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Abstract. The Research and Development Center for Communication Security
(CEPESC) has a long partnership history with the Brazilian Superior Electoral
Court to improve the security of the Brazilian election system. Among all the
contributions from CEPESC, probably the most important is a cryptographic
library used in some critical moments during the election. In an effort to im-
prove transparency and auditability of the solution, we present the new crypto-
graphic library developed at CEPESC, named libharpia. Its main design
goal is to allow transparency and readability while substantially increasing se-
curity. One of the main advances is the use of post-quantum cryptography, im-
plemented through secure hybrid protocols that mix current cryptographic stan-
dards (specifically elliptic curves) with new cryptographic primitives based on
Lattices, believed to be secure against quantum computers.

1. Introduction

The Brazilian electronic voting machine, or simply “Urna Eletrônica” (UE), was devel-
oped by the Brazilian Superior Electoral Court (Tribunal Superior Eleitoral - TSE) and
is part of the Brazilian electoral process since 1996. Along these years we have seen
great progress in the system and in the process itself. In the beginning, the UE was based
on personal computers, implementing a VirtuOS and Windows CE, and was designed by
third parties. From 2005 onwards, the development of the most critical parts of the sys-
tems has been developed by TSE’s engineers, including a new operating system based
on Linux deployed in 2008 [Monteiro et al. 2019]. In 2009, the security of the system
was greatly improved by the adoption of a hardware trusted computing base (TCB) for
direct recording electronic voting architecture, T-DRE in short. This device is capable
of performing several important cryptographic functionalities such as key storage, ran-
dom number generation, digital signatures and the authentication of critical softwares
(e.g., BIOS, bootloader, Linux kernel) [Gallo et al. 2010]. Another great advance was the
use of biometric data to uniquely identify the voters, a process that started in 2008 and
now reach over 80% of the electorate. More recently, TSE announced that new voting
machines are going to use digital certificates from Brazilian national PKI (ICP-Brasil)
[TSE 2021].

All these initiatives showcase TSE’s efforts into making Brazilian elections se-
cure and trustworthy. Nevertheless, from the beginning, the Brazilian voting sys-
tem has been criticized in terms of its transparency and auditability. For exam-
ple, in 2002, a report from the Brazilian Computer Society (SBC) presented a com-
plete analysis of the election system. Although no signs of fraud or big security
problems were found, the authors appointed a lack transparency and auditability as
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a concern [van de Graaf and Custódio 2002]. Another report with similar conclusions
[Brunazo Filho et al. 2015] was published after a very tight election in 2014.

Along the years, TSE has been working to improve these limitations. Start-
ing in 2009, one important step in this direction was the organization of several
hacking challenges, the so called “Teste Público de Segurança” (TPS), where exter-
nal and independent researchers can examine the security mechanisms implemented
within the system, find vulnerabilities and provide suggestions for improvement (see
[Aranha et al. 2019] for a review of the problems detected in these tests). We note
that the vulnerabilities found are always patched by TSE and the fixes presented to re-
searchers. In addition to the TPS, TSE has progressively been opening the system by
open-sourcing parts of the solution [Alessandre 2021] and through academic publications
[Coimbra et al. 2017, Monteiro et al. 2019].

However, there is still room for improvement. For example, one common criticism
is the participation of the Research and Development Center for Communication Security
(CEPESC) in providing cryptographic libraries for TSE. Indeed, a report published in
2015 said that “TSE accepts in the electoral system the existence of code and services
of authentication provided by CEPESC, constituting a critical point of failure that can
influence almost all routines in the electoral system” [Brunazo Filho et al. 2015]. The
criticism was valid, since up to that point, the source code developed by CEPESC was not
known by the community and was not a part of the TPS.

