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Abstract. There are cryptographic systems that are secure against attacks by
both quantum and classical computers. Some of these cryptographic systems
are the Key Encapsulation Mechanisms (KEM) based on Ring-LWE problem.
Some Ring-LWE problem-based KEMs include a public global parameter that
is random and uniformly chosen. This parameter is used to generate a public
key using in the process one secret key.
In this work, we analyze some values of the public global parameter that leak
information about the secret key.

1. Introduction
The Ring-LWE problem was used as the basis of public key encryption schemes [de Clercq
et al. 2015, Lyubashevsky et al. 2013], digital signatures [Barreto et al. 2016, Wu et al.
2012] key encapsulation mechanisms (KEM) [Bos et al. 2015, Alkim et al. 2017],
homomorphic encryptions [Fan and Vercauteren 2012, Roy et al. 2016], and more.
The Ring-LWE based approaches are promising, due to the provable security and high
efficiency [Lindner and Peikert 2011, Regev 2009]. The Ring-LWE problem is assumed
as hard because the best known algorithms for Ring-LWE problem run in exponential
time. Quantum computers don’t seem to help [Regev 2009, Peikert 2009]. Moreover,
Ring-LWE based Cryptography involves efficient and low complexity operations.

In some Ring-LWE problem-based KEMs, a polynomial a is selected randomly
and it is called by public global parameter. The polynomial b is calculated (b = a.s + e
where s, e are small polynomials). The polynomials b and a are public and the secret s
is hard to find. But there are some values of a that do not offer the necessary security and
leak information about the secret s.

1.1. Our Contribution
We know the public global parameter a is chosen uniformly at random. Analyzing
possible values of a, we find some values of a that make it easier to retrieve a high
number of coefficients of the secret key. Also, we notice experimentally that some
values of parameter a, that leak information about secret key, have repeated coefficients.
Therefore, it is recommended to be careful with the values of parameter a that have
repeated coefficients.

2. Preliminaries
2.1. Mathematical Notations
For an integer q ≥ 1, let Zq be the residue class ring modulo q and Zq = {0, ..., q−1}. Let
Rq = Zq[x]/(xn+1) denote the polynomial ring modulo xn+1 where the coefficients are



in Zq. The operations (addition and multiplication) of the elements in Rq are according
to those of polynomials.

For x ∈ Rq, let x[i] be the (i)-th coefficient of x for 0 ≤ i < n. Zlq denotes a set
of vectors of length l and their components belong to Zq. For x ∈ Zlq, x[i] denotes the
(i)-th component of x for 0 ≤ i < l. {0, 1}l is a set of strings of length l. For x ∈ {0, 1}l,
x[i] denotes the (i)-th bit of x for 0 ≤ i < l. For a set S, x $← S denotes that an element
x is chosen from S uniformly at random. For a distribution χ, x $← χ denotes that an
element x is sampled according to the distribution χ. A polynomial x $← Rq or a vector
in Zlq is chosen from Zq, which means that each element is chosen from Zq. A polynomial

x
$← χl is chosen from χ means that each element is chosen according to χ.

The integer bxe is defined as bx+ 1
2
c ∈ Z.

Centered Binomial Distribution We define centered binomial distribution ψη as
follows: sample(a1, ..., aη, b1, ..., bη)← {0, 1}2η and output

∑η
i=1(ai − bi).

The samples are in the interval [−η, η].
Discrete Gaussian Distribution It is defined by (χσ) where is assigned a weight

proportional exp
(
−x2
2σ2

)
to all integer x where σ ∈ R is a standard deviation.

2.2. The Ring-LWE Problem

The schemes based on Ring-LWE have some advantages since there is a quantum reduction
that solves a hard problem in ideal lattices in the worst case to solving Ring-LWE problem
in the average-case [Regev 2009].

The Ring-LWE problem fixes a power of two n and modulus q. For s ∈ Rq called
as secret, the Ring-LWE distribution As,χ over Rq ×Rq is sampled by choosing a ∈ Rq

uniformly at random, choosing e → χnσ, and outputting (a, a.s + e). One version of the
Ring-LWE problem is the Search Ring-LWE.

Search Ring-LWEq,χ,k: Given k independent samples (ai,bi) ∈ Rq ×Rq drawn
from As,χ for a uniformly random s ∈ Rq (fixed for all samples), find s.

Next, we explain two key encapsulation mechanisms to understand the importance
of the public global parameter.

