starting
from any of Alice’s keysE−A′ , E−A, E0, EA, EA′ , he can reach the committed curve from
any of an equal number of curves, namely, any curve in the equivalence class of the same
color. Therefore, the hash functions and number of implicit protocol repetitions can be
the same for all of them.

4.5. SNARK of a CSI-FiSh signature

We are now in a position to describe how to obtain a SNARK of a CSI-FiSh signature.

As before, we redefine the message space, this time as Zρ
N with ρ := t/(2C − 1),

and we replace the message m := (m1, . . . ,mρ) as an argument to the hash function by
Bt+i := ψ([mi]E0) for 1 ≤ i ≤ ρ. Correspondingly, we increase the challenge size from t
to t+ρ components. Thus, the CSI-FiSh challenge becomes (c1, . . . , ct, ct+1, . . . , ct+ρ)←
HC+t+ρ,t+ρ,C(B1, . . . , Bt, Bt+1, . . . , Bt+ρ). Now we restate the signature as the tuple
(c1, . . . , ct, B1, . . . , Bt+ρ) ∈ {−C + 1, . . . , C − 1}t × Ft+ρ

p2 constrained to satisfy the
above challenge, and we finally combine it with zk-SNARKs of all a1, . . . , at, at+ρ where
Bj = ψ([aj]EAcj

) for all 1 ≤ j ≤ t, and at+i := mi for all 1 ≤ i ≤ ρ.

Notice that all of the above zk-SNARKs can be combined into 2C−1 equivalence
classes, each containing t/(2C − 1) curves, with at+1 through at+ρ already being in a
class of their own. So they can use the CSI-FiSh parameters for that number of curves and
corresponding number of implicit protocol iterations. They can then be merged together
into a single challenge for all equivalence classes of keys, thereby reducing the hash part
of the resulting SNARK. We point out here that, since the merged signature is meant to be
all-or-nothing (either all challenges are suitably responded to, or else the whole signature
is rejected), a smaller number of implicit iterations may be needed than recommended
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at the end of Section 4.2. Yet, the number of iterations only decreases modestly with an
increased number of keys: for instance, it only decreases by a factor 8 when the number
of keys is increased by a factor 214 in the CSIDH-512 parameter set, so this optimization
is not expected to have high impact. We leave this possibility for future investigation, and
stick to that more conservative choice for the time being.

Interestingly, the ideas underlying this construction will not generalize to other
isogeny-based signatures. We next discuss the case of the SQISign scheme and why the
construction fails for it.

5. The SQISign identification and signature scheme
The SQISign identification scheme works as follows.

• Setup: Given a security parameter λ, pick a prime number p and a supersingular
elliptic curve E0/Fp with known special extremal endomorphism ring O0. Select
an odd λ-bit smooth number Dc =

∏m
j=1 ℓ

ej
j and D := 2e where e exceeds the

diameter of the supersingular 2-isogeny graph.
• Keygen: Pick a random isogeny walk τ : E0 → EA of degree Nτ (a large prime

number), leading to a random elliptic curve EA. The public key is pk := EA, and
the secret key is the isogeny sk := τ .

Remark 2. For λ-bit security, deg τ = Nτ with lgNτ ≈ lg(p)/4 ≈ (λ/2), computing
τ explicitly would incur exponential effort. SQISign avoids the need to do so by us-
ing the corresponding ideal Iτ instead, and computing a different isogeny with the same
codomain to obtain the public key EA.

SQISign identification protocol: To prove knowledge of the secret τ (or more exactly
a corresponding ideal Iτ ), the prover P engages in the following challenge-response pro-
tocol with the verifier V .

• Commitment: P generates a random (secret) isogeny walk ψ : E0 → E1, and
sends E1 to V .

• Challenge: V sends the description of a cyclic isogeny φ : E1 → E2 of degree
Dc to P .

• Response: From the isogeny φ ◦ ψ ◦ τ̂ : EA → E2, P constructs a new isogeny
σ : EA → E2 of degree D such that φ̂ ◦ σ is cyclic, and sends σ to V .

• Verification: V accepts iff σ is an isogeny of degree D from EA to E2 and φ̂ ◦ σ
is cyclic, otherwise rejects.

SQISign signature protocol: The SQISign scheme requires an especially tailored hash
function Ĥ∗ : Fp2 × {0, 1}∗ → [1 . . . µ(Dc)], where2 µ(Dc) :=

∏m
j=1 ℓ

ej−1
j (ℓj + 1),

and also a fixed but arbitrary function ΦDc(E, s) mapping s ∈ [1 . . . µ(Dc)] to non-
backtracking sequences of isogenies of total degree Dc starting at E.