Created in 1982, CEPESC has four decades of experience, research and devel-
opment in cryptology, there is no other institution in Brazil with such an experience in
the area. CEPESC’s primary mission is to develop secure solutions to protect the most
critical information of the Brazilian government. CEPESC has a long partnership history
with TSE, being an important part of the electronic election system since its inception in
1996. During this period, CEPESC helped TSE in several critical activities, such as: (i)
evaluating the security of critical software and hardware components developed by third
parties; (ii) testing the quality of the random number generators of the UE and its pe-
ripherals; (iii) helping TSE to develop protocols and evaluating operational security; (iv)
developing cryptographic libraries and algorithms.

Traditionally, CEPESC’s solutions were treated as proprietary and their source
code were never disclosed to the general public. This reality is changing in order to im-
prove transparency and auditability of the election system, both key aspects of democracy.
This work is a further step in this direction, as the organizational agreement with TSE al-
ready establishes the necessity of opening the design choices and possibly the source code
itself. Therefore, in this work, we describe the new version of the cryptographic library
developed by CEPESC, called libharpia. One of the goals of this work is to achieve
a higher social trust in the primitives and protocols implemented.

The main advantage of libharpia is the use of post-quantum cryptography im-
plemented through secure hybrid protocols that mix current standards (based on elliptic
curves) with new cryptographic primitives (based on lattices). More precisely, we use
the algorithms Kyber and Dilithium [Ducas et al. 2018, Bos et al. 2018] to deliver a Key
Encapsulation Mechanism (KEM) and digital signatures, respectively. These algorithms
were recently announced among the winners in the post-quantum cryptography standard-



ization process organized by NIST [NIST 2022]. To the best of our knowledge, this will
make Brazilian elections the first in the world using post-quantum cryptography and the
first system in general using this kind of cryptography in any Brazilian public institution.

This work is organized as follows: in Section 2, we provide a description of the
goals and scope of libharpia. In Sections 3 and 4, we present the main choices in
terms of implementation and cryptographic primitives, respectively. Then, in Section 5
we present the API of libharpia. Also, in Section 6, we go into more details over
the cryptographic protocols implemented, providing justification for their choices and
security. Finally, in Section 7 we present the conclusions.

2. Goals and Scope

libharpia is used by TSE in the following situations:

1. The TSE prepares over 500 000 UE machines for the election. To do so, a media
containing all software and data necessary is created and used to inject them into
the UE. To make sure that an adversary cannot create a fake media, all binaries
are signed using libharpia and TSE’s private key to prove their authenticity.

2. During the election, voters are authenticated using their biometric information.
To make sure that this private information is protected, libharpia is used to
encrypt all the data.

3. When all voters from a particular section finish voting, the UE emits a ballot box
(“Boletim de Urna”), that is a summary of the results of a specific machine. Then,
the UE encrypts and signs the ballot box using libharpia. This step protects
the ballot box from tampering during transmission.

4. TSE’s tally server receives the encrypted ballot box from every single UE machine
across the country. Then, it verifies the digital signature and decrypts the ballot
box to access the results and add them to conclude the election.

It is important to note that libharpia is not the only means of cryptographic protection
in the electoral system. In fact, TSE uses several layers of security to minimize any risks
of errors or vulnerabilities in the system. Additionally, we stress that CEPESC does
not have access to the core implementation of TSE or any of their systems, and that
libharpia is just a dry cryptographic API that could be used in any other system.
Therefore, it is TSE’s responsibility to use libharpia correctly.

3. Library Design

In order to facilitate the inclusion of new algorithms and interchangeability of the
designated algorithms, the architecture of the library has to be modular. This is
achieved by working with a layered design based on libsodium [Denis 2013] and NaCl
[Bernstein et al. 2012], where in the lowest layer we have the implementations of all the
primitives of the library, AVX2, SSE2, reference implementations, and any other applica-
ble instruction extension set. A middle layer that standardizes cryptographic operations,
by doing what is common to, for instance, any stream cipher independent of what im-
plementation one is using. And a top layer that is responsible for interfacing with the
user with a higher level of abstraction. Providing support to these three layers, there is a
set of utilities, composed of constant time implementations of commonly used functions,



mainly buffer comparison and a centralized entropy source. This is the core, and it is
highlighted in blue in Figure 1.

