Malware Classification using
Transfer Learning through the GPT-2 model

Matheus Vanzan, Julio Cesar Duarte

Instituto Militar de Engenharia (IME)
Praga Gen. Tiburcio, 80 — 22.290-270 — Urca, Rio de Janeiro - RJ — Brazil

{vanzan.matheus,duarte}@ime.eb.br

Abstract. Malware detection and classification pose critical challenges in the
field of cybersecurity. In recent years, deep learning techniques have made re-
markable progress in addressing the classification problem, outperforming tra-
ditional methods. Moreover, Natural Language Processing has proven success-
ful in extending its applications beyond natural language texts across numerous
semantic domains. This research work focuses on presenting a proposal that
extends the Transfer Learning from OpenAl’s GPT-2 model to identify different
malware families, without prior knowledge of their behaviors. The achieved re-
sults are highly promising, with an exceptional accuracy rate of 99.72%, close
to state-of-the-art results reported for the problem.

1. Introduction

Despite ongoing advancements in information security research, malicious files remain a
constant threat in the digital environment. Moreover, the annual creation of malware files
demonstrates an exponential growth pattern. By the end of 2022, the global detection
of new malware files had already surpassed one billion programs [AV-Test 2023]. Fig-
ure 1 depicts the cumulative malware detection worldwide from January 2008 to February
2023.

1250.00
1000,00

750,00

500,00

Malware detections (Millions)

250,00

0,00
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Year

Figure 1. Malware detection by year. Source: [AV-Test 2023].

In this current landscape, tasks such as malware classification are of utmost im-
portance for protecting systems and devices against potential threats. Traditionally, one
of the most common techniques for malware classification involves the utilization of dig-
ital signatures, matching a set of attributes from a given sample with a previously known
database. However, code obfuscation techniques can modify software signatures while
maintaining its behavior. As an alternative approach, Deep Learning techniques have
been employed as a viable solution for malware identification and classification by auto-
matically learning relevant attributes [Zhang 2000].

As text processing techniques have been refined, their applications have expanded
into various semantic fields. By treating raw data collections as text, it is possible to
obtain more useful contextual information by extracting attributes that would otherwise
be difficult to select manually [Damodaran et al. 2022].

In addition to malware detection, it is crucial to understand the types of malware
and how those impact a device. In an era marked by stringent data protection laws, con-
cerns regarding data extraction attacks have become imperative in any network, escalating
the need for the classification of threats.

Considering this new scenario, this research work proposes a novel method for
malware classification using transfer learning from the Transformers architecture and the
GPT-2 model without prior knowledge of malware behavior. Through the use of this new
approach, experiments are performed on a widely utilized dataset, presenting exceptional
results, closely aligned with the state-of-the-art reported for the task. Although a pure
Deep Learning approach may be insufficient to determine the behavior of file samples in
a real-world scenario, it can be of utmost value when combined with other methods in
order to create complete anti-malware solutions.

The structure of this paper is organized as follows: Section 2 contains a brief
literature review to provide a foundation for the subsequent sections. Next, Section 3
presents related work that approaches malware classification. Section 4 describes the
proposed method, while Section 5 presents the experiments conducted and the analysis of
their results. Finally, section 6 provides a conclusion and suggestions for future work.

2. Basic Concepts

To better understand the subsequent sections of this paper, it is important to define some
key concepts and provide corresponding definitions. This section aims to cover the fol-
lowing ideas: malware, the BIG 2015 dataset, the Transformers architecture, and the
GPT-2 model.

2.1. Malware

Derived from malicious software, malware can be intuitively defined as software that
conducts malicious attacks on other software systems, with the term malicious referring
to any behavior outside the normal intended scope. However, identifying malware poses
a significant challenge due to the inherent difficulty of defining the intended behavior of
individual software and subsequently detecting anomalies [Kramer and Bradfield 2010].

