
Revisiting the Biclique Attack on the AES
G. C. de Carvalho1, L. A. B. Kowada1

1Instituto de Computação - Universidade Federal Fluminense (UFF) - Niterói - RJ

Abstract. The AES Cipher is one of the most widely used block ciphers through-
out the world for the better part of two decades now. Despite its relevancy, there
has been no great progress in the attempts at finding exploitable flaws or crypt-
analysis techniques that are able to find the secret key in less time than simple
exhaustive search for its full version. The only exception is biclique cryptanaly-
sis which was used more than once to recover the secret key in marginally less
time than simple brute force. The last improvement happened 8 years ago. This
paper finds the best results for all but one of the variations attempted on the
AES, through the help of the concept of generator sets for related-key differen-
tials, in terms of time complexity as well as a software that semi-automates tests
on general word-based ciphers.

1. Introduction
The AES Cipher is one of the most widely used block ciphers throughout the world for
the better part of two decades now. Despite its relevancy, there has been no great progress
in the attempts at finding exploitable flaws or cryptanalysis techniques that are able to find
the secret key in less time than simple exhaustive search for its full version.

The only exception is biclique cryptanalysis which was used in 2011 to create
the first attack faster than brute force on the full version of AES [Bogdanov et al. 2011].
At the time, this new method inspired its straightforward application in many ci-
phers [Çoban et al. 2012, Abed et al. 2012, de Carvalho and Kowada 2020], as well as
the development of variations to apply in others which were not as simple of a task
[Khovratovich et al. 2012, Chen and Xu 2014].

Many relevant improvements were introduced over the years. One that deserves
mentioning is star-based bicliques, which deals with the biggest problem of biclique
cryptanalysis: the amount of data necessary to perform the attack being too high in com-
parison to the small gain in time for searching the keys. This variation is able to reduce
to only one plaintext-ciphertext pair, turning the method into a direct improvement over
just brute force [Canteaut et al. 2013, Bogdanov et al. 2014]. However, it does become
slower in comparison with other variations.

The most recent improvement was made in 2022 and is regarding the way in which
the related-key differentials of the attack are chosen [de Carvalho et al. 2022]. The con-
cept of generator sets enables the cryptanalyst to use more than one subkey as basis for
the attack which in turn greatly increases the possible bicliques that can be used.

The process of finding bicliques, most of the time, is not simple. This is due to
most of the processes involved being ad hoc, with few to no frameworks to help the crypt-
analyst, as is true for most fields in cryptanalysis. Last decade there has been a movement
towards the development of frameworks and software for this field in particular, from
progress in automated proofs of security for sbox-based ciphers [Mouha et al. 2011] and

ARX ciphers [Liu et al. 2016, Sun et al. 2017], and most recently an automatic tool has
been used to find related-key differentials for some instances of the block cipher Rijndael
[Rouquette et al. 2022].

Nonetheless, the only existing tool for biclique cryptanalysis is a software that
was created in 2011 [Abed et al. 2014] but was never updated with the new variations,
therefore being archaic nowadays. Furthermore, the software was not able to find the best
bicliques on account of it being only able to look for simple bicliques, such as the original
one [Bogdanov et al. 2011].

1.1. Our contributions
Our work consists in turning the task of finding bicliques less demanding through a new
design perspective and through our software that semi-automates it. The tool is capable
of finding related-key differentials however way the user desires and can extrapolate a
biclique from them.

To show them in practice, we improve on most of the time complexity results
of biclique cryptanalysis over the AES using a 128 bit key (AES-128). This is done by
combining the generator sets method from [de Carvalho et al. 2022] with our improved
overview of the attack. Table 1 compiles the comparison between the results over AES
found in literature and ours.

Table 1. Summary of the comparison between our results and the best found in
literature for biclique cryptanalysis over the AES

identifier
time

complexity
data

complexity
our time

complexity
our data

complexity authors

star-based
2126.71 1 2126.69 1 [Bogdanov et al. 2014]

uses whole
codebook 2125.64 2128 2125.64 2128 [Bogdanov et al. 2014]

unbalanced
2126.13 272 2126.02 288 [Tao and Wu 2015]

dimension 16
balanced 2126.02 288 2125.90 288 [Tao and Wu 2015]

2. Background of independent bicliques
Here we informally define the core concepts needed to understanding biclique cryptanal-
ysis as a whole. For all definition below, assume that: It is given a cipher Cipher which
has a secret key with k bits and m total key bits.

2.1. Generator sets for the key bits
A generator set is any set of key bits that is enough to generate all m key bits of Cipher

through some algorithm.