A fourth layer is above the core, which is responsible for the actual user inter-
face TSE uses. This layer exists solely to fulfill API retrocompatibility and facilitate the
integration of our library in TSE’s systems. This layer also has some utilities related to
legacy functionalities such as an ASN.1 and AES implementations used in a key encryp-
tion protocol. In the future, a new API will be negotiated with TSE, and this fourth layer
will not be necessary, which will improve maintainability.

The modularity comes from the interfaces between these layers. When a new
primitive is added, by complying with the interface, turning that primitive into the des-
ignated primitive is a matter of changing pointers. Despite not much more code being
necessary to allow a change of primitives during runtime, libharpia defines its primi-
tives when compiling, in order to comply with our strict versioning premise.

The interface between bottom and middle layer allows written code in middle
layer to abstract which implementation is being used. For instance, a stream cipher
needs to present a function pointer that takes a nonce, a key and a length, and outputs
a keystream. The middle layer will regard the function pointer presented, and not which
implementation provided it (AVX2 or reference, for example). In the middle layer we
adjust the primitives, to conform with the interface between top and middle layer, which
is to say that enough information about the primitive needs to be passed to the top layer
so that sanitizing user inputs can be done on the top layer, abstracting the primitive.

User Interface

Top Layer - High Level Functions and Input Sanitization

Middle Layer - Primitives

Bottom Layer - Primitives Implementation

Utils

Utils

Figure 1. libharpia’s architecture.

Based on this discussion, the main difference of this library when compared to the
libraries we based our work on is the use of hybrid public-key protocols, including post-
quantum algorithms. Another important difference is the nonce generation - libharpia
generates a random nonce for each encryption while both libsodium and NaCl leaves the
nonce management to the user. This choice protects the overall solution against common



implementation errors from the developers, such as nonce reuse.

Next, we describe a series of security principles adopted in the design and imple-
mentation of libharpia.

3.1. No Heap allocation and memory management

Abusing the heap is a very common vector of attack on secure systems. Improper handling
of crashes, heap overflows, all contribute to nullifying security [Novark and Berger 2010],
specially for modern solutions that involve co-hosting, or simply sharing resources with
an adversary process. Nevertheless, this risk can be mitigated through careful implemen-
tation. In the development of a cryptographic library, it is more easily done by avoiding
the use of heap allocation in the library, and relying on the stack.

Furthermore, to mitigate the impact of other types of side-channel memory at-
tacks, we implement a stack memory management to ensure that every memory address
that contained secret information (e.g., keys, plaintexts, cipher states) is erased as soon as
it reaches its final use. This way, we seek to minimize the lifespan of sensible data in the
machine.

3.2. No data flow from secrets to load addresses or branch conditions

Since 2005, it has been known that if any secret influence load addresses, a viable
vector of attack is created by timing an unprivileged process in the same machine
[Bernstein 2005]. Once these properties influence performance, different keys impact
the adversarial process differently. Thus, by measuring this impact, cryptographic keys
can be discovered almost instantly in implementations that use, for example, fast lookup
tables [Pointcheval 2006, Tromer et al. 2010]. We avoid any implementations where se-
crets are suspected or known to affect performance.

Another source of timing side channel attacks is secrets being used as branch
conditions. Admittedly, the choice of primitives helps here, since there are primitives
that by design favor constant time. But more importantly, the implementations used are
checked using valgrind [Langley 2010].

3.3. Centralizing randomness - cryptographic secure random number generator

Centralizing randomness gives us safety through maintainability. By focusing our atten-
tions on a single source of randomness, we can ensure that any fix or improvement made
on it is reflected across all the library. No primitive in our library gets entropy through
any other means. By having changes in the source code follow a strict suite of tests on the
quality of the random number generator, this culminates in a safer library.

