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Abstract. We use Explainable Artificial Intelligence (XAl) to understand and
assess the decisions made by ML models in Android malware detection. To eval-
uate malware detection, we conducted experiments using seven datasets. Our
findings indicate that it is possible to accurately identify malware across multi-
ple datasets. However, each dataset may have a different collection of features
available. We also discuss the implications of incorporating expert-dependent
features into the malware detection procedure. Such features have the potential
to increase model accuracy by detecting minor indicators of harmful behaviour
that automated algorithms may miss. However, because of the necessity for
in-depth manual analysis, this strategy increases the resource and time require-
ments. It also risks adding human bias into the models and raises scaling issues
in the continuously developing Android application landscape. Our results sug-
gest that XAl techniques should be used to help malware analysis researchers
understand how ML models work, rather than only concentrating on increasing
accuracy.

1. Introduction

The widespread use of Android-powered devices in our daily lives has increased mali-
cious applications, posing a threat to users’ security and privacy [Aboaoja et al., 2022,
Miranda et al., 2022]]. In the pursuit of mitigating this danger, researchers have pro-
posed various approaches to detect malware on Android devices, where many of them
are based on machine learning (ML) techniques [Zakeya et al., 2022, [Ullah et al., 2022,
Talbi et al., 2022, |Alan1 and Awad, 2022, Scalas et al., 2021].

While the availability of these techniques has improved, for example, the large-
scale Android virus detection, a significant challenge lies in the “black-box” nature of
these methods. The opacity often renders their decision-making processes unclear and
difficult to explain. The lack of transparency, also known as the explainability problem,
hampers our ability to comprehend why an application is classified as either malware or
benign [Mendes and Rios, 2023].

Addressing this issue requires a deeper investigation into the decision-making
processes of ML models. The degree to which decision-makers can understand and
trust the predictions of these models will determine their widespread adoption in criti-
cal domains such as cybersecurity, criminal justice, and healthcare [Kinkead et al., 2021,
Charmet et al., 2022]]. Explainable Artificial Intelligence (XAI) techniques offer valuable



solutions in this context. These techniques shed light on the most influential features
utilized by ML models and provide insights into how changes in those features can im-
pact the models’ predictions [[Yin et al., 2019, |Alikhademi et al., 2018]]. By incorporating
XAI techniques into the realm of Android malware detection, our objective is to enhance
explainability while maintaining high performance [Charmet et al., 2022].

In this work we explore XAl techniques that can be applied to Android malware
detection models, aiming to understand better how these models make decisions. We
use the SHAP framework [Lundberg and Lee, 2017] to investigate what ML-based mod-
els learn during the training process, analyze their findings, and discuss the factors con-
tributing to the exceptional performance of malware detection models in experimental
scenarios.

To ensure comprehensive analysis, our study incorporates a variety of openly and
accessible Android malware datasets, including Drebin-215 [Yerima and Sezer, 2019],
Androcrawl [Sisto, 2013]], KronoDroid [Guerra-Manzanares et al., 2021]], Android-
Permissions  [Sarma et al., 2012, Adroit  [Martin et al., 2016, DefenseDroid
[Colaco et al., 2021]], and MH-100K [Braganca et al., 2023|].  These datasets offer
various features for Android malware detection, representing different aspects of the
Android operating system, such as permissions, system calls, hardware accesses, and
API calls. This diversity of features is essential for building robust malware detection
systems.

We discover that the lack of a direct intersection of feature sets across the different
datasets used in this study demonstrates the wide range of Android malware operations,
which requires a broader range of features for accurate detection. This diversity em-
phasizes the importance of utilizing multiple datasets and features to enable precise and
reliable malware identification. Furthermore, we discuss the implications of incorporating
expert-dependent features into the malware detection process. These features can enhance
model accuracy by detecting subtle indicators of malicious behavior that ML algorithms
may overlook.

