
A Minimal White-Box Dedicated Cipher Proposal
Using Incompressible Lookup Tables: Space-Hard AES

Félix Carvalho Rodrigues1, Ricardo Dahab1, Julio López1,
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Abstract. In a white-box context, an attacker has full access to the execution
environment and the implementation of cryptographic algorithms. Dedicated
white-box ciphers, such as WEM and SPNbox, provide incompressibility and
key extraction protections in this context, at the cost of increased memory usage
and performance loss compared to standard ciphers. Even when a pure white-
box threat model is not warranted, the use of incompressible lookup tables can
be helpful in deterring side-channel attacks. In this paper we present a simple
threat model for such scenarios and propose a dedicated cipher, Space-Hard
AES, which provides minimal incompressibility guarantees while presenting bet-
ter performance for ARMv8 implementations than other dedicated ciphers.

1. Introduction
The traditional black box threat model assumes that the end points of a communication
channel are secure, and only the channel itself is vulnerable to attackers. Several scenarios
challenge such assumptions, such as the increased threat of malware and other threats
which might compromise machines running cryptographic operations. In a white-box
threat model, an attacker is assumed to have complete access to the full implementation
and the execution environment of a cryptographic algorithm.

White-box cryptography concerns the design and secure implementation of cryp-
tographic algorithms running in untrusted environments. The concept was introduced
in 2003 [Chow et al. 2003], exemplified in a software implementation of the AES ci-
pher which attempts to obfuscate a secret key. This proposed implementation was
shown to be susceptible to practical attacks [Billet et al. 2005], and every new pro-
posed white-box implementation of the AES [Karroumi 2011] was also successfully at-
tacked [Lepoint et al. 2014, Bos et al. 2016].

These attacks, while effective, require complete knowledge of the implementa-
tion. More recently, however, attacks adapting side channel analysis for a white-box con-
text, such as differential computation analysis (DCA), have proven to be highly effective
against standard AES white-box implementations [Bos et al. 2016], and thus also need to
be taken into account. The difficulty in defending against white-box opponents in standard
white-box implementations such as the AES block cipher has prompted efforts to design
new symmetric ciphers, which take into account white-box-model threats from the start.
Most of current proposals focus not only on ensuring that discovering the protected secret
key is infeasible, but also on mitigating possible code lifting attacks [Bos et al. 2016],



in which the attacker extracts the cryptographic implementation itself, to use it as an
effectively larger key, duplicating the functionality of the cipher. However, the counter-
measures against code lifting are costly: the large table sizes make their usage unfeasible
in several contexts and, even when their use is possible, performance loss is significant,
impairing their adoption in realistic settings.

In several scenarios, the pessimistic assumptions of the pure white-box model are
not realistic. While attackers have some degree of access to the execution environment,
they often lack the full access assumed in a pure white-box model. An attacker might
be able to execute software based side channel attacks such as some form of Differential
Computation Analysis (DCA), however lack the capabilities of directly copying an im-
plementation or the environment memory. In these scenarios the performance loss from
the increased code size of current dedicated ciphers such as WEM and SPNBox are often
not acceptable, and a minimal cipher that retains incompressibility is warranted.

In this paper we present a threat model which lies between a pure white-box
threat model and the grey-box model, with an accompanying dedicated cipher pro-
posal which efficiently achieves security in this model. We show its security with re-
gards to space-hardness and key extraction. Furthermore, we delve into implementa-
tion details in an ARMv8 environment for our proposed cipher, showing how its perfor-
mance and security is improved when compared to other dedicated ciphers such as SPN-
Box [Bogdanov et al. 2016] and WEM [Cho et al. 2017], even when using a constant-
time implementation.