3.4. Nothing is decrypted unless it first survives authentication

Encryption without authentication is not offered. No data is decrypted if authentication
fails. Additionally, authentication verification occurs in constant time.

3.5. Strict versioning

As the library is designed to work only in the Brazilian Elections system, it will be used
in a very closed environment. The library is designed to be able to communicate only



with others in the same version, so when a new version is released, all components of the
system must be upgraded to this version.

This approach avoids downgrade attacks, where an attacker can exploit se-
curity flaws in older versions even if the system is running an up-to-date version
[Alashwali and Rasmussen 2018]. Although no backwards compatibility is too rigid for
decentralized environments, this strategy is reasonable to implement in our scope as the
library distribution to the components is controlled by a centralized entity, the TSE.

3.6. Key generation
All persistent (non-ephemeral) assymetric key-pairs used in the library are generated us-
ing an external program to the library. This program communicates with a cryptographic
token developed by CEPESC, the PCPv2 (Portable Cryptographic Platform). PCPv2 is
an USB device with secure storage and processing capabilities and provides, among other
cryptographic functionalities, a physical True Random Number Generator.

A sequence of random numbers is provided by PCPv2’s TRNG and combined with
the machine entropy pool as a seed to the key generation program’s PRNG. As the random
number generation for keys is a critical part of every cryptographic implementation and
weak RNGs are the primary source of numerous practical attacks on secure systems, we
opted to have a conservative approach using TRNGs. Furthermore, the double-source of
entropy approach is able to mitigate risks of entropy pool poisoning.

4. Cryptographic Primitives
One of the main aspects of libharpia is that its security is founded on the security of
the primitives and protocols used. A rule of thumb for choosing good cryptographic prim-
itives was to avoid secret and untrusted ones. Additionally, we focused on maximizing
performance in software and minimizing memory usage. As we aim to 256 bits security
for the standard operations of the library, some primitives were also not considered.

We chose the combination Chacha20-Poly1305 for authenticated encryption with
associated data, as it is referred in [Nir and Langley 2018]. The first question that comes
in mind is “Why not use AES?”. The simple answer is that Chacha performs better
than AES on software, and in most CPUs without hardware acceleration, with greater
security margin. Chacha20 is also intrinsically time safe. Another aspect of concern is the
higher complexity of AES, which still is subject to hidden relations, for instance, recently
some surprising properties were found for its key schedule [Leurent and Pernot 2021].
Poly1305 is a message authentication code and its security is based on the security of
the underlying algorithm, which means that if one could break Poly1305 than one would
also break Chacha20. We also note that CEPESC’s researchers extensively studied the
security of ChaCha [Coutinho and Neto 2021].

The standard choice for hash function in libharpia is Blake2
[Saarinen and Aumasson 2015], which is an improved version of Blake, a finalist
of the SHA3 competition. Blake2 has seen widespread use across cryptographic libraries
(e.g., OpenSSL, WolfSSL and Sodium), and it is also used as a RNG for the Linux
Kernel. It is faster than MD5, SHA1, SHA2 and SHA3 while been as safe as SHA3.

libharpia really stands out amongst other libraries in its use of post-quantum
cryptography through hybrid protocols. In the classical part, we use Curve448 for



key exchange and its Edwards counterpart Ed448 for digital signature [Hamburg 2015].
Curve448 uses Solina’s prime p = 2448 − 2224 − 1 which has the special format
p = 22ϕ − 2ϕ − 1, ϕ = 224, resembling the golden ratio, from where it received the
Goldilocks nickname, and allows for fast Karatsuba multiplication. Moreover, the curve
has fast and friendly implementations for 32 and 64 bits platforms. The curve is consid-
ered safe under all the parameter from https://safecurves.cr.yp.to/ and it
is adopted by the new TLS 1.3. Although its expected security is 224 bits, bellow our
aim, it is high enough for our purposes, since the hybrid protocols ensure that both primi-
tives have to be compromised in any successful attack, and our choices for post-quantum
primitives are believed to have at least 256 security.