A malware file is capable of infecting devices and is designed to cause harm to
these devices, networks, or their users in various ways. Depending on the malware type

2

and its goal, the damage caused can be manifested differently for the end user, ranging
from relatively mild to potentially catastrophic [Chang et al. 2013]. Regardless of the
specific method, malware is developed to exploit devices to the detriment of the user and
for the benefit of its creator or deployer [Kramer and Bradfield 2010].

2.2. BIG 2015 Malware Dataset

The BIG 2015 dataset, consisting of a large collection of malware samples, was origi-
nally presented in the Microsoft Malware Classification Challenge [Ronen et al. 2018].
This dataset has seen extensive usage and citation across several works following the
main competition, greatly enabling the comparison of different approaches to malware
classification. Furthermore, its open accessibility significantly enhances the potential for
replicating results, unlike other private datasets. The dataset consists of 10,868 ASM files
(text files) generated using the IDA Pro software (Interactive Disassembler) [Eagle 2011],
classified into nine distinct malware families, as outlined in Table 1.

Table 1. BIG 2015 malware families.

Id Family name Number of files

1 Ramnit 1541
2 Lollipop 2478
3 Kelihos_ver3 2942
4 Vundo 475
5 Simda 42
6 Tracur 751
7 Kelihos_verl 398
8 Obfuscator. ACY 1228
9 Gatak 1013

The IDA Pro software was responsible for reverse engineering the compilation
process and generating output in a high-level language [Eagle 2011]. A snippet of an
ASM file from the dataset is presented in Figure 2. Each IDA output file in the dataset
consists of six types of segments (CODE, DATA, CONST, BSS, STACK, XTRN) that
serves to separate different instruction sets. The code segments specifically contain the
most relevant instructions for malware analysis and classification.

2.3. The Transformers Architecture

Natural Language Processing (NLP) is an Artificial Intelligence branch that focuses on
the automatic understanding of texts written in natural language. One of its goals is
to extract meaning from text, including keywords, context, or the sentiment expressed
within it, among other tasks. Furthermore, NLP can analyze textual representations of
other structures, such as source code files.

Before the introduction of the Transformers Architecture, models applying NLP
were mostly based on Recurrent Neural Networks (RNN), such as Long Short-Term
Memory (LSTM) [Gers 1999] and Gated Recurrent Units (GRU) [Wang et al. 2018].
These models typically relied on sequential token processing, which posed a challenge

3

JStext 004818008 = —===== —===== — e ———
Ltext:00401060

.text 08481000 ; Segment type: Pure code

Lexl:00401000 b GG AL bl Ol el 0l / ExEC UL e

Jtext:00401000 text segment para public "CODE" use32

text:oad4a1686 assume cs:_text

Ltext:00401000 s;org 4010eeh

Ltext:oe401000 assume es:nothing, ss:nothing, ds:_data, fs:nothing, gs:nothing
Ltext:00481660 56 push esi

.text:00401001 8D 44 24 98 lea eax, [esp+8]

LLexl:00401085 50 push eax

Ltext:00401006 8B F1 mov esi, ecx

Ltext:00401008 E8 47 18 060 60 call ??Bexceptions td@EQAE@ABQBDEY ; std::exception
Ltext:0040180D0 C7 06 08 CC 42 00 mov dword ptr [esi], offset off_42CCes

Sext: 00401013 288 C6 moy eax, esi

Ltext:00481615 S5E pop esi

.text:08401016 C2 94 @8 retn 4

text:00481616 P e

Figure 2. BIG 2015 ASM file excerpt.

to parallelism in their training, becoming critical as the number of training samples grew
[Yang et al. 2020].

The Transformers Architecture [Vaswani et al. 2017] addresses this issue by elim-
inating the requirement for recurrent or convolutional layers and introducing the concept
of Attention Mechanisms, which assign weights to each token in an input sequence.
Unlike traditional models that iteratively update the network’s internal state during token
processing, the transformers model processes tokens in parallel, considerably reducing
processing time for datasets. This increase in parallel processing capabilities allows trans-
formers models to efficiently handle larger volumes of data, making them more adequate
for tasks that involve extensive processing, such as malware classification.