In summary, our contribution is twofold. First, we provide a comprehensive XAl-
based examination of feature importance in malware detection models. Our findings pro-
vide insights into the critical variables that AI/ML models consider when distinguishing
between benign and malicious apps, thereby enhancing the models’ knowledge and inter-
pretability. Second, XAI Integration with malware detection models, which is a crucial
to foster high-quality and advanced research. With such integration, we aim to achieve
high accuracy while elucidating the underlying decision-making processes of these mod-
els, focusing on model interpretability and understanding. This approach adds validation,
fostering increased trust in the models’ predictions and leading to more effective malware
detection mechanisms.

The remainder of this paper is organized as follows. In Section [2] we present the
related works. Next, we describe the XAl methodology used in this study in Section
Finally, in Sections [4] and [6] we introduce our experimental protocol and results and the
final remarks.



2. Background and Related Works

The detection of Android malware plays a critical role in safeguarding users of applica-
tion markets and improving the scrutiny processes employed by these markets. This task
involves the analysis of malware samples, requiring extracting relevant features to gener-
ate signatures or behavioral profiles. Several works propose machine learning-based ap-
proaches for effective malware detection [Odusami et al., 2018, Kouliaridis et al., 2020,
Liu et al., 2020, Muzaffar et al., 2022} Bhat et al., 2023]], highlighting the crucial impor-
tance of high-quality features in constructing robust detection models.

Different types of features (e.g., permissions, system calls, network traf-
fic) have been used in ML-based malware detection research [Qamar et al., 2019,
Pimenta et al., 2023]]. Researchers took also advantage of additional metadata, such ap-
plication description, developer ID, and application category, to improve the accuracy and
effectiveness of malware detection solutions.

Regardless of the specific feature types, metadata or methods used in the analysis,
the primary goal is always to improve the output metrics (e.g., accuracy, recall) of the
Android malware classifier. However, it is worth emphasizing that researchers have only
started focusing on understanding the decisions made by classifiers using explainability
techniques in recent years. These techniques provide insights into the reasoning behind
classifier predictions, adding a layer of transparency and interpretability to the malware
detection process. Most publications in the literature include ML models for Android
malware detection, but very few have made an effort to explain the decisions made by the
models.

[Mathews, 2019] utilized the LIME (Local Interpretable Model-Agnostic Expla-
nations) algorithm to classify malware and provided a general explanation of explainable
artificial intelligence (XAI), referencing important principles for evaluating explainabil-
ity. [Nellarvadivelu et al., 2020] conducted a black-box study of the Android malware
system, analyzing which features a classification model relies on for making decisions.
[Fan et al., 2020] evaluated five distinct local and model-agnostic explanation approaches
for Android malware analysis - LIME, Anchor, LORE (LOcal Rule-based Explanations)
SHAP (Shapley Additive Explanations) , and LEMNA (Local Explanation Method using
Nonlinear Approximation) [[Guo et al., 2018]]). The authors evaluated the stability, robust-
ness, and effectiveness of model-agnostic explanation approaches on a variety of malware
classifiers, including multilayer perceptron (MLP), random forest (RF), and support vec-
tor machines (SVM).

[Kim et al., 2021]] investigated the use of XAI in cybersecurity technologies to
improve the efficiency of analysts’ decision-making. SHAP and FOS (Feature Outlier
Score) algorithms are used in the paper to uncover relevant information in IDS and mal-
ware datasets. [Melis et al., 2022]] utilized gradient-based attribution approaches to ex-
plain Android malware classification decisions and selected the most relevant features.
They also presented measures to evaluate the influence of explanations on the classifiers’
adversarial robustness.

[Alani and Awad, 2022] proposed a lightweight Android malware detection ap-
proach that uses explainable machine learning to distinguish between harmful and benign
applications. The author’s results indicate an accuracy of over 98% while preserving a



minimal footprint on the device. Furthermore, Shapley Additive Explanation (SHAP)
values are used to explain the classifier model.