With the post-quantum cryptography standardization in its final stages, we can
clearly see the prevalence of lattice based cryptography. As a matter of fact, only two
out of seven submissions are not lattice based, and the one base on multivariate equations
was recently completely broken [Beullens 2022]. Our choice was to use the CRYSTALS
family, that is, Dilithium for digital signature and Kyber for key encapsulation. Both algo-
rithms rely on the Learning With Errors problem, which were proposed in [Regev 2005].

The CRYSTALS constructions were built from module lattices, that is, lattices
drawn from more structured spaces, in this case, subspace of modules. The digital sig-
nature algorithm Dilithium [Ducas et al. 2018] is based on the Module-LWE problem,
where the error is taken uniformly over the correspondent ring. Its signature scheme is
based on the Fiat-Shamir With Aborts proposed by Lyubashevsky [Lyubashevsky 2009]
and has several types of encoding in order to reduce its key and signature sizes. It performs
better and has smaller public key plus signature size compared to all lattices submissions.
Kyber [Bos et al. 2018] is a key encapsulation algorithm also based on the Module-LWE
problem. It achieves indistinguishability under adaptive chosen ciphertext attack using
the Fujisaki-Okamoto transform over a public key encryption algorithm.

As a final note, it is important to mention that recently the stated security of
all LWE finalist were reduced accordingly to the Matzov center [MATZOV 2022]. In
essence, the reduction were due improvement in the algorithms from the known dual lat-
tice attack on LWE. In our view, this does not compromise the whole scheme because
a change of parameters (one of the main advantages of considering modules) could miti-
gate the reduction. That said, as the NIST competition also decided for the CRYSTALS
family, there is no current reason to change our original choice.

5. API
In this section, we present some of the functions provided by libharpia. The func-
tions that are not listed here are simple variations of the presented ones and exist mainly
for backward compatibility. We refer to Section 6 to more details about the protocols
implemented in these functions.

The library’s API is a requirement defined by TSE. Because of that, some of the
elements of the API are present only to fulfill retrocompatibility requirements. Let’s look
at encryption as an example. We start with a initialization function:
rv = init_encryption(k,NULL,0,ct,ctl,pk,NULL);

As the name implies, init_encryption is responsible for any preparation necessary
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for encryption, more precisely, init_encryption executes a hybrid key exchange us-
ing the keys that were generated preemptively, as explained in Section 3.6. The parameter
k is a pointer to a memory area that will receive the symmetric key from the hybrid key
exchange. ct, ctl and pk are pointers to, respectively, the encapsulated symmetric key,
its length and the public key. Both NULL parameters are innocuous and the 0 could be
any 64 bit unsigned int, which are present only to achieve retrocompatibility with the old
API calls. Any rv different than 0 indicates an error. These error are designed to not give
any critical information about the failure, but rather indicate what element was at fault,
for example, the ASN.1 encoding or incompatible library versions. The rv behaves the
same for all the functions.

Next, the encryption function is quite straight forward:
rv = encrypt(k,p,pl,c,cl,NULL);

Giving as input the symmetric key k, that one have already obtained using
init_encryption, the plaintext p and its length pl, one will get the ciphertext on
pointer c. The ciphertext has the same size as the plaintext plus 44 bytes and its length
has to be inputted in cl, as a sanity check. Those 44 bytes are used for authentication
with associated data and are composed of 28 bytes of metadata such as the library version,
plaintext length and nonce, and the remainder 16 bytes for the authentication tag. Algo-
rithm 3, presented in Section 6.4, explains the Authenticated Encryption scheme And like
all other relevant length values, it is provided as a macro in our headers. Again, we note
that NULL is only used for retrocompatibility.