2.3. Key Encapsulation Mechanisms based on Ring-LWE

We describe the most relevant concepts and definitions in Ring-LWE KEM and NewHope.
The Number Theoretic Transform (NTT) is used to speed up the polynomial multiplication,
and it is not absolutely related in any way to security. To simplify our analysis, we use
ordinary multiplication instead of NTT.

2.3.1. Ring-LWE KEM

The public global parameter a is selected uniformly at random from Rq. The Ring-LWE
KEM is shown in Figure 1 (a). Since sA, sB, eA, eB and e′B are small, Alice and Bob get
the same shared key sKA = sKB with high probability.



2.3.2. NewHope KEM

For a well understanding of NewHope KEM, we review its function definitions.

Compress and Decompress Algorithms: The Compress function takes as input a vector
C ∈ Rq, and a module switching is applied to each coefficient to obtain an element c in
Z8/(x

n+1), where c keeps the 3 most significant bits of each coefficient. The Decompress
function shifts the bits of the input c ∈ [0, 8[n to be the most significant bits.

Encode and Decode Algorithms: The Encode function takes a n
4
-bit input v and generates

an element k ∈ Rq, where the bit v[i] is stored 4 times in k as v[i] multiplied by b q
2
c. The

redundancy is used by the Decode function to recover v from a noisy k.

NewHope Key Encapsulation Mechanism: In NewHope, Alice and Bob should share a
public global parameter a, which is randomly selected from Rq. The NewHope KEM is
shown in Figure 1 (b). Since sA, sB, eA, eB and e′B are small, Alice and Bob get the same
shared key sKA = sKB with high probability.

(a) Ring-LWE KEM (b) NewHope KEM

Figure 1. Key Encapsulation Mechanisms based on Ring-LWE problem

Both Key Encapsulation Mechanisms use a public global parameter a for generating
the public keys pA and pB and to share a shared key sKA = sKB .

3. Bad Values for the Public Global Parameter on Ring-LWE
Firstly, we explain a trivial case to understand how a third party (Eve) can recover some
coefficients of secret keys of both participants.

Case 1: (Trivial Case) Let a be a polynomial with degree 0 (an integer) with value m.
This case can happen but with a negligible probability.

Alice generates her public key pA = sA.a + eA. The integer m multiplies each
coefficient of sA and its respective error eA is added. We have:

pA[i] = sA[i].m+ eA[i] for 0 ≤ i ≤ n− 1

Eve can notice the integer value of a = m and recover sA applying d.c on pA
m

.⌈
pA[i]

m

⌋
=

⌈
sA[i] +

eA[i]

m

⌋
= sA[i] +

⌈
eA[i]

m

⌋



Where the i-th coefficient of sA can be retrieved with no error if −1
2
< eA[i]

m
< 1

2
.

On NewHope, the value eA ∈ ψn8 (−8 ≤ eA[i] ≤ 8), thereforem should be greater
and equal to 17 (m ≥ 17) because −1

2
< eA[i]

m
< 1

2
.

Note: The value of a is a polynomial where each coefficient is selected uniformly
at random in Zq, therefore the value of a being an integer would be suspicious for the
participants. Alice and Bob can deny to share a secret using this suspect value of a.

Case 2: Let a be the public global parameter and we define a polynomial c ∈ Rq such
that a.c = m where m is the integer mentioned before.

Alice generates her public key pA = sA.a+ eA and sends it to Bob. Eve takes pA
and multiplies by c. The integer m multiplies each coefficient of sA.

pA.c = sA.a.c+ eA.c = sA.m+ eA.c because a.c = m

Eve applies d.c to pA.c
m⌈

(pA.c)[i]

m

⌋
= sA[i] +

⌈
(eA.c)[i]

m

⌋
for 0 ≤ i ≤ n− 1

and can retrieve the i-th coefficient of sA if−1
2
< (eA.c)[i]

m
< 1

2
. The result eA.c should be a

small polynomial where each coefficient of eA.c divided bym should be between -0.5 and
0.5. One way to ensure this is to make the polynomial c belong to Gaussian or Centered
Binomial Distribution. Because a multiplication between two polynomials which belong
to Gaussian or Centered Binomial Distribution results in a small polynomial where its
coefficients have an expected value equal to 0.

On NewHope, the value eA ∈ ψn8 and eA.c should be small therefore c should
belong to ψnµ where µ is a small integer. Therefore the parameter a that leaks information
about secret keys can be generated using the formula a = m(ψnµ)

−1.