1.1. Related Work

After Chow et al. [Chow et al. 2003] presented the first white-box implementation
of the AES cipher, Billet et al. [Billet et al. 2005] were the first to present a
feasible way to discover the secret key embedded in the white-box implementa-
tion, nowadays referred as the BGE attack. Following this, several implementa-
tions were proposed for the AES cipher [Xiao and Lai 2009, Karroumi 2011]. Un-
fortunately, all known (academic) white-box implementations of these block ci-
phers have been broken [Billet et al. 2005, Goubin et al. 2007, Michiels et al. 2009,
De Mulder et al. 2010, Lepoint et al. 2014, De Mulder et al. 2013] through implementa-
tion specific attacks. These attacks require knowledge of the underlying proposed imple-
mentation, which diminished their impact for secretly designed white-box ciphers. How-
ever, in [Bos et al. 2016], Bos et al. coined the term differential computation analysis to
describe a novel technique which adapts a common side channel attack, the differential
power analysis (DPA), to the white-box context. It uses software traces to discover in-
formation on secret keys. These software traces contain recorded memory accesses from
cryptographic algorithm implementations, and using some manipulation can be turned
into noise free power traces, which can be used by DPA statistical tools to recover secret
information on white-box cipher implementations.

The first dedicated white-box cipher was proposed in 2014 [Biryukov et al. 2014].
Its design was based on an ASASA structure, and its security relied on the
hardness of decomposing its layers. Subsequent cryptanalysis revealed possible
vulnerabilities in this structure [Biryukov and Khovratovich 2015]. Bogdanov et
al. [Bogdanov and Isobe 2015] introduced the SPACE family of dedicated block ciphers,



with a focus on using proven standard cryptographic primitives to guarantee their secu-
rity. Shortly after this proposal, they also proposed the SPNbox [Bogdanov et al. 2016]
as a less conservative design intent on making white-box implementations more practical.
In [Cho et al. 2017], the WEM family of ciphers is introduced, based on an Even-Mansour
scheme where the secret key layers are replaced by secret incompressible S-boxes. The
WhiteBlock block cipher [Fouque et al. 2016] is similar to the WEM design as it uses a
standard block cipher as a public permutation between each S-box layer, differing mostly
on how the S-box layer is constructed. Its main contribution is in providing a more rigor-
ous proof of its security goals when compared to other dedicated ciphers.

In the context of ARMv8 cryptographic implementations, most works fo-
cus on standard block ciphers and modes of operation, such as the AES and the
GCM [Gouvêa and López 2015]. In [Rodrigues et al. 2019], the SPACE, WEM and SPN-
box proposals were compared in regards to their performance for ARMv8 machines. They
implemented several versions of the proposed ciphers for ARMv8 machines and provided
fair comparisons of all of them using a CTR mode of operation to allow further paral-
lelism. Their results indicate that SPNbox currently presents the best performance for
ARMv8 implementations.

2. Preliminaries
A symmetric encryption scheme is a tuple E = (K,M, C, G,E,D), where K,M and
C are the set of possible keys, plaintexts (messages) and ciphertexts, respectively, while
G,E and D are the functions for key generation, encryption and decryption, respectively.
For any k ∈ K and m ∈M, D(E(m, k), k) must be equal to m. Note that we alternatively
use E(m) or Ek(m) for denoting encryption (similarly for decryption), when the context
is clear. A white-box compiler CE , takes a symmetric encryption scheme E , a key k ∈
K, a nonce r (optionally) and returns a compiled white-box program CE(k, r) = [Ek]
(respectively [Dk] for the decryption).

The main goal of a secure compiler is unbreakability: given a program [Ek], the
key k embedded in [Ek] must not be discovered efficiently by any adversary program A.

Definition 1 (Unbreakability). Let A be a PPT adversary algorithm. A program
CE(k, r) = [Ek] is considered unbreakable if for any key k ∈ K, any randomly gen-
erated number r, adversary A when run on [Ek] returns a guess k′ ∈ K different than k
with a probability of 1− α(|[Ek]|), where α is a negligible function.

Another important security notion for dedicated white-box ciphers is incompress-
ibility, which is related to the mitigation of code-lifting attacks [Bos et al. 2016].

Space Hardness. The notion of incompressibility has been referred to with multiple de-
nominations in the literature. Bogdanov et al. [Bogdanov et al. 2016] use the term space
hardness to refer to a notion related to incompressibility, defining both weak and strong
space hardness. In the weak space hardness security notion, an adversary must not be able
to encrypt or decrypt a randomly drawn message or ciphertext with less than M bits of the
compiled cipher’s code, while in strong security notion, the adversary must not encrypt
or decrypt any messages given M bits of the code.