Signing has a much simpler interface. Taking a buffer and a private key, and
outputting the signature:
rv = sign_buffer(b,bl,s,sl,pk);

where b is a pointer to a buffer to be signed, bl is its length, s is a pointer where the
signature will be outputted, sl is the length of the signature, an input serving as a sanity
check, and pk is a pointer to the private key.

Naturally, we have init_decryption, decrypt and verify_buffer,
which are analogous to the functions presented so far. We also provide a key derivation
function:
rv = derive_key(sk,dk,salt,saltl,info,infol,NULL);

where sk is a pointer to the symmetric key, dk is a pointer to the memory address where
the derived key will be outputted, salt is a pointer to the salt used in the key derivation
process, saltl is a pointer to its length which should be a minimum of 128 bits, info
is a pointer to any additional information to the key derivation (e.g., voter ID), infol is
the length of all the info added.

6. Cryptographic Protocols
In this section, we present four cryptographic protocols implemented in our library. Each
of those protocols is directly linked to functions provided by the API.

The signature and the key exchange are public key cryptography protocols and the
classical methods for those protocols (RSA, elliptic curves) are being threatened with the



possibility of quantum computing and Shor’s algorithm [Roetteler et al. 2017]. There-
fore, we decided to use hybrid public key protocols, combining classical elliptic curves
with candidates algorithms approved for the third and final round of NIST post-quantum
cryptography standardization process [Alagic et al. 2020]. The rationale behind the hy-
brid approach is the conservative one: the protocols design aim to have at least the security
of the most secure of both primitives in the classical and the post-quantum setting. In this
way, we are protected in the non-quantum scenario with the well-known security of the el-
liptic curves and possibly in the quantum scenario with algorithms that relies on problems
believed to be hard-to-solve in quantum computers.

The third protocol is a symmetric-key derivation protocol that derives a new sym-
metric key from a previous one using some associated data, used in the generation of the
encryption keys of individual data of the voters. And, finally, the fourth protocol is the
symmetric-key authentication encryption/decryption scheme, that must be used with keys
derived from the key-exchange protocol or from the symmetric-key derivation protocol.

6.1. Hybrid Signature

The hybrid signature protocol is a simple signature protocol that combines elliptic curve
signature using Ed448 and post-quantum signature using the lattice algorithm Dilithium5
presented in Section 4. The hybrid signature Shy

m = Signec(m,SKec
s )||Signpq(m,SKpq

s )
of a message m is a concatenation of the elliptic curve signature of m and the post-
quantum signature of the same message using the sender’s elliptic curve and post-quantum
secret keys SKec

s ,SKpq
s , respectively.

To verify the signature Shy
m of a message m, the verifier splits the signature in

Sec
m , Spq

m and verify each part separately with the sender’s public keys PKec
s , PKpq

s such
that the signature is only valid if both signatures are valid for m. For a forgery in this
protocol, the adversary needs to forge both signatures, so this protocol is at least as secure
as the most secure of both primitives.

The verification is always done for both signatures even if the first one already
fails. This strategy is used to achieve constant-time verification and therefore avoid leak-
ing which part of the hybrid signature failed the verification.

6.2. Hybrid Key Exchange

The hybrid key-exchange protocol combines elliptic curves cryptography with quantum-
resistant lattice based public-key cryptographic algorithms. The protocol is designed such
that an attack to the protocol able to recover the derived key must attack both the classical
and the post-quantum primitive, so the security of the protocol is dependent of the major
security of both primitives. In other words, if the attacker has a quantum computer we
are protected by the post-quantum algorithms. Conversely, if the chosen post-quantum
algorithms turn out not to be secure, we still have classical (and well established) security
of the elliptic curves. The protocol presented below is based on the draft of Internet En-
gineering Task Force about hybrid post-quantum key encapsulation methods (PQ KEM)
for transport layer security 1.2 (TLS) [Campagna and Crockett 2021].