In comparison to these existing works, our research offers a more comprehensive
and in-depth examination of malware detection, with an emphasis on both accuracy and an
understanding of how ML models operate utilizing XAl methodologies. It does more than
just list these features; it provides an extended analysis of various datasets with various
feature sets, emphasizing the diversity of Android malware operations.

3. Insights from Explainable Al

In this section, we present a two-step process for evaluating malware detection algorithms,
as depicted in Figure[I] The first step follows the conventional approach commonly found
in machine learning research, encompassing data source information, validation methods,
malware detection model development, and evaluation. The second step introduces the
incorporation of recent explainability techniques into the traditional ML pipeline.
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Figure 1. Overview of the XAl methodology applied to machine learning.

Any machine learning task begins with the data source. Data can come from vari-
ous sources, including databases, files, APIs, online repositories, and collection tools. The
data source selection is based on the specific problem we are addressing. It is imperative
to ensure that the data is relevant, high-quality, and sufficient to facilitate the develop-
ment of accurate and robust detection models. Preprocessing techniques may be applied
to clean and transform the data into a suitable format for subsequent ML algorithms.

After obtaining and preprocessing the data, the following step is to select a vali-
dation methodology, dividing the dataset into sections for training and testing the model.
The holdout method is the most basic form of validation, dividing the dataset into two
sets.

If the validation sets are established, the subsequent stage involves selecting and
training a machine learning algorithm using the training data. The choice of algorithm de-
pends on various factors, including the nature of the problem, the type of data available,



and the specific requirements of the research. Once the model has been trained, assessing
its performance on unseen data is crucial, evaluating the model’s predictions on the test
data and comparing them to the actual values. Standard evaluation metrics for classifi-
cation tasks include the F1-score and accuracy, which provide measures of the model’s
effectiveness in correctly classifying instances.

In addition to performance evaluation, understanding and explaining the model’s
output is essential, particularly in tasks where errors could have significant consequences.
This step helps shed light on why the model is making specific predictions. Various tech-
niques can be employed to evaluate the model’s results, such as permutation importance,
partial dependence plots, SHAP, and LIME. These techniques offer insights into how the
model makes decisions by facilitating the interpretation of the contribution of each feature
to the model’s predictions.

3.1. Why is it important to explain model results?

In the malware detection domain, the consequences of incorrect predictions can be sig-
nificant, making the need for accurate and reliable models crucial. False positives occur
when harmless software is wrongly labeled as malware, which can result in high costs
and interruptions. False negatives, on the other hand, occur when malicious malware is
wrongly labeled as benign and can result in catastrophic security breaches, data theft, and
other consequential consequences.

Incorporating explainability techniques into malware detection using ML models
is an important approach to get new insights about the decision-making process. Explain-
able Al methods enhance human understanding and trust in ML systems by providing
users with tools to evaluate and comprehend model outputs.

One key benefit of XAl is the promotion of trustworthiness. This trust is critical
in areas such as malware detection, where system actions directly influence users’ dig-
ital safety. Understanding why a particular application was flagged as a threat can help
improve malware detection algorithms, resulting in more robust and reliable security solu-
tions. XAl also helps ML models be validated. If a model can articulate how it arrived at
a particular decision, validating its efficacy and accuracy is simpler. This validation pro-
cedure is essential for maintaining the model’s development and guaranteeing it functions
as intended.

In the subsequent sections, we use the SHAP framework to provide explainable
results and insights into the decision-making process of the malware detection system,
thereby enhancing the interpretability of the system.

4. Experimental Protocol

In this section we outline the experimental protocol, which encompasses two evaluation
scenarios. We provide details of the datasets utilized, the evaluation metrics employed,
the baseline model, the validation methodology, and the specific evaluation scenarios.

4.1. Android Datasets

We used in our experiments seven widely-used datasets in the literature for evaluating
malware detection on the Android platform. Table |l{ provides information on the number
of samples and the types of features present in these Android malware datasets.



Table 1. Summarization of datasets.