Definition 2 (Weak (M,Z)−space hardness). Given an encryption scheme E , a white-
box compiler CE is weakly (M,Z)−space hard if it is infeasible for an adversary A to



encrypt (or decrypt) a randomly drawn plaintext (or ciphertext) with probability of more
than 2−Z , given access to M bits from [Ek] (or [Dk]).

Additionally, we note the similarities between incompressibility as a code-lifting
mitigation strategy with the Bounded Retrieval Model [Bellare et al. 2016]. In this model,
an absolute leakage parameter l is defined, indicating how much data can be leaked with-
out detection by the user’s system. All sensitive data must therefore be incompressible
and large enough so that a leakage of size l does not compromise them.

2.1. Software Protection Mechanisms
In practice, white-box cryptography is often only a small part of the software protection
mechanism, where it is used in conjunction with additional protection techniques. Some
examples of these techniques are summarized below.

Control flow obfuscation. This method essentially tries to shuffle the order of table ac-
cesses that are performed in the execution of each round of an encryption operation. As an
example, each round in the AES encryption process can be seen as a parallel application
of four encoded subrounds. The order of execution of those subrounds can be shuffled
using a PRNG as it does not make any difference in the final result. Furthermore, inside
each subround, the order of table accesses can be shuffled. In the general case, a depen-
dency graph for table accesses can be built to assess which tables must be accessed before
the others. Nodes residing at the same level in the graph represent table accesses whose
execution order can be randomly shuffled.

Table location randomization. Such method is akin to the masking countermeasure ap-
plied in hardware architectures to thwart power attacks. Memory addresses are protected
by adding random offsets to them. This effectively disperses tables at random locations
in the address space.

Dummy operations. In a standard DPA attack, the attacker computes the correlation co-
efficient pj(t) for each key guess Kj for all the time range for which he obtains power
traces. The internal variable V which the power attack targets is usually computed in the
first round itself, and thus samples that indicate the power consumption for V are likely to
be located in a small time range at the beginning of the power trace for each plaintext. For
a system that does not employ disarrangement, the time range over which the intermedi-
ate variable V is calculated is likely to be very similar across distinct iterations of trace
recordings, where each trace is obtained by feeding a new plaintext to the cipher. Thus,
it becomes easy to compute the correlation coefficients. The correct key guess is likely
the one which maximizes pj(t) for some t. The idea of disarrangement is to randomize
the time instance at which V is computed for each execution of the encryption operation.
As a result, for each new plaintext, V is likely to be computed at different time instances.
Therefore, in the power traces, the time instances at which V is computed no longer align
with each other. As so, it becomes more difficult to mount a power attack. In the con-
text of white-box encryption, disarrangement is achieved by adding a random number of
dummy table lookups in between each legitimate table access. This essentially breaks the
alignment pattern for table accesses for each new plaintext for which traces are recorded.

2.2. ARM TrustZone
TrustZone is the ARM implementation of a Trusted Execution Environment (TEE), vir-
tually providing two processors running the Normal World and the Secure World, respec-



tively. A TEE is used in many activities in a smart device: secure boot of an authorized
OS by the manufacturer of the device, keyring implementation, OS protection against
non-authorized modifications, secure payments, digital rights management (DRM), disk
encryption, and more. Separation of the Normal and the Secure World is purely virtual, as
the same physical core is used to run both contexts. This architecture extends the concept
of privilege rings, in which certain operations, i. e., access to specified memory address,
are limited only to privileged processes such as the OS but not by applications running
in the userspace. In the ARMv8 scenario, those rings are called Exception Levels (EL),
among which EL0 is the userspace mode, EL1 is the supervisor, EL2 is typically the hy-
pervisor and EL3 runs the trusted firmware or Secure Monitor. In each level, except for
EL2, the Secure World can be enabled. Typically, a richly-featured OS runs on the Non-
Secure EL1 ring, and a Secure OS runs on the Secure EL1 ring. While the former runs
all necessary tasks for an OS, the Secure OS has a smaller footprint and functionality to
diminish the attack surface, concerning itself mostly with security functionality.