2.4. The GPT-2 Model

While textual data is abundant in today’s world, the same cannot be said for structured
or labeled data. Getting this labeled data can be challenging, especially when it comes to
specific domains, as a significant portion of the available data lacks any form of classifi-
cation or metadata that could aid in tasks such as classification or semantic extraction.

The Generative Pre-Trained Transformer (GPT) model, which was introduced by
OpenAl in 2018 [Radford et al. 2018], presented an innovative approach in which unsu-
pervised pre-training could be performed on a text corpus without any additional data,
apart from the text itself. Specifically, the GPT was trained to complete text through an
automatic process of generating inputs and labels from the original text. Once a pre-
trained model is obtained, it can be fine-tuned through supervised learning for a specific
task.

Semi-supervised and data-agnostic learning models have been previously intro-
duced to enhance performance in text sequencing tasks [Dai and Le 2015]. However, the
uniqueness of GPT lies in using the Transformers architecture for training, which yielded
superior results by establishing a new state of the art.

In 2019, a newer version of the model was released to the community, called
GPT-2, with up to 1.5 billion parameters in its largest version [Radford et al. 2019]. This
version of the GPT was trained using the WebText dataset, curated by the authors using a
compilation of publicly available web pages, resulting in approximately 40 GB of textual
content. However, the contents of the dataset were not made publicly available.

4

It is important to highlight, within the context of this paper, that a portion of the
training data for the GPT-2 model originated from code repositories such as GitHub, Stack
Exchange, and Stack Overflow; evidenced from the list of the top 1,000 domains' used
in creating the dataset. Furthermore, it is also worth mentioning that even newer versions
namely GPT-3 and GPT-4 have been released, however, these models have not been made
available as open-source models but rather as closed applications as OpenAl has empha-
sized the need for careful consideration of ethical and safety concerns associated with
language models.

3. Related Work

It is noteworthy that since the conclusion of the Microsoft Malware Classification Chal-
lenge in April 2015 [Ronen et al. 2018], the competition and the BIG 2015 dataset have
been referenced in more than 50 works in the field of Cybersecurity [Ronen et al. 2018].
These references highlight the widespread utilization of the dataset as a resource for fur-
ther progress in the field. In light of this, six relevant studies were chosen based on their
utilization of the BIG 2015 dataset and their application of transfer learning techniques.

During the original competition in 2015, the winning team developed a complex
approach using multiple manually extracted features, including opcode n-grams, seg-
ment counts, pixel intensity of ASM files, 4-gram bytes, single-byte frequencies, function
names, and assembly resources to classify malware samples [Kaggle Team 2022]. The
generation of these features required 200 GB of disk space, and the model took 72 hours
for a training session, achieving an accuracy rate of up to 99.87%. Even without using
transfer learning, the results achieved by the winning team remained state-of-the-art for a
considerable period.

In 2018, [Kim et al. 2017] proposed a model based on Generative Adversarial
Networks (GAN) using images generated from malware files. The model generates new
data samples that resemble the training set, intending to distinguish between original and
artificially generated images. Among the advantages of this approach, it is worth empha-
sizing that it does not rely on any specific domain knowledge of the problem. The authors
conducted several experiments and achieved an accuracy rate of up to 96.39%.

[Cakir and Dogdu 2018] applied a word2vec technique to encode opcodes, gener-
ating syntactic and semantic relationships between words in the ASM files of the dataset.
Using the generated vectors, they applied the Gradient Boosting Machine (GBM) algo-
rithm and achieved accuracy rates ranging from 94% to 96%.

In a similar manner to [Kimetal. 2017], a Convolutional Neural Net-
work (CNN) approach was proposed by [Kalashetal. 2018] using the VGG16
[Simonyan and Zisserman 2015] model to classify images. Notably, their results outper-
formed most feature-based approaches, achieving an accuracy rate of up to 99.97%.