Prior to its creation in 2022 [de Carvalho et al. 2022], instead of generator sets,
a base key was used for all the related-key differentials involved in the biclique attack,
and they were always a single or consecutive subkeys of Cipher, restricting the amount of
bicliques that could be found. With generator sets, this is not the case. Each differential
in the attack can be defined over a different generator set, if it is necessary.

2.2. Related-key differentials

A related-key differential ∆ is defined by a related-key difference ∆K , which can be
defined, for the purposes of the biclique attack, as the pair (G, δ), where G is a generator
set and δ is an assigned value for each bit of G. For instance, for the AES-128 cipher, if the
secret key is chosen as G the following bitstring in hexadecimal represents the assignment
of each bit of G (the rightmost being bit 0):

δ = 0x00000000000000000000FF000000FF00

The related-key differential is then the propagation to all other key bits of the
cipher as well as the propagation through the internal states of that cipher. Every state bit
and key bit that is affected by this propagation is active and everyone that is not affected
is not.

The propagation is done through two encryptions of a single plaintext P (or de-
cryptions of a single ciphertext C): one by an arbitrary assignment of values a for G and
the second one by a ⊕ δ. Every state or key bit whose value was different through the
encrytion is active.

In our case, and many others, it is more useful to work with active words instead
of bits, simply due to most operations in the cipher’s encryption being word-based (all of
them for AES).

2.3. Independent bicliques

A biclique covers a pre-defined number of consecutive states, thus, the initial state and the
final state of the biclique must be pre-defined. The biclique is also formed by at least two
families of related-key differentials, one whose propagation (inside the biclique) is done
by encryption (∆i-differentials defined by ∆K

i key differences) and other by decryption
(∇j-differentials defined by∇K

j key differences).

For computing the active words of the ∆i-differentials, the propagation starts in
the initial state and propagates to both ends of the cipher (encryption and decryption).
The ∇j-differentials, starts in the final state and propagates to both ends of the cipher
(encryption and decryption). The biclique is independent if and only if the ∆i-differentials
and ∇j-differentials share no non-linear components of the cipher (Sboxes).

P
∆←− Binitial

∆−→ C P
∇←− Bfinal

∇−→ C

Considering the existence of the initial and final states, we can partition Cipher

into three subciphers, f , g and h, where h covers from the plaintext to the initial state, g
covers the biclique and h covers from the final state till the final state, as shown below.

P −→
h

Binitial −→
g

Bfinal −→
f

C.

The subcipher g can also cover the first state or the last state of the cipher. In that
case, respectively, h and f are the identity cipher.

2.4. Key partitioning

The biclique attack can be seen as an optimization of an exhaustive search. This is due
to the fact that every single key is tested, except that it is done in a way that is faster than
just simply testing each possible key through the cipher.

For that to happen, it is necessary to partition the whole key space into groups in a
way that each group is tested separately through the biclique. The improvement in speed
comes from this choice.

Each group has a representative, called base key. The base key of the group has
some bits fixed to 0 while all other vary from group to group. The bits that are fixed to 0
are the ones that go through every possible value we the key difference of each related-key
differential in the biclique is applied to them.

For example, suppose a base key in which bytes 0 and 1 are fixed to 0. This means
that there has to be a total of 216 related-key differentials in the cipher, and every one of
them influence one or both of those bytes in a way that no key is repeated nor is not tested.

Furthermore, the base key must also be a generator set (usually a subkey or con-
secutive subkeys), so that all the key bits can be generated to carry out the attack.

3. The Biclique Attack
In this section is presented the steps necessary to execute the biclique attack on a given
cipher, as well as how the time, memory and data complexities are computed.

3.1. The steps of the attack

After choosing the related-key differentials and which internal states the biclique covers,
the actual attack follows these steps below. We assume that the biclique contains only one
of each related-key differential for simplicity, in which case, all keys inside a group are
indexed in a 2d1 × 2d2 matrix K[i, j], where 0 ≤ i < 2d1 , 0 ≤ j < 2d2 and d1 and d2 are
the dimensions of the first and second related-key differentials, respectively.

1. Building the biclique. The chosen biclique results in a structure that satisfies the
following condition

∀i, j : Sj
K[i,j]−−−→

g
Ti,

where Sj are internal states of the cipher that are at the beginning of the biclique
and Ti are internal states at the end of the biclique.

2. Obtain data. Since this is either a chosen plaintext or chosen ciphertext attack,
we have at our disposal either an encryption or a decryption oracle, which is used
to obtain the ciphertext Ci for each plaintext Pi or vice-versa.

∀i : Pi
encryption oracle−−−−−−−−−−→

Cipher

Ci or ∀i : Ci
decryption oracle−−−−−−−−−−→

C−1
ipher

Pi.