At any given time, the CPU can only be run in one of the modes: Secure or Non-
secure. The transition between such modes is done by interruptions, called from the CPU
from a few ways such as from a peripheral or from a timer or caused by an instruction
trap. Separation of the worlds is enforced by hardware-based access control, allowing
communication between the Secure OS with peripherals and a protected memory range,
inaccessible by the Normal World. This allows secure communication between, for ex-
ample, a fingerprint scanner and the process to acknowledge or refuse user authentication,
without leaking private data through the Normal World. In addition, the hardware mech-
anism allows memory pages residing in the Normal World to be accessed by both worlds;
the Secure World maps into a process virtual memory as needed.

As an example, for key management purposes, a device manufacturer may store
in hardware (i. e., mask ROM) a secure key; then, in the Secure OS, the CPU generates
keys and encrypts them using the hardware key, storing the result in persistent memory
in a key blob, consisting of encrypted keys and related metadata. Applications running in
the Normal World, which does not know the actual, secured key, may request encryption
or decryption functionality through the Secure OS, which handles the usage of keys.

Side Channel Attacks on TrustZone. As main memory is shared between Normal and
Secure worlds, both contexts also share different cache levels to improve access times.
This can be leveraged to mount cache timing attacks. Thus, non-secured implementations
of ciphers, such as a table-based implementation of AES is susceptible to having its secret
keys revealed, even if execution occurs in a safe environment [Lapid and Wool 2018].
This vulnerability surfaces from the TrustZone design decision of sharing memory across
worlds, specially when cache memory is available.

More powerful attacks, such as correlation power analysis (CPA) are capable of
extracting the secrets while running an AES encryption operation, for example. Eletro-
magnetic emissions of an ARM CPU with TrustZone capabilities can be measured and
correlated to a secret, effectively breaking security, even if the implementation runs in
the Secure World [Bukasa et al. 2017]. While attackable, trace collection, taking 7 hours,
and further data processing exceeding 70 hours of CPU time makes the attack limited for
those with enough computational resources. It must be noted that, as expected from the
TrustZone solution being a purely software-based protection, evidences of CPU work-



load under stress are still present, as no protection was given for such experiment. Thus,
implementations must be secured against side-channel attacks, even if a TEE is present.

3. Weak White-Box Threat Model

While the already proposed dedicated ciphers such as SPNBox [Bogdanov et al. 2016]
and WEM [Cho et al. 2017] provide excellent protection against key extraction, relying
only on their incompressibility or space-hardness to prevent code-lifting is not recom-
mended in practice. Without other obfuscation and device binding techniques, the usage
of such ciphers becomes restricted to scenarios where it is viable to store gigabytes of
lookup tables dedicated only towards symmetric encryption. Even in such scenarios, the
size of such lookup tables presents several challenges in regards to performance. Mem-
ory operations must be performed in higher levels, incurring harsh performance penalties.
Furthermore, due to its incompressible nature, cache hit ratio necessarily suffers unless
the full table can be allocated inside the cache layer.

In industry, measures such as the ones summarized in Section 2.1 are used in con-
junction with white-box solutions. Furthermore, designs are kept secret in an attempt to
further increase the difficulty of reverse engineering. For such scenarios, incompress-
ible lookup tables of smaller sizes are desirable, which minimize performance loss from
lookup tables. Their usage provides strong intrinsic protection against most side-channel
attacks, since its design guarantees full diffusion of key material throughout the whole
lookup table.

In our model, besides black-box and traditional side channel leaks, only access
to (noise-free) computational traces of execution are available to the attacker, without
explicit memory position access. A computation trace contains accessed values during
the execution of an implementation of a cryptographic algorithm. Each trace v consists
of (v1, v2, . . . , vt) samples, for all vj ∈ V , where j ∈ [1, t] and V is a set of possible values
that can vary according to the particular execution environment.

Definition 3 (Weak White-Box Threat Model). An attacker in the Weak White-Box Model
has access to a collection of n computational traces (with corresponding plain and cipher
texts) and side-channel access to the encryption/decryption program or circuit.