In 2020, [de Albuquerque et al. 2020] proposed an opcode analysis from the mal-
ware dataset, also employing word2vec for encoding. A predictive LSTM structure was
used to forecast the sequence of opcodes in the malware samples. The proposed method
achieved an accuracy rate of up to 92%.

Thttps://github.com/openai/gpt-2/blob/master/domains.txt

5

Despite not using the BIG 2015 dataset, [Sahin 2021] proposed a method for mal-
ware detection based on GPT-2 transfer learning. The assembler code was obtained from
.text sections of malware samples and the model was fine-tuned for malware detection in
two steps. In the first step, the complete unlabeled dataset was submitted to the GPT-2
model generating a new pre-trained model. The dataset was then split into train and test
subsets, and submitted with its corresponding labels into the custom pre-trained model.
The proposed method achieved an accuracy rate of up to 85.4%.

During the search for related works, it has been discovered that both transfer learn-
ing and feature selection approaches have demonstrated the ability to achieve state-of-the-
art results in several domains. However, most transfer learning solutions do not require
domain knowledge. This ability to classify samples without prior knowledge of malware
file structure is crucial for a model capable of generalizing new, unseen files. Furthermore,
it became apparent that there is a limited number of publications exploring the applica-
tion of transfer learning and the GPT model for malware classification. This scarcity
reinforces the necessity for additional research in this particular field.

Considering this perspective, the proposed method outlined in this paper focuses
on a solution that takes advantage of transfer learning and the inherent capabilities of
the GPT-2 model by using only the source code of malware samples. Distinguishing
itself from other approaches, it does not rely on any prior knowledge of the executable
sample’s behavior, nor does it employ any manual feature engineering.

4. Proposed Method

In this research work, a novel method is introduced for fine-tuning the GPT-2 model for
the task of malware classification. The method is comprised of six phases, illustrated in
Figure 3, covering all the required steps from dataset preprocessing to sample evaluation.
The dashed lines involving phases indicate the possibility of a combined execution.

Disassembly

Conversion of
executables into
source code.

Processing

Text processing
on the dataset.

Evaluation

File evaluation
based on chunk
predictions.

Fine-tuning

Classification
training of chunks.

Tokenization
Transformation of

words in the syntax
into tokens.

v

Split

File split into
token chunks.

Figure 3. Proposed method execution flow.

Disassembly The method begins with disassembling executable files into high-level As-
sembly source code. This process entails the conversion of each malware sample from an

6

executable file format to a text file format, containing its assembler source code. It is
worth mentioning that some datasets may already provide disassembled files, eliminating
the need for this phase.

Processing Following the disassembly phase, text processing routines are employed
to eliminate redundant words from the dataset, filtering out specific terms that hold no
significance for the subsequent steps. Spaces, punctuation marks, special characters, and
non-ASCII characters are systematically removed as well. Lastly, the resulting text is
filtered, restricting words to only the assembler instruction set (i.e., opcodes and registers)
and their adjacent words.

Tokenization and Split To streamline the process and improve efficiency, the Tokeniza-
tion and Split phases can be combined into a single procedure. Here, each malware sample
is transformed from its assembler syntax into tokens using the library’s default tokenizer
GPT2Tokenizer [Hugging Face 2021]. Figure 4 depicts an assembler code excerpt after
the tokenization process, illustrating the tokenizer’s ability to handle other forms of text
besides natural language. Following the tokenization, the set of obtained tokens is split
into multiple chunks, where each chunk contains an equal number of tokens. The split is
performed to conform to the maximum token constraint imposed by the model for each
sample. Before saving a newly created chunk sample, a truncation limitation can be im-
posed, reducing the overall size of the dataset. As a result, the new dataset consists of
independent chunk files, with each chunk labeled according to its originating file class.

Tokens Characters

14 37

sub esp 1Ch 88 mov eax ecx 8 push ecx

Figure 4. Tokens created from a code excerpt.