• Sign: Given a private key sk and a message m, pick a random (secret) isogeny ψ :
E0 → E1. Compute s ← Ĥ∗(j(E1),m) and then the isogeny φ ← ΦDc(E1, s) :
E1 → E2. From the knowledge of OA and of the isogeny φ ◦ ψ : E0 → E2,
construct an isogeny σ : EA → E2 of degree D such that φ̂ ◦ σ is cyclic. The
signature is the pair Σ := (E1, σ).

2NB: this is not the Möbius function.
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• Verify: Given a public key pk, a message m and a purported signature Σ :=
(E1, σ : EA → E2), compute s ← H∗(j(E1),m), recover the isogeny φ ←
ΦDc(E1, s) : E1 → E2. Accept iff deg σ = D and φ̂ ◦ σ is cyclic.

5.1. Why SQISign fails to yield a similar SNARK
In contrast with Schnorr, where part of the signature (the z component) has exactly the
same nature as a private signing key, or CSI-FiSh signatures, where the corresponding
part of the signature has the same nature as a collection of private signing keys, SQISign
keys and signatures are in disjoint and incompatible categories of their own.

Specifically, a SQISign private key τ must be an isogeny of large prime degree
(otherwise it would leak enough information to reveal it to an attacker), while the sig-
nature σ must be an isogeny of large smooth composite degree (otherwise signing and
verifying would be rendered infeasible).

At this time, obtaining a SNARK of a SQISign signature as efficient as a SNARK
for other Fiat-Shamir signature schemes like CSI-FiSh is left as a research problem.

6. A work space (and time) improvement for CSI-FiSh (and CSIDH)
Any ideal g in the class group can be written as g =

∏
i li

gi for efficiently computable
ideals li := ⟨ℓi, π − 1⟩ and small integers gi. The original CSI-FiSh strategy to compute
ga (for a large, at least 512-bit integer a) is to decompose it as ga =

∏
i li

ei for small
integers ei obtained via lattice reduction. Notice that the obvious decomposition ei = a·gi
involves exceedingly large exponents, and no polynomial-time exponentiation algorithm
is known for the class group (in fact, this is one of the reasons that make this cryptosystem
quantum-resistant, albeit in the sense of superpolynomial complexity), so this approach is
infeasible. The starting point for lattice reduction in the original CSI-FiSh scheme is the
vector [a, 0, . . . , 0] (of dimension n for some fixed n), corresponding to a decomposition
where the initial exponents are e1 = a for g := l1 = ⟨3, π − 1⟩ and ei = 0 for i > 1,
since the ideal ⟨3, π − 1⟩ alone is known to generate the whole class group (for practical
CSI-FiSh parameters).

Lattice reduction, conducted using Babai’s nearest-plane method [Babai 1986]
(Algorithm 1, where Λ(B) stands for the lattice generated by B) and mostly ad-hoc re-
finements, can bring the ideal exponents down to feasible sizes, say, 1-byte values, but
this typically forces the floating-point precision required for the rounding step indicated
on line 3 and the projection step indicated on line 4 to be substantially larger than the
size |Cl(O)|, which also increases the running time by an even larger factor. For instance,
for the CSIDH-512 parameters, where |Cl(O)| is about 258 bits long, the official CSI-
FiSh implementation sets the precision to 1000 bits per limb, or about 18-fold worse than
simple precision (53 bits per limb). Specifically, the precomputed LLL-reduced basis
B = (uj | i ∈ [n]) consists of n vectors in dimension n, or n2 floating-point values, and
the precomputed norms ⟨uj,uj⟩ take n more such values, where n = 74 for CSIDH-512.
Hence, this yields n(n + 1) 1000-bit precomputed values, occupying 693750 bytes over-
all. Updated CSIDH parameters are likely to noticeably increase both n and |Cl(O)|, and
hence the space requirements.

Fortunately, we can do much better. Let b and m be such that all integers modulo
|Cl(O)| can be expressed with no more than m digits in base b, i.e., m is the smallest
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Algorithm 1 Babai’s nearest-plane algorithm
INPUT: LLL-reduced basis B = (uj | 0 ≤ j < n) and vector v.
OUTPUT: w ∈ Λ(B) such that |v −w| ≤ 2d/2dist(v,Λ(B)).