While the attacker cannot directly read the executable code of the implemented
cryptographic algorithm, he can analyze computational traces in order to find correlations
which might reveal information of either the secret key used in the encryption or of the
lookup tables which were generated using it. It is a similar concept to the one presented
by Rivain and Wang [Rivain and Wang 2019], of a passive adversary with access to com-
putational traces.

This model is implicitly used when designing secret software implementations of
standard ciphers such as the AES for usage in smartphones and other devices which are
not trustworthy. When designing protection measures for these standard ciphers, the im-
plementer is at a disadvantage, since these standard ciphers are not allowed to be changed
in any manner. Therefore, protection measures usually depend on masking and encoding
techniques which can be vulnerable to DCA-like attacks, since fundamental properties of
the cipher have not been changed, such as the amount of key material added to each byte
of the state on each round.



An implementation which attempts to be secure in this environment can be con-
sidered orders of magnitude slower than black-box implementations of standard ciphers,
defeating the purpose of these ciphers in several practical scenarios. Even when protect-
ing only against hardware side-channel attacks, such as when using these cryptographic
primitives in a Trusted Execution Environment like the one provided by ARM’s Trust-
Zone (see Section 2.2), the performance toll caused by the need of using such protection
techniques (or the security vulnerability when foregoing these measures) can be consid-
erable.

However, if we are allowed to propose a new design, incompressible techniques
can guarantee a stronger and more efficient protection to both standard hardware side-
channel attacks and to enhanced software side-channel attacks. In Section 4 we show
a possible design with this model in mind, guaranteeing strong resistance for passive
software and hardware side-channel attacks while performing close to black-box imple-
mentations of standard ciphers.

3.1. Possible Usage Scenarios

We envision two main venues of usage for dedicated ciphers with low level of space hard-
ness. One where hardware protection allows the construction of effective TEEs, which,
while still vulnerable against side channel attacks, are highly effective in preventing code
lifting attacks, and scenarios where a combination of hardware and application binding
are effective against code lifting attacks.

Trusted Execution Environment (TEE). As seen in Section 2.2, even though a TEE is
supposed to ensure protection against most attacks, it is not feasible cost-wise to properly
protect it against most hardware side-channel attacks, since ARM’s TrustZone lives in the
same chip as its main processor. Software protection against side channel attacks in stan-
dard cryptographic implementations can be costly, often affecting performance in orders
of magnitude. However, as a protection against code-lifting attacks, ARM’s TrustZone
and other TEE are very effective, as memory access is heavily restricted. Incompressible
lookup tables are a strong and efficient protection against most side-channel attacks, as
they often ensure that key guesses must use the full guess space to discover even a single
byte of the original key. Thus, the design of new cryptographic ciphers which use incom-
pressible lookup tables as a way of ensuring protection against side-channel attacks for
usage inside TEEs can be recommended as a way to maintain performance while ensuring
protection against side-channel attacks.

Another possible combined usage is in regards to generation of session keys. One
can envision a system where the protected zone acts as a compiler of the incompressible
tables, which can be used in user space in order to minimize possible performance loss
associated with communication and usage of the protected zone.

Combining White Box and Hardware Binding. In Bock et al. [Bock et al. 2019], the
combination of white box techniques and hardware binding solutions are shown to be con-
ceptually sound. They focus on its usage in mobile payment applications, using hardware
and application binding to ensure protection against code-lifting attacks. They expand this
idea in [Alpirez Bock et al. 2020], where they propose indistinguishability for white-box
cryptography with hardware-binding as a new security notion which allows one to design
white-box applications with security against code-lifting attacks. For hardware binding,



the objective is that the white-box cipher should only be executable on the intended de-
vice. Thus, the white-box program can be evaluated when accessed from a specific device,
but is unreachable from anywhere else.

When methods for binding cryptographic functions to devices are available, nul-
lifying code-lifting attacks, our threat model becomes even more relevant, since its main
concern is with the protection against key extraction.

4. Space-Hard AES
In this section we show a proposal which aims to ensure that a cipher using the same
instructions as the standard AES cipher has acceptable space-hardness, and consequently
a good level of protection against both software and hardware side-channel attacks.