3. Meet-in-the-Middle. For each key K[i, j] in the group it is tested either if

∃i, j : Pi
K[i,j]−−−→

h
Sj or ∃i, j : Ti

K[i,j]−−−→
f

Cj.

depending on which end of the cipher has been chosen for the propagation.
If one of the K[i, j] is the secret key, then the above condition is satisfied. There-
fore, every key that satisfies it is a candidate to the secret key. To do this faster
than a simple meet-in-the-middle approach, there is a method called matching
with precomputations.

3.2. Matching with precomputations
This method consists on the choosing of a variable v, that can be any amount of words in
a internal state of the cipher between an edge and the biclique, such that the computing of
v is done from both sides, depending on the biclique.

∀i : Pi
K[i,0]−−−→ v1i and ∀j : v2j

K[0,j]←−−− Sj.

or

∀i : Ti
K[i,0]−−−→ v1i and ∀j : v2j

K[0,j]←−−− Cj.

This is useful due to the fact that we are able to precompute and save in memory
all internal states and subkeys of both related-key differentials for the keys K[i, 0] and
K[0, j] in the forward (encryption) and backward (decryption) directions.

What is left is to recompute those words of the cipher that are affected by both
the related-key differentials. The other words do not need to be recomputed because need
they can be read from memory.

3.3. Complexities
This attack can be seen as an improved exhaustive search, since every key will be tested,
but not the whole cipher will be computed in each step. Three types of complexities are
of interest: memory, data and time.

The memory complexity is dominated by the Precomputation Phase of the Match-
ing with precomputations method due to requiring the storage of whole states of many
rounds of the cipher. This is negligible for most almost all variations of biclique crypt-
analysis.

The data complexity depends only on how many bits of Ci are affected by the
∆i-differentials (or Pj are affected by ∇j-differentials depending on the biclique), which
depends essentially on the amount of rounds covered by the cipher, its positioning inside
the cipher, as well as on the diffusion properties of the cipher.

Finally, the time complexity is where most of the analysis is necessary. It is basi-
cally the number of key groups times the time complexity of each iteration. Each iteration
builds the biclique and then does the matching with precomputations, which is divided
into precomputation phase and recomputation phase. If there are 2d1 ∆K

i key differences
and 2d2 ∇K

j key differences we have

Ctime = 2k−d1−d2(Cprecomp + Crecomp + Cfalsepos).

The false positives are the keys that pass on the test in the recomputation phase,
meaning that they are secret key candidates. Thus it is necessary to check if they are the
secret key and Cprecomp includes the biclique building step.

4. The AES-128 cipher

The AES cipher is one of the most well known ciphers in the world. Due to space con-
straints, we refer to the original paper for a description [Daemen and Rijmen 2013].

We keep the notations used in other relevant papers. In essence, for the first nine
rounds, an even state is a pre-AddRoundKey state while the odd ones are pre-SubBytes
states. The pre-ShiftRows and pre-MixColumns states are not enumerated or shown in
the diagrams. Each one of the eleven subkeys are enumerated with a $ symbol, the secret
key being subkey $0.

Finally, inside a state or subkey, the bytes are enumerated from 0 to 15 start at the
leftmost column and uppermost row, descending each column before passing to the next
one.

5. Our attacks

All of our attacks were implemented and tested by a developed software created by us. It
is a Java console application capable of finding bicliques for ciphers given the parameters.
The only two ciphers implemented are the AES-128 and Serpent, however any word-
based cipher can be implemented by simply creating a new class, extending the “Cipher”
class and implementing its abstract methods.

Another aspect of every attack in this paper is that no biclique has the same gen-
erator set for all its related-key differentials. This adds a small substep at the beginning of
the biclique building step in which the base key must first generate all the subkeys of the
cipher and only then the key differences are xored to compute the related-key differen-
tials. This does not affect the overall complexity since it is done only once for each group
and costs less than a full AES-128 computation. Besides that, the definition of the base
key is also a little different, given that a single base key must be chosen to be used as the
representative of each key group to be tested.

The complete framework as well as the material regarding the attacks that are not
present in this work can be found at the github repository, accessible through the following
address https://github.com/MfMhj3uNy5gfp4Z/BicliqueFinder.

5.1. Star

The star is a different kind of biclique, in which there are two or more related-key differ-
entials of the same kind and is always constructed in one of the ends of the cipher. If it is
constructed in the beginning, there are only ∆s, and there are only ∇s if its in the end of
the cipher.

This is the case because, when constructed this way, no words are active in the
plaintext or ciphertext, making it so that only one pair of data is necessary to carry the
attack.