For the classical part of the protocol, the library implements an ephemeral elliptic
curve Diffie-Hellman using the curve described in Section 4 with the X448 implementa-
tion. In this protocol, we obtain the receiver elliptic curve public key PKec

r and generate



a ephemeral key pair (SKec
eph, PKec

eph) using a cryptographic secure random number gen-
erator. Then, we compute the elliptic curve shared secret ssec = X448(SKec

eph, PKec
r ).

In the post-quantum part, we use the Key Encryption Mechanism provided in
Kyber1024, presented in Section 4. Given the receiver post-quantum public key PKpq

r

we compute the ciphertext Cpq and the post-quantum shared secret sspq with Cpq, sspq =
ENC(PKpq

r ) where ENC is the Kyber1024.CCAKEM Key Encapsulation function.

With both shared-secrets, we compute the shared 256-bit symmetric key KE us-
ing the Blake2 function, presented in Section 4, as the keyed hash function HK(.) such
that KE = Hsspq(Hssec(PKec

eph||Cpq||PKec
r ||PKpq

r )). The protocol returns the symmetric
encryption key KE , the ephemeral elliptic curve public key PKec

eph and the post-quantum
encapsulation ciphertext Cpq. After encryption of a plaintext with the key KE , it is neces-
sary to send to the receiver the PKec

eph and Cpq, so it can recover KE for decryption. The
protocol is described in Algorithm 1.

The receiver recovers the symmetric key KE in three steps. First, one executes
the elliptic curve Diffie-Hellman using his secret key SKec

r and the received ephemeral
public key PKec

eph obtaining the first shared secret ssec = X448(SKec
r , PKec

eph).
Using the ciphertext Cpq and his private key SKpq

r , one is able to recover the
second shared secret sspq = DEC(Cpq, SKpq

r ) using the Kyber1024.CCAKEM
Key Decapsulation function. With both shared secrets it can be obtained KE =
Hsspq(Hssec(PKec

eph||Cpq||PKec
r ||PKpq

r )).

Algorithm 1 Hybrid Key Exchange
function KEY EXCHANGE(PKec

r , PKpq
r ) ▷ Inputs both public keys of the receiver

ssec, PKec
eph ← ECDHE(PKec

r ) ▷ Ephemeral Diffie-Hellman
sspq, Cpq ← ENC(PKpq

r ) ▷ Post-quantum key encapsulation
KE ← Hsspq(Hssec(PKec

eph||Cpq||PKec
r ||PKpq

r )) ▷ Derived symmetric key
sends PKec

eph, C
pq to receiver

return KE ▷ Symmetric Key for encryption
end function

6.3. Symmetric-Key Derivation

This protocol is a Key Derivation Function (KDF) that uses a symmetric-key KS ob-
tained by the Hybrid Key Exchange protocol to generate one or more secure symmetric
keys with no need to call the more expensive asymmetric key protocol. This protocol
is based on the Extract-then-Expand KDF construction, the same used in the design of
HKDF and that has a sound security proof [Krawczyk 2010]. The proposed construction
has two differences when compared to HKDF: (i) it has a fixed sized output length, not
requiring an extra parameter and a loop in its implementation; and (ii) it uses the hash
function Blake2 directly instead of HMAC. Note that both choices improve performance.
In particular, HMAC requires a hash function being called two times, therefore, this KDF
is at least two times faster. Here, performance was the main goal, as the protocol is de-
signed for a specific use case that consists of the encryption of the biometric data of voters.
More specifically, a new key is derived for each voter, yielding in a very computationally
intensive process (we have more than 150 million voters in Brazil).



For each voter v, we derive a new symmetric key Kv, using a randomly generated
16-byte salt Sv and the voter’s unique registration number Rv. We used the keyed hashing
version HK(.) of Blake2, our choice of hash function, as presented in Section 4. The
details are shown in Algorithm 2.