Features Samples
Dataset
N. Features Feature Type Malwares Benign Total

API Calls (24)

AndroCrawl 81 Intents (8) 10170 86562 96732
Permissions (49)

ADROIT 166 Permissions 3418 8058 11476

Android Permissions 183 Permissions 20000 9999 29999

DefenseDroid 2938 f;gi:s(lfﬁé)l 490) 6000 5975 11975
API Calls (73)

DREBIN-215 215 Permissions (113) 5555 9476 15036
System Commands (6)
Intents (23)

KronoDroid Disp. Real 246 g;g‘g;fflggﬁs(}fgg) 41382 36755 78137
API Calls (24417)

MH-100K 24833 Intents (250) 9800 92134 101934

Permissions (166)

It is important to note that each dataset has unique features and sources, ensuring
diversity in the samples and enabling a thorough evaluation of the malware detection
algorithms.

4.2. Classification Model

In this work, we use the XGboost classifier (Extreme Gradient Boosting), which has been
adopted in works related to malware detection [PalSa et al., 2022] and intrusion detection
systems [Devan and Khare, 2020]. It is a highly recommended choice for binary classifi-
cation tasks involving categorical features due to its advantages over traditional machine
learning models [[Chen and Guestrin, 2016]. The XGBoost builds new predictors to re-
duce the residual errors of the prior predictor, hence increasing prediction accuracy over
time. Additionally, it offers regularization to prevent overfitting, a significant problem
with decision tree-based models and can handle categorical features effectively.

4.3. Evaluation Metrics and Validation Methodology

In assessing the performance of models, we employ commonly used evaluation metrics,
including accuracy, precision, recall, and F1-Score. These metrics are derived from the
confusion matrix analysis and provide valuable insights into the effectiveness of the clas-
sification system. While accuracy is a commonly used metric, it may not be sufficient,
especially when dealing with class imbalance, as it can impact the interpretation of results.

As validation methodology, we use hold-out, known as the simplest form of split-
ting data and relies on a single split of the dataset into two mutually exclusive subsets
called a training set and a test set. The advantage of this method is the lower computa-
tional load. We choose to use a split of 80% for training and 20% for testing.

5. Results and Discussion

In this section, we examine results from two evaluation scenarios that critically impact
how we evaluate malware detection algorithms. Firstly, we assess a malware detection
system’s classification performance across various datasets. The XGBoost classifier is



utilized to construct models on these datasets, facilitating the differentiation between be-
nign and malicious applications. Secondly, we employ the SHAP swarm plot visualiza-
tion technique to explain how our models make decisions and highlight the importance of
essential features in the prediction process.

5.1. The effectiveness of malware classification methods

We summarize the classification performance of the malware detection system on differ-
ent datasets in Table2l The results demonstrate that the malware detection models trained
on the Drebin, AndroCrawl, KronoDroid, and MH-100K datasets achieved superior per-
formance, with accuracy scores exceeding 0.97. For benign applications, the accuracy,
precision, recall, and F1-score results of the Drebin, AndroCrawl, and MH-100K datasets
are all close to 0.99, indicating that they provide the best results. These findings indicate
that these datasets offer the best results, exhibiting minimal false positives and negatives.
Thus, the models built with these datasets can differentiate between benign and malicious

apps.

Table 2. Classification performance using holdout methodology for malware de-
tection models on different datasets.

Dataset Class  Precision Recall Fl-score Accuracy Macro-F1
Drebin Maware 099 0% 09 0% 09
AndroCrawl ﬁ;ﬁiﬁ‘r‘e 8:33 8;22 8:32 0.99 0.97
KonaDroid L Gos  osr  os 07 097
AndroidPermissions I\]Z’;I:i irrle 822 8;2 85; 0.67 0.50
Advi Mawae 09 07 o 091 0
DefenseDroid ;gﬁiﬁ?ﬁ 8:3; 8:33 8:33 0.92 0.92
MH-100K Benign 0.99 0.99 0.99 098 0.94

Malware 0.87 0.90 0.89

The Drebin, AndroCrawl, and MH-100K datasets yield high precision, recall, F1-
score, and accuracy for both malware and benign classes, as shown in Table 2] The
KronoDroid and DefenseDroid datasets produce reasonably good performance metrics
in both malware and benign classes, with the models achieving balanced performance
consistently, as showed by the Macro-F1 scores. The Adroit dataset also demonstrates
good precision and recall for the benign class but much lower recall for the malware
class.