Our attack uses an 8-dimension balanced biclique. This means that each family of
related-key differentials, contains 28 different ones. For the AES, this means that a single
value 0 ≤ i0 < 28 is used to define the ∆i0-differentials and 0 ≤ i1 < 28 is used to define
the ∆i1-differentials. The generator set for ∆i0 is subkey $1, where both bytes 8 and 12
are equal to i0, and the one for ∆i1 is subkey $0, where both bytes 0 and 4 are equal to i1.

https://github.com/MfMhj3uNy5gfp4Z/BicliqueFinder

There are many available base keys to be chosen for this particular biclique. We
chose subkey $0, in which all bytes assume all values, except for bytes 4 and 8, which
are fixed to 0. In the biclique building step they will assume all values through i0 and i1,
respectively.

The recomputation phase is, for the time complexity of the attack, the most rel-
evant part. We are interested in the amount of Sboxes that are active both in forward
and backward directions towards the variable v. In the case of our attack, v is byte
3 of state #11. Due to space constraints, both the propagation through the biclique
and the recomputaion step are not shown here. We refer to https://github.com/
MfMhj3uNy5gfp4Z/BicliqueFinder.

The data complexity of the attack is trivially just 1 pair of plaintext-ciphertext,
due to being no active bytes on state #0. The time complexity is given by the fraction
of the total amount of Sboxes that must be recomputed in the attack divided by the total
amount of Sboxes in the cipher. The relevant states are the pre-SubBytes ones, i.e., the
odd numbered ones.

Therefore, in the forward direction, there are 16 in states #5 and #7 and 4 in
state #9, totaling 36 Sboxes to be recomputed. For the backward direction, state #19
requires the recomputation of 6 bytes, while states #17 and #15 must have all 16 bytes
recomputated. State #13 needs only 4 and #11 needs 1. This makes it 43 Sboxes. Since
there are no Sboxes to be recomputed for the keys, than the total is 79 out of 200 Sboxes.
They need to be recomputed for all possible values of ∆s, thus Crecomp = 216×79/200 =
214.66.

Finally, Cprecomp ≈ 28.5 full computations of the AES cipher, because the precom-
putation only needs to be done till v, and Cfalpos = 28 since there are 216 tests and only
28 possible values for v. The complete time complexity is 2112 × 214.69 = 2126.69, a small
improvement (one less Sbox) than the best in literature [Bogdanov et al. 2014].

5.2. No restrictions on the data
The peculiarity of this kind of biclique is that it can be constructed in the middle of
the cipher instead of one of the edges. This creates more possible bicliques, but almost
guarantees that all bytes of the last (or first) state are active, due to the diffusion properties
of the AES-128.

We are not able at this time to find a better biclique than what is in the literature in
terms of time complexity. What we managed to find were some bicliques that are as good
as the literature and some that are worse, although they need to recompute less Sboxes in
the internal states of the cipher. The problem is that for them it is necessary to also re-
compute some bytes of the subkeys. Furthermore, we decide to show one of the bicliques
that manages the same time complexity as the best in literature [Bogdanov et al. 2014].

Similarly to our star-based attack, this one uses an 8-dimension balanced biclique,
but this time, there is a ∆ family and a ∇ family. Therefore, a single value 0 ≤ i < 28 is
used to define the ∆i-differentials and 0 ≤ j < 28 is used to define the ∇j-differentials.
The generator set for ∆i is subkey $2, where both bytes 8 and 12 are equal to i, and the
one for∇j is subkey $4, where only byte 0 is equal to j.

There are many available base keys to be chosen for this biclique as well. We

https://github.com/MfMhj3uNy5gfp4Z/BicliqueFinder
https://github.com/MfMhj3uNy5gfp4Z/BicliqueFinder

chose subkey $3, in which all bytes assume all values, except for bytes 0 and 3, which
are fixed to 0. In the biclique building step they will assume all values through i and j,
respectively.

In the recomputation phase we are interested in the amount of Sboxes that are
active both in forward and backward directions towards the variable v. In the case of our
attack, v is byte 3 of state #15. Due to space constraints, both the propagation through the
biclique and the recomputaion step are not shown here. We refer to https://github.
com/MfMhj3uNy5gfp4Z/BicliqueFinder.

The data complexity of the attack is the whole codebook, due to all bytes in state
#0 being active, i.e. 2128 pairs of plaintext/ciphertext.

For the time complexity, in the forward direction, there is 1 byte to be recomputed
in state #9, 7 bytes in state #11 and 4 more for state #13. The total is 12 Sboxes. For
the backward direction, state #19 requires the recomputation of all 16 bytes, while state
#17 needs only 4 and #15 must recompute only 1. However, since the biclique is not on
any edge of the cipher, some states have to be recomputed until the edge. In this case, the
backward needs to take into account the 4 active bytes of state #1. This totals 25 Sboxes
for the backward part. Since there are no Sboxes to be recomputed for the keys, than the
total is 37 out of 200 Sboxes. They need to be recomputed for all possible values of ∆i

and ∇j , thus Crecomp = 216 × 37/200 = 213.57.