4.1. Design

The cipher is based on the AES-128, with ten rounds. The main idea is that instead of
performing a key addition, one replaces this step by using an incompressible white-box
S-Box. The code can be seen in Algorithm 1.

Algorithm 1 Space-Hard AES Enc
Input: A 128-bit block of plaintext and an 8-

to-8 bit incompressible S-Box S.
Output: The 128-bit encrypted message.

state← plaintext
state← S(state)
for r from 1 to 9 do

state← SubBytes(state)
state← ShiftRows(state)
state← MixColumns(state)
state← S(state)

end for
state← SubBytes(state)
state← ShiftRows(state)
state← S(state)
return state

Figure 1. 16-to-16 bit S-box S
example generation.

By only using a single incompressible 256 byte lookup table, we ensure that per-
formance is minimally impacted, while still maintaining a strong intrinsic defense against
DCA-like attacks. One can generate an incompressible lookup table with multiple ap-
proaches. If one wishes to link the security of its incompressible S-Box to well known
black-box primitives, the approach detailed by the WEM family of ciphers guarantees
such security, at the cost of an extremely expensive black-box decryption. If a black-
box instance capable of decoding multiple different keyed compiled instances is needed,
the approach taken by the SPNbox family of ciphers provides the best guarantees, even
though its security is linked to smaller ciphers without relevant cryptanalysis effort. In this
work we consider our incompressible S-Boxes to be generated as described by the WEM



cipher [Cho et al. 2017]. The generation is as follows. In a secure environment, a long
sequence of random bits is generated depending on the secret key k, e.g. using an AES
based CTR-DRBG; then, the sequence is used as a way to provide random numbers to
a shuffler (such as the Fisher Yates algorithm [Knuth 1998]) which permutes a sequence
(0, 1, . . . , 2m − 1) to form an m-to-m S-box. Figure 1 illustrates the shuffling method.

In the design of this cipher, we assumed our executing environment to be using
the ARM architecture, more specifically the ARMv8-A version with the hardware aided
AES instructions present in the Cryptographic Extension. If one assumes an ARMv8
architecture, we can compose the generated S-Box with the SubBytes operation, al-
lowing the full usage of the Crypto Extension instructions, which can perform a single
MixColumns operation. However, by design it is also optimal for usage in Intel ar-
chitectures containing AES-NI instructions. In these machines, the AES-NI operations,
unlike its ARMv8 counterparts, perform a full round of encryption, therefore the S-Box
must not compose with the SubBytes operation.

Figure 2. Possible implementation strategies of Space-Hard AES while taking
advantage of cryptographic instructions in both ARMv8 and Intel.

When compared to other ciphers shown in this work, we can see that it is supposed
to have the best performance, since its diffusion layers are smaller than both WEM and
SPNbox ciphers, and its non-linear layer has the same size as the SPNbox-8 cipher. In
Figure 2 we present a round of the cipher compared to the AES cipher and a hypothetical
Intel version. Note that while here we instantiate a version with a single 8-to-8 lookup
table, larger and more numerous tables may be used when desired.

4.2. Security

When regarding its black-box security, its AES design, with the table lookup taking place
of the key addition, ensures that its security remains the same as the traditional AES
cipher. In regards to the key-extraction security of its incompressible lookup table, it



directly depends on the manner in which it is generated. We do not propose a new
method for generation, instead relying on the security of the methods used in either the
WEM [Cho et al. 2017] or in the SPNbox family of ciphers [Bogdanov et al. 2016].

DCA attacks and similar side-channel attacks rely on each lookup table depending
only on a fraction of the key, which is extracted by computing correlations of key byte
guesses and traces of execution. The major difference when comparing to these dedicated
white-box ciphers is that each lookup table incorporates at least 128-bit secret key infor-
mation, therefore implying that the key space for such attacks is at least 2128, making any
such attacks unfeasible. Cache and timing attacks also are ineffective at retrieving the
embedded key due to the same reasoning.

As for differential fault analysis (DFA), where faults are injected at specific byte
positions, modifying its state, again the fact that the attacker has only access to the com-
piled implementation means that any such technique reduces to a differential attack on
the cipher or pseudo-random generator used to generate its lookup tables.