Fine-tuning After the creation of the chunk dataset, the fine-tuning phase begins, em-
ploying each chunk sample for classification training purposes. In this phase, a classi-
fication layer is added on top of the original generative model and the training process
determines the internal weights of the classification layer, similar to conventional neural
network training techniques. As a result of the fine-tuning phase, a set of predictions is
generated, one for each chunk sample. Figure 5 presents a general diagram of the training
strategy employed for the dataset, with chunk colors indicating sample predictions for
each chunk after training, and file colors indicating the final prediction.

Evaluation After obtaining a set of chunks and their corresponding predictions, chunks
are correlated back to their original malware samples. As a result, for each original mal-
ware sample, a collection of prediction classes is obtained based on the predictions made

7

File Dataset Chunk Dataset Chunk Dataset File Dataset

__

owncr o,]
o | o]
[,] [).

: chunk-2, :

: chunk-2, ;

Classification
Layer

E chunk-2, : : chunk-2,

file-2 : chunk-2 : : chunk-2 : file-2
b 3 : l 3 ;

IOOOIII
IOODIII

i chunk-2

: chunk-2 :

[
)

o

o
Original GPT-2

o o

o o

IDOQIII

——

chunk-n, E i chunk-n,

! chunk-n, ; h chunk-n,

file-n E chunk-n, : i chunk-n, E file-n

IOOOIII

: chunk-n ' : chunk-n

Figure 5. General diagram of the proposed method for fine-tuning.

for its associated chunks. Each chunk’s prediction represents a potential classification for
the original malware sample. To determine the final prediction for each malware sam-
ple, a decision is made by considering the collective predictions from its internal chunks.
The class that appears most frequently among the predictions is then selected as the final
prediction. By considering the majority vote among the internal chunks, this approach
provides a consolidated prediction for each malware sample.

5. Experiments

To evaluate the proposal presented in Section 4, with the main objective of fine-tuning
the GPT-2 model for malware classification, several testing experiments were conducted,
varying the dataset truncation values and the number of epochs. Hardware limitations and
execution times were primary factors for the training strategies. Finally, two experiments
yielded significantly good results using the 124 million parameters version of the model.

5.1. Hardware and Software

The experiments were conducted in the free Google Colab environment [Bisong 2019],
with a Tesla T4 16 GB GPU. The project’s code was developed using Python 3.8
[Van Rossum and Drake 2009], and the Transformers Library [Wolf et al. 2020], version
2.2.2 and it is publicly available in a GitHub repository [Vanzan 2023].

5.2. Dataset Processing

In the first experiment, the dataset was split into three partitions for training, evaluation,
and testing, comprising 80%, 10%, and 10% of the total number of files, respectively. The
division was performed randomly, maintaining a stratified distribution of classes in the

8

dataset. Similarly, a second experiment was performed using a 10-fold cross-validation,
with the first partition matching the split used in the first experiment.

Due to extensive training time, some hyperparameters were fixed, as testing all
combinations of the hyperparameters would not be feasible. Initially, the chunk size was
set to 32 tokens, and the number of batches was set to 160. These fixed hyperparameters
were chosen to balance training efficiency and model performance. Additionally, a token
limit of 102,400 was set as a truncation point for the files to ensure that the GPU could
handle the dataset load into memory. In previous experiments, a higher truncation point
resulted in memory overflow.

After the complete processing of the dataset, its total size was reduced to 2.68 GB.
Figure 6 presents a histogram of token volume per file (left), and the same volume in a
logarithmic scale, with the truncation limit highlighted in red (right). This shows that less
than 15% of the dataset was affected by truncation.

8000

10°4
7000
6000 1054

1044

» %y
o 1=}
=] o
=] IS}

Number of files
Number of tokens

3000 1074

2000
102 4

1000 -

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 (I) 20b0 40‘00 60‘00 80‘00 10600
Number of tokens le6 Index

Figure 6. Dataset chunk volume (left) and dataset truncation (right).