Finally, exactly as is for the star-based attack, Cprecomp ≈ 28.5 full computations of
the AES cipher, because the precomputation only needs to be done till v, and Cfalpos = 28

since there are 216 tests and only 28 possible values for v. The complete time complexity
is 2112 × 213.64 = 2125.64. This is the same time complexity as shown previously in the
literature [Bogdanov et al. 2014], with the difference being the use of multiple generator
sets for defining the families of related-key differentials.

#
0

⊕

#
1

#
2

⊕

#
3

#
4

⊕

#
5

#
6

⊕

#
7

#
8

⊕

#
9

#
10

⊕

#
11

#
12

⊕

#
13

#
14

⊕

#
15

#
16

⊕

#
17

#
18

⊕

#
19

#
20

⊕

#
21

$
0

$
1

$
2

$
3

$
4

$
5

$
6

$
7

$
8

$
9

$
10

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

(a) Bytes that need to be recomputed in forward direction

#
0

⊕

#
1

#
2

⊕

#
3

#
4

⊕

#
5

#
6

⊕

#
7

#
8

⊕

#
9

#
1
0

⊕

#
1
1

#
1
2

⊕

#
1
3

#
1
4

⊕

#
1
5

#
1
6

⊕

#
1
7

#
1
8

⊕

#
1
9

#
2
0

⊕

#
2
1

$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $1
0

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

#
0

⊕

#
1

#
2

⊕

#
3

#
4

⊕

#
5

#
6

⊕

#
7

#
8

⊕

#
9

#
1
0

⊕

#
1
1

#
1
2

⊕

#
1
3

#
1
4

⊕

#
1
5

#
1
6

⊕

#
1
7

#
1
8

⊕

#
1
9

#
2
0

⊕

#
2
1

$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $1
0

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

(b) Bytes that need to be recomputed in backward direction

Figure 1. The figure shows the forward and backward recomputations for the
attack with no data restrictions.

https://github.com/MfMhj3uNy5gfp4Z/BicliqueFinder
https://github.com/MfMhj3uNy5gfp4Z/BicliqueFinder

5.3. Unbalanced biclique

An unbalanced biclique is one that does not have the same dimension for ∆ and ∇ or
that has more ∆ families than ∇ or vice-versa. Using more families diminishes time
complexity because two ∆ families (same for∇) do not need to be independent from each
other for the biclique to be independent. The independence is only between the ∆ and ∇
families. On the other hand, this method increases the amount of memory necessary to
store the precomputations of each family. Although, for this size, it is still negligible. For
this kind of biclique, we are able to noticeably improve upon the previous best attack in
literature [Tao and Wu 2015], in terms of time complexity.

Differently from our previous attacks, this one uses an (8,16)-dimension unbal-
anced biclique, which means that there is a ∆ family and two ∇ families. Therefore, a
single value 0 ≤ i < 28 is used to define the ∆i-differentials, 0 ≤ j0 < 28 is used to
define the∇j0-differentials and 0 ≤ ji < 28 is used to define the∇j1-differentials.

The generator set for ∆i is subkey $7, where byte 8 is equal to i, the one for ∇j0

is subkey $9, where both bytes 1 and 5 are equal to j0 and the generator set for ∇j1 is
subkey $9, where bytes 0 and 4 are both equal to j1. Figure 2 shows their propagation
through the biclique and is possible to see that the ∆i-differentials are independent from
both∇-differentials.

We know choose a base key between many available ones. We chose subkey $8,
in which bytes 0, 1 and 12 are fixed to 0 and the others go through all possibles values. In
the biclique building step, byte 0 will assume all values through j1, byte 1 will assume all
values through j0 and byte 12 assumes all values through i.

The recomputation phase is, for the time complexity of the attack, the most rele-
vant part. We are interested in the amount of Sboxes that are active both in forward and
backward directions towards the variable v. For this attack, v is byte 0 of state #5. Figure
3 shows the bytes that are relevant for the recomputation in both directions.

The data complexity of the attack is given by the number of active bytes on state
#21. Since there are 12 bytes, the data complexity should be 296, but bytes 10 and 11 are
always the same, turning the data complexity into 288.

For the time complexity, in the forward direction, there are only 5 bytes that need
to be recomputed in state #1 and state #3 needs to recompute only 4, totaling 9 Sboxes
to be recomputed. For the backward direction, state #13 requires the recomputation
of 4 bytes, while states #11 and #9 must have all 16 bytes recomputated. State #7
recomputes only 4 and #5 needs 1. This makes it 41 Sboxes. Since there are no Sboxes
to be recomputed for the keys, than the total is 50 out of 200 Sboxes. They need to be
recomputed for all possible values of ∆s, thus Crecomp = 224 × 50/200 = 222.0.