A possible, though yet unreported, code-lifting attack regards a case where DCA-
like techniques are used to recover the lookup tables used in the cipher, instead of attempt-
ing to recover the secret key. In this scenario it might be possible to design a secret dif-
fusion layer similar to the external encodings present in the AES implementation designs
of Chow et al. [Chow et al. 2003] which is able to prevent these attacks. Such scenario
might provide other avenues of research in both dynamic diffusion layers and encodings.
Poor implementations that fail to be constant time might also lead to such code-lifting
attacks, due to leakage of its lookup tables by cache or time side channel attacks.

Finally, regarding its space hardness, we directly use the formula derived by
Bogdanov et al. [Bogdanov et al. 2016]: given a size parameter M , the total table size
T = 28 × 8, the number of accesses per round t = 16 and the number of rounds R = 11,
the probability of successful decryption given a random plaintext is

2−Z =

(
M

T

)tR

=

(
M

T

)176

,

i.e. for an M = T/2, its probability of decryption is 2−176, much lower than simply
guessing at random. In fact, if we wish for a parameter Z = −128, the parameter M
might be as high as T/(20.727), which is comparable to the SPNbox8 cipher, with the
same total size T = 256 bytes.

4.3. Implementation Details

For the implementation of the different ciphers, several techniques were used. Most
are also present in [Rodrigues et al. 2019] for the implementation of already proposed
dedicated white-box ciphers, such as instruction pipeline optimizations (described as n-
way implementations in our results) and memory coverage optimizations to reduce cache
misses. We briefly show how to implement the required table lookups in a constant time
fashion for Space-Hard AES, and then show details on the proposed cipher implementa-
tion.
Constant Time Table Lookups. In order for our proposed ciphers to run in constant time,
one must make sure that lookup table accesses are constant time operations. For the space



hard AES proposal with a single table, this can be accomplished efficiently by keeping the
whole lookup table in 16 NEON registers, using four ld1 operations, and then using four
tbl instructions to execute each table lookup. One way to achieve this is to first apply
an XOR operation between the state and masks [0x40, . . . , 0x40], [0x08, . . . , 0x80], and
[0xC0, . . . , 0xC0], storing the results in registers v1, v2 and v3. Then, assuming the
table is loaded in registers v16 to v31, do the following operations:

tbl v0.16b, {v16.16b, v17.16b, v18.16b, v19.16b}, v0.16b
tbl v1.16b, {v20.16b, v21.16b, v22.16b, v23.16b}, v1.16b
tbl v2.16b, {v24.16b, v25.16b, v26.16b, v27.16b}, v2.16b
tbl v3.16b, {v28.16b, v29.16b, v30.16b, v31.16b}, v3.16b .

The lookup table access for 16 bytes can then be obtained by adding the registers
v0, v1, v2 and v3 in GF ((28)16). An alternative is to use a combination of tbl
or tbx instructions to execute each table lookup by subtracting from the state between
tbl/tbx. Such usage is present on the Linux Kernel AES implementation geared to-
wards ARMv8 CPUs without cryptographic extensions. Since this setup requires a large
number of registers, a horizontal implementation alleviates this restriction by allowing the
reuse of these registers for the constant time finite field operations after each γ layer is
completed.

Space-Hard AES versions. Since Space Hard AES relies on many steps of the AES
cipher, ARMv8 Cryptography Extention (CE) instructions can be used at large to imple-
ment the first. The first version relies on computing the byte substitutions using the tbl
and tbx instructions to replace the AddRoundKey layer from AES; then, aese with a
null key and aesmc can be issued to execute the remaining AES operations. The decryp-
tion operation can be implemented in the same way, only properly reordering layers and
using inverse AES instructions. This implementation can be optimized towards pipelin-
ing; to avoid costly memory operations, processing four 128-bit words is optimal in a
register pressure standpoint.

A second version doesn’t rely on ARMv8 CE instructions, widening the num-
ber of platforms in which the cipher can be run. To increase performance, this imple-
mentation relies on a combined SubBytes with AddRoundKey (which, per se, it is
another substitution lookup) tables, requiring a single tbltbx (and helper instructions
such as sub) to implement both substitutions. The diffusion layer is implemented akin
to the Linux Kernel AES implementation geared towards ARMv8/ARMv7 CPUs with-
out the CE instructions support. To further speedup the non-CE version, an optimal for-
mula [Fujii et al. 2019] to compute the MixColumns layer was implemented, encrypting
four 128-bit blocks at a time.