5.3. Performance Metrics

The main performance metric taken into consideration is accuracy, computing True Pos-
itives over all samples. Considering the inherent class imbalance in the dataset, the F1-
score for each malware class was also evaluated to assess the impact of the imbalance on
False Positives and False Negatives.

5.4. Results

For the first experiment, the number of epochs varied from one to five. Table 2 presents
the obtained results, including accuracy rates and training time. Additionally, each test
phase of the experiment lasted for one hour, regardless of the number of training epochs.
As observed, training time increased linearly with the number of epochs, providing a good
predictability of the time required for longer training sessions. This information can be
valuable for planning and scheduling training sessions in future experiments.

The best results were achieved with five epochs, reaching an accuracy rate of
99.72%. This indicates that, within the tested range, increasing the number of epochs
improved the performance without causing overfitting. Figure 7 supports this reason-
ing by illustrating the training loss curve. It can be observed that the curve has not yet

9

Table 2. Experiment 1 - Accuracy and training time per epoch.

Epochs Accuracy Time (h)

1 99.26 17
2 99.35 34
3 99.45 52
4 99.63 67
5 99.72 85

03
028
028
024
022

0z
018
018
014
012

01

0 10k 20k 30k 40k 50K 60k 70K 80k 90k 100k 110k 120k

Figure 7. Experiment 1 - Loss curve for five epochs.

reached a strictly asymptotic behavior, which suggests that additional training iterations
can potentially lead to even better results.

As mentioned in 5.3, the F1-score measures are presented in Table 3. Upon obser-
vation, it is evident that increasing the number of epochs has a positive impact on certain
classes, notably class 5 (Simda), while potentially causing detrimental effects on others,
such as class 6 (Tracur). This suggests that the model’s training process has a varying
impact on different malware classes, emphasizing the importance of class-specific per-
formance metrics. By evaluating the performance of each class, a more comprehensive
understanding of the model’s capabilities and limitations can be acquired. This allows
deep analysis of model performance across distinct malware classes, enabling focused
refinements and optimizations.

For the second experiment, the training sessions were performed using a single
epoch, enabling the adoption of a K-fold cross-validation with ten folds. Table 4 presents
the accuracy rates for each fold. The average training time was similar to that observed in
the first experiment for a single epoch.

The experiment yielded a minimum accuracy rate of 97.95% and a maximum of
99.26%. This demonstrates that even with the variation in the random distribution of the
cross-validation, the results consistently remain above 97%. The adoption of the 10-Fold
cross-validation helped provide a more robust evaluation of the model’s performance by
considering multiple splits. This approach helps evaluate the generalization capabilities

10

Table 3. Experiment 1 - F1 (%) per class per epoch.

Epochs F1-1 F1-2 F1-3 F1-4 F1-5 F1-6 F1-7 F1-8 F1-9
1 98.72 9939 100.00 100.00 85.71 100.00 97.37 9793 99.51
2 99.04 99.39 100.00 100.00 85.71 100.00 97.37 9835 99.51
3 99.04 99.39 100.00 100.00 85.71 100.00 97.37 98.77 100.00
4 99.35 99.60 100.00 100.00 100.00 100.00 98.70 98.77 100.00
5 99.68 99.60 100.00 100.00 100.00 99.34 100.00 99.17 100.00

Table 4. Experiment 2 - 10-fold accuracy.
Fold 1 2 3 4 5 6 7 8 9 10
Acc 99.26 97.95 99.07 98.15 98.70 98.06 98.98 98.80 98.34 98.89

Avg

98.62

of the model across different data partitions and provides a more comprehensive under-
standing of its effectiveness in real-world scenarios.

Similar to the previous experiment, the F1-scores were also evaluated, as shown in

Table 5. On average, the F1 scores presented a minimum value of 84.21%. These scores
provide a more detailed understanding of the model’s performance on individual malware
classes, highlighting its ability to correctly classify instances from each class.

Table 5. Experiment 2 - F1 (%) per class per fold.