Finally, Cprecomp ≈ 216 full computations of the AES cipher, because the precom-
putation only needs to be done till v an it is dominated by the precomputation of the ∇
families. On the other hand, Cfalpos = 216 since there are 224 tests and only 28 possible
values for v. The complete time complexity is 2104×222.02 = 2126.02, a small improvement
(one less Sbox) than the best in literature [Bogdanov et al. 2014].

#0

⊕

#1

#2

⊕

#3

#4

⊕

#5

#6

⊕

#7

#8

⊕

#9

#10

⊕

#11

#12

⊕

#13

#14

⊕

#15

#16

⊕

#17

#18

⊕

#19

#20

⊕

#21

$0

$1

$2

$3

$4

$5

$6

$7

$8

$9

$10

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR

(a) ∆i-differentials

#0

⊕

#1

#2

⊕

#3

#4

⊕

#5

#6

⊕

#7

#8

⊕

#9

#10

⊕

#11

#12

⊕

#13

#14

⊕

#15

#16

⊕

#17

#18

⊕

#19

#20

⊕

#21

$0

$1

$2

$3

$4

$5

$6

$7

$8

$9

$10

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR

(b) ∇j0 -differentials

#0

⊕

#1

#2

⊕

#3

#4

⊕

#5

#6

⊕

#7

#8

⊕

#9

#10

⊕

#11

#12

⊕

#13

#14

⊕

#15

#16

⊕

#17

#18

⊕

#19

#20

⊕

#21

$0

$1

$2

$3

$4

$5

$6

$7

$8

$9

$10

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR

(c) ∇j1 -differentials

Figure 2. The figure shows both ∆i, ∇j0 and ∇j1 inside the biclique for the attack
with the (16,8)-dimension unbalanced biclique.

5.4. 16-dimension balanced biclique

This biclique is a mix of the unbalanced one [Tao and Wu 2015] and the original balanced
biclique [Bogdanov et al. 2011]. It is still positioned in the end of the cipher and both ∆
and ∇ families have the same dimension as is in the first ever biclique attack. However,
it uses the idea from the unbalanced biclique of having more than one ∆ and ∇ families
instead of just one for each, activating more bits. As is the case for the previous attack,
using more families diminishes time complexity because two ∆ families (same for ∇)
do not need to be independent from each other for the biclique to be independent. The
independence is only between the ∆ and∇ families. The amount of memory necessary to
store the precomputations of each family does start to become concerning past this point,
but it continues to be negligible for this biclique (less than 1 GB of memory). Similarly
to the previous attack, we are able to noticeably improve upon the previous best attack in
literature [Tao and Wu 2015], in terms of time complexity.

This one uses a 16-dimension balanced biclique, which means that there are two
∆ families and two ∇ families. Therefore, 0 ≤ i0 < 28 is used to define the ∆i0-
differentials, 0 ≤ i1 < 28 is used to define the ∆i1-differentials, 0 ≤ j0 < 28 is used to
define the∇j0-differentials and 0 ≤ ji < 28 is used to define the∇j1-differentials.

The generator set for ∆i0 is subkey $8, where bytes 8 and 12 are equal to i0, the
generator set for ∆i1 is subkey $9 in which byte 7 is equal to i1. The one for both ∇

#
0

⊕

#
1

#
2

⊕

#
3

#
4

⊕

#
5

#
6

⊕

#
7

#
8

⊕

#
9

#
10

⊕

#
11

#
12

⊕

#
13

#
14

⊕

#
15

#
16

⊕

#
17

#
18

⊕

#
19

#
20

⊕

#
21

$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $1
0

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

(a) Bytes that need to be recomputed in forward direction

#
0

⊕

#
1

#
2

⊕

#
3

#
4

⊕

#
5

#
6

⊕

#
7

#
8

⊕

#
9

#
10

⊕

#
11

#
12

⊕

#
13

#
14

⊕

#
15

#
16

⊕

#
17

#
18

⊕

#
19

#
20

⊕

#
21

$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $1
0

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

(b) Bytes that need to be recomputed in backward direction

Figure 3. The figure shows the forward and backward recomputations for the
attack with the (16,8)-dimension unbalanced biclique..

is subkey $10, where byte 0 is equal to j0 for ∇j0 and byte 4 is equal to j1 for ∇j1 .
Figure 4 shows their propagation through the biclique and is possible to see that both
∆-differentials are independent from both∇-differentials.

We chose subkey $8 as base key, in which bytes 0, 1, 11 and 12 are fixed to 0 and
the others go through all possibles values. In the biclique building step, byte 0 will assume
all values through j0, byte 1 will assume all values through j1, byte 11 will assume all
values through i1 and byte 12 assumes all values through i0.