5. Experimental Results
For the performance comparisons with our proposals’ implementations, a Cortex-A76
was used, present in the Qualcomm®Snapdragon™855 Mobile Hardware Development
Kit. Ciphers were cross-compiled to the Android platform using clang version 8.0.2 for
all cores with flag -O3 enabled. The performance test was done using the CTR mode
of operation to encrypt messages of size 2KiB or 16KiB for 215 iterations in which each
iteration takes as input the output of the previous one; the first message was sampled from
/dev/urandom.

Following the nomenclature of [Rodrigues et al. 2019], there are pipeline-
optimized versions (4 or 8-way), cache-optimized versions (“Hway”), and single block



Table 1. Measured performance (in cycles per byte) of different versions of pro-
posed dedicated ciphers in CTR mode of operation in the Cortex-A76 core.
The “# Loads” column shows the quantity of loads/table lookups needed
to cipher a single 128-bit block.

Implementation Constant Lookup Tables Performance (cpb)
Time Size (KiB) # Loads 2048 B 16 KiB

SpaceHAES-CE-1way (ours) ✓ 0.25 176 25.811 25.808
SpaceHAES-Crypto-4way (ours) ✓ 0.25 176 9.263 9.251
WEM16-Hway [Rodrigues et al. 2019] × 13.3 104 102.884 145.147
SPNbox8-LUT-Hway [Rodrigues et al. 2019] × 0.25 160 17.83 17.63
SPNbox8-CT-Hway [Rodrigues et al. 2019] ✓ 0.25 160 42.685 42.622
SPNbox16-8way [Rodrigues et al. 2019] × 128 80 21.21 21.01

version (equivalent to a “1-way” version). Pipeline-oriented versions were built on the
fact that there are 32 NEON registers, hence avoiding register spilling and penalties as-
sociated with it. For the SPNbox cipher, we additionally present a version using lookup
tables as a way to speed up the θ and γ layers, here referred as the “LUT” version. The
SPNbox-8-CT-Hway version refers to a constant time white-box implementation com-
parable to the implementation of our proposed Space-Hard AES cipher. For further de-
tails, please refer to [Rodrigues et al. 2019]. The SpaceHAES-Crypto-4way refers
to the pipelined 4-way implementation which uses the hardware AES instructions, while
the SpaceHAES-CE-1way implementation refers to the implementation without using
the Cryptographic Extension (note that all other implementations use these instructions
where possible).

The experiments displayed in Table 1 show that the performance of Space Hard
AES can be about two times faster than the state-of-the-art dedicated white-box cipher
with comparable space hardness. When comparing only constant time implementations,
the advantage is even greater, with it being more than 4 times faster than the SPNBox8
implementation. We also highlight that the implementation without usage of the Crypto-
graphic Extension from ARM is also competitive with the best known implementations
of currently proposed dedicated ciphers.

6. Conclusions
In this paper we presented a threat model between the classical white-box and grey-box
models, where attackers have access to traces of computation instead of full control of
the executing environment. For this context, we proposed a minimal dedicated white-box
cipher which guarantees incompressibility and security against key extraction.

In the Space-Hard AES proposal, we add incompressible lookup tables to the
design of the AES cipher, which in turn efficiently protects its design from both software
and hardware side channel attacks. The proposal provides a comparable level of space-
hardness to other proposed dedicated white-box ciphers with tables of similar size, such as
SPNbox8, while improving performance and ensuring the possibility of efficient constant-
time implementations.

In several contexts where white-box solutions are required, their usage is restricted
to key generation for standard block ciphers which then operate via a black-box imple-
mentation. While Fouque et al. [Fouque et al. 2016] proposed a white-box generator, its



performance is not comparable to newer dedicated ciphers such as SPNbox or our own
proposals, therefore it would be of interest to research whether it is possible to achieve
higher performance in key generation by adapting our designs towards this goal.
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