Fold F1-1 F1-2 F1-3 F14 F1-5 F1-6 F1-7 F1-8 F1-9
I 98.72 9939 100.00 100.00 85.71 100.00 97.37 97.93 99.51
2 9623 99.21 100.00 96.23 9091 9595 96.70 94.57 99.04
3 96.77 99.80 100.00 100.00 85.71 100.00 100.00 9791 98.51
4 9533 99.60 100.00 9691 100.00 9933 96.00 93.56 99.50
S5 9712 9939 9983 9691 100.00 98.65 98.70 97.07 99.00
6 95.62 100.00 99.83 9438 75.00 97.99 100.00 92.89 100.00
7 9839 9940 99.83 9895 66.67 97.99 9744 99.17 98.49
8 96.23 99.80 100.00 98.95 66.67 100.00 9870 97.48 98.49
9 9714 9939 9949 9485 8571 98.01 98.70 95.32 100.00
10 98.06 99.59 100.00 9892 8571 9933 9459 96.77 99.50

Avg 9696 99.56 9990 97.61 84.21 98.73 97.82 96.27 99.20

The experiments’ results provide strong evidence for the robustness and effec-

tiveness of the proposed solution in classifying malware instances, even across different
dataset splits in the cross-validation process. The consistently high accuracy rates of up
t0 99.72% in the first experiment and relatively high F1 scores indicate its generalization
capacity. Although the second experiment produced slightly lower results, its execution
was vital to assess the consistency of the solution across different dataset splits within a

11

reasonable time frame.

By conducting the 10-fold cross-validation, the potential impact of random factors
was minimized, allowing for a more reliable assessment of the model’s performance.
Additionally, it is worth noting that, unlike other approaches, the proposed method does
not rely on feature selection or any other form of previous behavior knowledge to achieve
its results. Instead, it exclusively utilizes the sample source code for the classification
task, as proposed by this work.

6. Conclusion

In the current landscape, the propagation of new digital threats is continuously increas-
ing, emphasizing the necessity for novel detection methods, specifically, methods that
do not rely on specific knowledge of malware behavior. This research work presents
a new method for malware classification that uses Transfer Learning from the OpenAl
GPT-2 model to accurately identify several types of malware families. The study yielded
highly satisfactory results, which were consistent with the findings of previous research
conducted in this domain.

To validate the proposed method, several experiments were conducted, resulting
in two final experiments that yielded significant results, as described in Section 5. In the
first experiment, the effectiveness of the method was assessed by varying the number of
epochs, resulting in an accuracy rate of 99.72%. The second experiment, nonetheless,
utilized the 10-fold cross-validation technique to assess the impact of dataset distribu-
tion across different folds, resulting in an average accuracy rate of 98.62%. It is worth
noting that the fine-tuning process was successfully executed using readily available and
completely cost-free hardware resources, showcasing the possibilities of using more com-
plex hardware. Despite being limited by these constraints, the GPT-2 model presented its
ability to comprehend the textual content of malware sample source code effectively.

Additionally, there are still opportunities for further improvement in this research.
Future studies could include experiments using the complete BIG 2015 dataset, eliminat-
ing truncation limitations, along with other datasets, and removing any possible informa-
tion bias of the current dataset regarding malware families. These additional experiments
would offer valuable insights into the proposed method, enabling a more comprehen-
sive evaluation of its generalization capabilities. Alternatively, conducting experiments
with narrowed truncation limitations, which focus only on the first tokens of each file,
would allow an evaluation of the minimum token volume necessary for satisfactory pre-
diction results. This approach would provide faster results and enable a broader range
of hyperparameter exploration. These future directions hold the potential to significantly
contribute to the ongoing research in the field of malware classification. These efforts
not only enhance the understanding of the proposed method but also expand its practical
applicability, possibly extending its potential utilization to other domains.

Acknowledgments

This material is based upon work supported by the Air Force Office of Scientific Research
under award number FA9550-22-1-0475. In addition, this work was partially supported
by national funds through FINEP, Financiadora de Estudos e Projetos, and FAPEB, Fun-
dacdo de Apoio a Pesquisa, Desenvolvimento e Inova¢ao do Exército Brasileiro, under

12

project “Sistema de Sistemas de Comando e Controle” with reference n° 2904/20 under
contract n° 01.20.0272.00.