We are interested in the amount of Sboxes that are active both in forward and
backward directions towards the variable v, for the recomputation phase. In the same way
as the last attack, v is byte 0 of state #5. Figure 5 shows the bytes that are relevant for the
recomputation in both directions.

The data complexity of the attack is given by the number of active bytes on state
#21. Exactly as happened in the last attack, there are 12 bytes, which makes the data
complexity be 296. However, bytes 10 and 11 are always the same, turning the data
complexity into 288. Then, there is the time complexity.

In the forward direction, there are only 5 bytes that need to be recomputed in state
#1 and state #3 needs to recompute only 4, totaling 9 Sboxes to be recomputed. In the
backward direction, state #13 requires no recomputation at all, while states #11 and #9
must have all 16 bytes recomputated. State #7 recomputes only 4 and #5 needs 1. This
makes it 37 Sboxes. Since there are no Sboxes to be recomputed for the keys, than the
total is 46 out of 200 Sboxes. They need to be recomputed for all possible values of ∆,
thus Crecomp = 232 × 46/200 = 229.88.

Finally, Cprecomp ≈ 216.5 full computations of the AES cipher, because the pre-
computation only needs to be done till v. On the other hand, Cfalpos = 224 since

#0

⊕

#1

#2

⊕

#3

#4

⊕

#5

#6

⊕

#7

#8

⊕

#9

#10

⊕

#11

#12

⊕

#13

#14

⊕

#15

#16

⊕

#17

#18

⊕

#19

#20

⊕

#21

$0

$1

$2

$3

$4

$5

$6

$7

$8

$9

$10

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR

(a) ∆i0 -
differentials

#0

⊕

#1

#2

⊕

#3

#4

⊕

#5

#6

⊕

#7

#8

⊕

#9

#10

⊕

#11

#12

⊕

#13

#14

⊕

#15

#16

⊕

#17

#18

⊕

#19

#20

⊕

#21

$0

$1

$2

$3

$4

$5

$6

$7

$8

$9

$10

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR

(b) ∆i1 -
differentials

#0

⊕

#1

#2

⊕

#3

#4

⊕

#5

#6

⊕

#7

#8

⊕

#9

#10

⊕

#11

#12

⊕

#13

#14

⊕

#15

#16

⊕

#17

#18

⊕

#19

#20

⊕

#21

$0

$1

$2

$3

$4

$5

$6

$7

$8

$9

$10

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR

(c) ∇j0 -
differentials

#0

⊕

#1

#2

⊕

#3

#4

⊕

#5

#6

⊕

#7

#8

⊕

#9

#10

⊕

#11

#12

⊕

#13

#14

⊕

#15

#16

⊕

#17

#18

⊕

#19

#20

⊕

#21

$0

$1

$2

$3

$4

$5

$6

$7

$8

$9

$10

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR

(d) ∇j1 -
differentials

Figure 4. The figure shows both ∆i0 and ∆i1 , as well as ∇j0 and ∇j1 inside the
biclique for the attack with the 16-dimension balanced biclique.

there are 232 tests and only 28 possible values for v. The complete time complexity is
296 × 229.90 = 2125.90. This is a big improvement from the previous result (2126.02), being
the first attack, that does not use the full codebook, to go below 2126.

6. Conclusions
This paper presents the first progress on an attack over any full version of the AES since
2015, by revisiting a technique that has been rarely used for the better part of a decade
now. The lack of use is due to some well established ideas regarding the biclique attack.
Mainly, the fact that, although basically all block ciphers based on Sboxes can be affected
by the biclique attack, this technique only marginally improves the time complexity when
compared to an exhaustive search on account of it being an optimization of brute force
instead of a shortcut attack.

The improvement we presented is attained through the combination of the concept
of generator sets for bicliques with a semi-automated software that facilitates the work of
the cryptanalyst when applying the biclique attack to a cipher.

Our results show that there was still room for enhancement in the biclique attack.

#
0

⊕

#
1

#
2

⊕

#
3

#
4

⊕

#
5

#
6

⊕

#
7

#
8

⊕

#
9

#
10

⊕

#
11

#
12

⊕

#
13

#
14

⊕

#
15

#
16

⊕

#
17

#
18

⊕

#
19

#
20

⊕

#
21

$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $1
0

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

(a) Bytes that need to be recomputed in forward direction

#
0

⊕

#
1

#
2

⊕

#
3

#
4

⊕

#
5

#
6

⊕

#
7

#
8

⊕

#
9

#
10

⊕

#
11

#
12

⊕

#
13

#
14

⊕

#
15

#
16

⊕

#
17

#
18

⊕

#
19

#
20

⊕

#
21

$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $1
0

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

M
C

S
B

S
R

(b) Bytes that need to be recomputed in backward direction

Figure 5. The figure shows the forward and backward recomputations for the
attack with the 16-dimension balanced biclique.