Note: The value of a is a polynomial with different coefficients in Zq, being less
suspicious for the participants. But Alice and Bob can calculate a−1 and multiply by all
integers in Zq (brute force to determine the value ofm). If the result is a small polynomial
then it is possible that a leaks information because c ∈ ψnµ and c = a−1.m.

Case 3: (Adding error to Case 2)

Let a be the public global parameter and we define a polynomial c ∈ Rq such that
a.c = m+ ψnν where ψnν is a small polynomial and ν is a small integer.

Alice generates her public key pA = sA.a+ eA and sends it to Bob. Eve takes pA
and multiplies by c. The integer m multiplies each coefficient of sA.

pA.c = sA.a.c+ eA.c = sA.(m+ ψnν ) + eA.c because a.c = m+ ψnν
= sA.m+ sA.ψ

n
ν + eA.c

Eve applies d.c to pA.c
m⌈

(pA.c)[i]

m

⌋
= sA[i] +

⌈
(sA.ψ

n
ν + eA.c)[i]

m

⌋
for 0 ≤ i ≤ n− 1



and can retrieve the i-th coefficient of sA if −1
2
< (sA.ψ

n
ν+eA.c)[i]
m

< 1
2
.

Note that the result sA.ψnν + eA.c should be a small polynomial therefore the
polynomial c should belong to Gaussian or Centered Binomial Distribution.

On NewHope, the values sA, eA ∈ ψn8 . By definition a.c = m + ψnν , a public
global parameter a can be generated using the formula a = (m+ ψnν )c

−1 where c should
belong to the Centered Binomial Distribution (c ∈ ψnµ).

Note: The value of a is a polynomial with different coefficients in Zq being less
suspicious for the participants. In this case, we have m = a.c − ψnν where a and m are
public (for m we can use brute force). The value ψnν is an error (small) polynomial and
the value c is unknown. It looks like the Search Ring-LWE problem where c is the secret.
Therefore Alice and Bob do not have knowledge about a (being generated by c) and its
possibility of leaking information.

The same process can be applied to retrieve Bob’s secret sB too in all cases.

4. Experiments
The algorithm was implemented in 100 lines of code using sageMath. It was executed
on a processor Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz with 3 Mb of cache and
8 GB of DDR4 Memory. The code is available online at https://github.com/
reynaldocv/sbseg2022.

For our experiments, we work with parameters n = 1024, q = 12289 (parameters
of NewHope) and set m = q

17
= 722 that allows a maximum margin or error. For

cases 2 and 3, it was generated 100 values of a = m.(ψnµ)
−1 for µ = {1, 2, 4, 8, 16}

and a = (m + ψnν ).(ψ
n
µ)
−1 where µ = ν for µ = {1, 2, 4, 8, 16}, respectively. And

for each value a, 100 public keys were generated making a total of 100000 experiments.
Each public key was multiplied by its respective c and divided by m. Applying rounding
function d.c to this result, we retrieve some coefficients of the secret key. Each experiment
takes at most 0.3 seconds.

Case 2 Case 3
Value of µ 1 2 4 8 16 1 2 4 8 16

Recovered complete keys 10000 10000 9284 144 0 10000 9372 9 0 0
Avg. recovered coefficients (%) 100.0 100.0 99.9 99.5 95.5 100.0 99.9 99.5 95.4 84.2

Max. # of wrong coefficients 0 0 2 19 90 0 3 17 88 218

Table 1. Results of experiments

In Table 1, we show the number of complete keys recovered (with no error), the
average recovered coefficients and the maximum number of wrong coefficients in one
experiment. In both cases for µ = 1, 2 we retrieve 39372 of 40000 secret keys with zero
coefficient errors (giving a success of 98.4 %). And that in the remaining 628 experiments
there was an error in at most 3 of 1024 coefficients of the secret key. For experiments of
case 2 (µ = 16), we retrieve at least 95.5 % (976 of 1024) of coefficients while for case 3
(µ = 16) we retrieve 84.2 % (862 of 1024) of coefficients.

5. Concluding remarks
We exposed some values of the public global parameter a that leak information about
secret keys. Thus, there is a big responsibility how the public global parameter a is



generated. If a has a value that leaks information (selected deliberately or not), then the
secrets are exposed. Therefore the great and open question is “ How to know when the
value of the public global parameter a may or may not leak information about the secret?”.
In our experiments for cases 2 and 3, the generated values a that leak information always
have at least 10 repeated coefficients. Therefore, it is recommended to be careful with
values of parameter a that have repeated coefficients.
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