References

AV-Test (2023). Av-test statistics: Malware. https://www.av-test.org/en/
statistics/malware/. Accessed on May 12, 2023.

Bisong, E. (2019). Google colaboratory.

Cakir, B. and Dogdu, E. (2018). Malware classification using deep learning methods. In
Proceedings of the ACMSE 2018 Conference, pages 1-5.

Chang, J., Venkatasubramanian, K. K., West, A. G., and Lee, . (2013). Analyzing and
defending against web-based malware. ACM Computing Surveys (CSUR), 45(4):1-
35.

Dai, A. M. and Le, Q. V. (2015). Semi-supervised sequence learning. Advances in neural
information processing systems, 28.

Damodaran, A., Troia, F. D., Corrado, V. A., Austin, T. H., and Stamp, M. (2022). A
comparison of static, dynamic, and hybrid analysis for malware detection. Journal of
Computer Virology and Hacking Techniques.

de Albuquerque, D. G., Vieira, L. d. Q., Sant’Ana, R., and Duarte, J. C. (2020). Anélise
de comportamento de malware utilizando redes neurais recorrentes - uma abordagem
por intermédio da previsdo de opcodes. Revista Militar de Ciéncia e Tecnologia, 37(3).

Eagle, C. (2011). The IDA Pro Book. William Pollock, San Francisco, second edition
edition.

Gers, F. A. (1999). Learning to forget: Continual prediction with Istm. In 9th International
Conference on Artificial Neural Networks: ICANN ’99. IET.

Hugging Face (2021). Hugging face transformers: Gpt-2 documentation. https://
huggingface.co/docs/transformers/model_doc/gpt2. Accessed on
March 20, 2023.

Kaggle Team (2022). Microsoft malware winners’ interview: 1st place, “no to overfit-
ting!”. https://medium.com/kaggle-blog. Accessed on June 20, 2022.

Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D., Wang, Y., and Igbal, F. (2018).
Malware classification with deep convolutional neural networks. In 2018 9th IFIP
international conference on new technologies, mobility and security (NTMS), pages
1-5. IEEE.

Kim, J.-Y., Bu, S.-J., and Cho, S.-B. (2017). Malware detection using deep transferred
generative adversarial networks. In International Conference on Neural Information

Processing.

Kramer, S. and Bradfield, J. C. (2010). A general definition of malware. Communications
of the ACM.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, 1., et al. (2018). Improving lan-
guage understanding by generative pre-training.

13

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Lan-
guage models are unsupervised multitask learners. OpenAl blog, 1(8):9.

Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., and Ahmadi, M. (2018). Microsoft
malware classification challenge. http://arxiv.org/abs/1802.10135/.

Sahin, N. (2021). Malware detection using transformers-based model gpt-2. Master’s
thesis, Middle East Technical University.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale
image recognition.

Van Rossum, G. and Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA.

Vanzan, M. (2023). GPT-2 Malware Classification Github Repository. https://
github.com/matheusvanzan/gpt-2-malware-classification.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

Wang, N., Wang, J., and Zhang, X. (2018). Ynu-hpcc at semeval-2018 task 2: Multi-
ensemble bi-gru model with attention mechanism for multilingual emoji prediction.

In Proceedings of The 12th International Workshop on Semantic Evaluation, pages
459-465.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault,
T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. M.
(2020). Transformers: State-of-the-art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association for Computational Linguistics.

Yang, S., Yu, X., and Zhou, Y. (2020). LSTM and GRU neural network performance
comparison study: Taking Yelp review dataset as an example. In 2020 International

workshop on electronic communication and artificial intelligence (IWECAI), pages
98-101. IEEE.

Zhang, G. P. (2000). Neural networks for classification: a survey. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), 30(4):451-462.

14