Moreover, although there are only slight gains from our technique for finding bicliques
on the AES-128, other ciphers may be more susceptible to it. The attack is trivially
expanded for the other versions of the AES, being necessary only the implementation
of these versions on the software we made available here: https://github.com/
MfMhj3uNy5gfp4Z/BicliqueFinder.

Therefore, future work includes the application of this variant on other ciphers
and, as a consequence, finding which properties a cipher must have to be more or less
vulnerable to biclique cryptanalysis, under this variant.

Acknowledgments

This research was supported by fellowships from FAPERJ (project APQ1
n.211.666/2021) for Luis Kowada.

References

Abed, F., Forler, C., List, E., Lucks, S., and Wenzel, J. (2012). Biclique cryptanaly-
sis of the PRESENT and LED lightweight ciphers. IACR Cryptology ePrint Archive,
2012:591.

Abed, F., Forler, C., List, E., Lucks, S., and Wenzel, J. (2014). A framework for automated
independent-biclique cryptanalysis. In Fast Software Encryption: 20th International
Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers 20,
pages 561–581. Springer.

Bogdanov, A., Chang, D., Ghosh, M., and Sanadhya, S. K. (2014). Bicliques with min-
imal data and time complexity for aes. In International Conference on Information
Security and Cryptology, pages 160–174. Springer.

https://github.com/MfMhj3uNy5gfp4Z/BicliqueFinder
https://github.com/MfMhj3uNy5gfp4Z/BicliqueFinder

Bogdanov, A., Khovratovich, D., and Rechberger, C. (2011). Biclique cryptanalysis of
the full AES. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 344–371. Springer.

Canteaut, A., Naya-Plasencia, M., and Vayssiere, B. (2013). Sieve-in-the-middle: Im-
proved MITM attacks (Full Version). Cryptology ePrint Archive, Report 2013/324.
https://eprint.iacr.org/2013/324.

Chen, S.-z. and Xu, T.-m. (2014). Biclique key recovery for ARIA-256. IET Information
Security, 8(5):259–264.

Çoban, M., Karakoç, F., and Boztaş, Ö. (2012). Biclique cryptanalysis of TWINE. In
International Conference on Cryptology and Network Security, pages 43–55. Springer.

Daemen, J. and Rijmen, V. (2013). The design of Rijndael: AES-the advanced encryption
standard. Springer Science & Business Media.

de Carvalho, G. et al. (2022). Generator sets for the selection of key differences in the
biclique attack. In Anais do XXII Simpósio Brasileiro em Segurança da Informação e
de Sistemas Computacionais, pages 1–14. SBC.

de Carvalho, G. C. and Kowada, L. A. (2020). The first biclique cryptanalysis of serpent-
256. In Anais do XX Simpósio Brasileiro em Segurança da Informação e de Sistemas
Computacionais, pages 29–42. SBC.

Khovratovich, D., Leurent, G., and Rechberger, C. (2012). Narrow-Bicliques: cryptanal-
ysis of full IDEA. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 392–410. Springer.

Liu, Y., Wang, Q., and Rijmen, V. (2016). Automatic search of linear trails in arx with ap-
plications to speck and chaskey. In Applied Cryptography and Network Security: 14th
International Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings
14, pages 485–499. Springer.

Mouha, N., Wang, Q., Gu, D., and Preneel, B. (2011). Differential and linear cryptanalysis
using mixed-integer linear programming. In International Conference on Information
Security and Cryptology, pages 57–76. Springer.

Rouquette, L., Gerault, D., Minier, M., and Solnon, C. (2022). And rijndael? automatic
related-key differential analysis of rijndael. In Progress in Cryptology-AFRICACRYPT
2022: 13th International Conference on Cryptology in Africa, AFRICACRYPT 2022,
Fes, Morocco, July 18–20, 2022, Proceedings, pages 150–175. Springer.

Sun, L., Wang, W., and Wang, M. (2017). Automatic search of bit-based division prop-
erty for arx ciphers and word-based division property. In Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Pro-
ceedings, Part I 23, pages 128–157. Springer.

Tao, B. and Wu, H. (2015). Improving the biclique cryptanalysis of AES. In Australasian
Conference on Information Security and Privacy, pages 39–56. Springer.

https://eprint.iacr.org/2013/324

	Introduction
	Our contributions

	Background of independent bicliques
	Generator sets for the key bits
	Related-key differentials
	Independent bicliques
	Key partitioning

	The Biclique Attack
	The steps of the attack
	Matching with precomputations
	Complexities

	The AES-128 cipher
	Our attacks
	Star
	No restrictions on the data
	Unbalanced biclique
	16-dimension balanced biclique

	Conclusions