1: w← v
2: for j ← n− 1 down to 0 do
3: cj ← ⌊⟨w,uj⟩/⟨uj ,uj⟩⌉ ▷ rounding step
4: w← w − cjuj ▷ projection step
5: end for
6: w← v −w
7: return w

integer such that bm ≥ |Cl(O)|. Our space-saving technique consists of precomputing
lattice-reduced vectors gb

i
=

∏
j l

ei,j
j for small exponents ei,j , all 0 ≤ i < m, and all

1 ≤ j ≤ n. Since g = l1 corresponds to the vector of exponents (e0,j) = [1, 0, . . . , 0], gb

maps simply to (e1,j) = [b, 0, . . . , 0] if b itself is small. In turn, gb2 maps to [b2, 0, . . . , 0]
which, albeit longer, is still short enough that lattice reduction shrinks it right away to
a vector (e2,j) = [e2,1, . . . , e2,n], where each e2,j is in the same ballpark as b (rather
than b2). From then on, computing gb

i for each i consists of multiplying the previous
vector by b, yielding [b · ei−1,1, . . . , b · ei−1,n] with coefficients in the ballpark of b2, and
repeating the lattice reduction step to obtain [ei,1, . . . , ei,n], where each eij is again in the
same ballpark as b. Thus, if b is properly chosen (say, b = 16), we never expect to have
vector components larger than about 8 bits each, and a lattice reduction algorithm such as
Babai’s will be especially fast and effective to bring them down to about 4 bits each again.
Algorithm 2 summarizes this process.

Algorithm 2 Precomputation of the powers gbi for 0 ≤ i ≤ m, g := ⟨3, π − 1⟩
INPUT: m is the smallest integer such that bm ≥ |Cl(O)|.
OUTPUT: matrix (ei,j) such that gb

i
=

∏
j l

ei,j
j , for all 0 ≤ i < m and 1 ≤ j ≤ n.

1: (e0,j)← [1, 0, . . . , 0] ▷ gb
0
= g

2: for i← 1 to m− 1 do
3: (ei,j)← [b · ei−1,1, . . . , b · ei−1,n] ▷ gb

i
= (gb

i−1
)b

4: Apply Babai’s nearest-plane algorithm to reduce (ei,j).
5: end for
6: return (ei,j)

Given this precomputation, we can express a =
∑

i aib
i as an m-digit number in

base b, 0 ≤ ai < b. Thus ga = g
∑

i aib
i
=

∏
i

(
gb

i
)ai

=
∏

i

(∏
j l

ei,j
j

)ai
=

∏
j l

∑
i aiei,j

j .
The exponents

∑
i aiei,j , while not fully reduced, are way smaller than the original a, and

for b = 16 they can be reduced via Babai’s method and eventual refinements with simple
floating-point precision. This procedure is summarized3 in Algorithm 3.

Shrinking all this down to single-precision as we propose reduces the CSIDH-512
space requirements to 39174 bytes, or no more than 46805 bytes in a more straightfor-

3The same ad-hoc refinements as in the original CSI-FiSh algorithm are possible after the nearest-plane
reduction. These are omitted in Algorithm 3 for the sake of brevity.
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Algorithm 3 Single-precision decomposition into the lj ideal base

INPUT: a ∈ ZN ; precomputed matrix (ei,j) such that gb
i
=

∏
j l

ei,j
j .

OUTPUT: vector (ej) := [e1, . . . , en] of small components such that ga =
∏

j l
ej
j .

1: Write a =
∑

i aib
i as an m-digit number in base b.

2: (ej)← [
∑

i aiei,1, . . . ,
∑

i aiei,n]
3: Apply Babai’s nearest-plane algorithm to reduce (ej).
4: return (ej)

ward implementation with 64-bit floating-point words and individual bytes for pairs of
(ei,j) components, and leads to much faster lattice reduction (about 81-fold faster, assum-
ing Karatsuba multiplication for extended-precision floating-point arithmetic). In fact, the
required precision may be even smaller in practice, opening the possibility of doing away
with floating point arithmetic entirely. This would, however, require emulating rational
arithmetic, making the implementation somewhat more involved. The kind of platform
where this might be an advantage (an embedded or otherwise highly constrained pro-
cessor) is, however, hardly suitable for the currently available techniques to implement
CSIDH, which notoriously require intensive computational capabilities, and related cryp-
tosystems like CSI-FiSh. For this reason, we restrained from further attempts at entirely
eliminating floating-point arithmetic.

7. Conclusions
We have described the construction of a SNARK of CSI-FiSh digital signatures using sig-
natures of the same kind. Our proposal is inspired on a SNARK of conventional Schnorr
signatures, yet non-trivial given the peculiar adoption of multiple private keys in the CSI-
FiSh scheme, as well as the somewhat surprising fact that the same idea fails for SQISign,
another isogeny-based signature scheme. We have also proposed a technique to reduce
the work space needed to implement the CSIDH framework required by CSI-FiSh signa-
tures by a factor of at least 18 (or more for higher security levels). The same technique
also substantially reduces the associated processing time, by a factor that can reach almost
two orders of magnitude, depending on the implementation.
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