Algorithm 2 Symmetric Key Derivation
function KEY DERIVATION(KS , Rv, Sv)

prk ← HSv(KS) ▷ The hash function is used as a randomness extractor
Kv ← Hprk(Rv) ▷ The hash function is used as a PRF
return Kv

end function

6.4. Authenticated Encryption

The library’s authenticated encryption scheme uses the stream cipher Chacha20 and au-
thentication algorithm Poly1305 described in Section 4. We based our proposed protocol
on the ideas contained in the RFC-8439 [Nir and Langley 2018] by the Internet Research
Task Force, adapting it for our algorithms.

Our authenticated encryption algorithm receives as input a N -byte long plain-
text PN and a 256-bit symmetric key KE . As a first step, a 12-byte Nonce is randomly
generated using a cryptographic secure random number generator. This random nonce
generation aims to prevents nonce misuse, a common problem for implementations us-
ing stream ciphers. The plaintext PN is encrypted with the encryption key KE and the
generated nonce resulting in the ciphertext CN .

For authentication purposes, we derive a new 256-bit authentication key KA using
the library’s keyed hash function with random generated nonce as input and the key KE .
The authenticated array D is the result of the concatenation of the library’s version, the
nonce used in encryption, the ciphertext CN and the ciphertext length N as a 8-byte little-
endian unsigned integer. We compute the 128-bit authentication tag T applying the MAC
algorithm Poly1305 with key KA at the array D and returns D||T . A pseudocode for the
authenticated encryption protocol is presented at Algorithm 3.

The random generation of the nonce implies a probability of 2−48 for collision.
Nevertheless, in the library’s use case, a new symmetric key is obtained at each encryption
- from the key-exchange protocol (6.2) or from the key derivation scheme (6.3). In this
scenario, the key/nonce tuple will have a much smaller probability of being reused.

In the authenticated decryption scheme, the function receives the array D contain-
ing the ciphertext and the associated information (library version, nonce and ciphertext
length) as presented above, the authentication tag T and the symmetric encryption key
KE . The first step is to recover the authentication key KA using the nonce and KE . We
check if T is a valid tag for D using KA, and if not, the algorithm stops and returns an
error. Otherwise, we continue the procedure checking if the length N included in D cor-
responds to the received ciphertext length. Only if both checks pass, we proceed to the
decryption of CN using KE with our stream cipher and returns the result PN .

This protocol aims to guarantee that invalid key/tag/ciphertext sets will not be
decrypted, reducing the computational cost of invalid function calls.



Algorithm 3 Authenticated Encryption
function AUTHENTICATED ENCRYPTION(PN , KE)

Nonce← CSRNG(12) ▷ 12-byte nonce randomly generated
CN ← ENCKE

(PN , Nonce) ▷ Encrypts with stream cipher
KA ← HKE

(Nonce) ▷ Auth Key from Nonce and Encryption Key
Nle8 ← num to 8 le byte(length(PN)) ▷ Length of plaintext
V ← V ersion() ▷ Version of the Library
D ← V ||Nonce||CN ||Nle8 ▷ Concatenate Associated Data and ciphertext
T ← AuthKA

(D) ▷ Compute authentication tag
return D||T

end function

7. Conclusion

In this work, we presented libharpia, a new library to be applied in Brazilian elec-
tions. Throughout the work, we provided all design choices and cryptographic primitives,
showing that libharpia is aligned with the best practices of secure implementations
and cryptography. In addition, we detailed the main cryptographic protocols, justifying
their designs based on well established literature and standards. We also provided a de-
tailed description of how the library is used in practice, and its API. Through the use of
post-quantum cryptography and hybrid protocols, we showed that libharpia provides
a security advantage when compared with other cryptographic libraries available. Despite
all technical characteristics of libharpia, the most important aspect of this work is
that it consists of another step towards transparency and auditability of the Brazilian elec-
tions, describing in a clear and open fashion all details of the library. As a final note, we
remember that libharpia is present in TSE’s TPS, therefore, the source code of the
library is available for any group that desires to analyze it and test its security in practice.
Additionally, we remark that there is an intention of open-sourcing this library in the near
future.
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