The AndroidPermissions dataset shows inferior performance, particularly in the
benign class, where it achieves an Fl-score of only 0.21. Although permissions can be
indicative of an app’s activity, in the case of the Android Permissions dataset, they may
not be sufficient for successful malware detection. Additionally, the model can become
biased towards one class when the dataset has a high proportion in that class, which could
lead to poor performance for the underrepresented class. Finally, smaller datasets may
not include enough information for the model to generalize effectively, resulting in poor



performance. Combining permissions with other aspects like API requests and Intents is
frequently a more efficient technique.

Our findings imply that the feature set and the proportion of malicious and benign
samples in the datasets have a considerable impact on how well malware detection models
work. Additionally, the high accuracy of the models on the MH-100K dataset suggests
that a rich feature set can be crucial for reliable malware identification. The variation in
performance between datasets emphasizes how crucial it is to choose the right features
and have a balanced dataset for accurate malware identification.

5.2. A closer look into malware classification results

We use a visualization approach called the SHAP swarm plot to gain insights into the
outputs of malware classification models. The SHAP swarm plot provides valuable in-
formation about the importance of features in determining whether a sample is classified
as malware. A positive SHAP value indicates that a feature’s presence or higher value
contributes to the likelihood of the sample being classified as malware. Conversely, a
negative SHAP value suggests that a feature’s absence or lower value contributes to the
classification of the sample as benign. We focused on the top 30 features that play a sig-
nificant role in the decision-making process of the models. Figures [2] 3] [ [5] [6} [7} and [§]
show the SHAP values of these features on the datasets.
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Figure 2. SHAP swarm plot for Drebin dataset.

These datasets share common feature categories, indicating similar types of
system interactions. For instance, features related to accessing system-level infor-
mation, such as read_phone_state), are present in Adroid, DefenseDroid, Drebin,
and KronoDroid datasets. Permission-related features like access_coarse_location,
access_network_state, and access_wi fi_state are also standard across some datasets,
showing a shared focus on applications permissions.

The absence of a straight feature intersection demonstrates the extensive range
of Android malware behaviors, demanding different and multidimensional feature sets
for complete analysis and detection. However, shared feature categories indicate typical
Android malware behaviors and exploitation tactics, underscoring the importance of these
factors in malware identification. The SHAP framework has drawn attention to these
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Figure 4. SHAP swarm plot for Kronodroid dataset.

crucial elements, such as system interactions, permissions, and API calls, which malicious
applications often exploit or manipulate in the context of Android malware detection.

Features such as read_phone_state and send_sms, in Figures [2] B 4] and [6] are
associated with Android system processes and states. Malicious applications usually at-
tempt to obtain sensitive information or alter system behavior. For instance, reading the
smartphone status can provide information about the device, the user, or ongoing calls,
while sending an SMS can be misused for activities like signing up for premium services
without the user’s knowledge or sending phishing messages.

Application permissions such as access_coarse_location, access_network_state,
and access_wi fi_state play a key role. While malware applications can utilize these
features, their presence does not necessarily imply that the application is malicious, as
they can also be used for legitimate purposes. However, their misuse or atypical usage
often signifies malicious behavior, making them crucial indicators for malware detection
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Figure 6. SHAP swarm plot for Adroit dataset.

models. Moreover, excessive or improper application permissions are warning signs of
potentially harmful activity.

Malware frequently exploit specific Android API calls, as those highlighted in-
Figure |8 For instance, a feature called Landroid/os/Parcel.writeFloat() represents
an interprocess communication API call that can be exploited to exchange private in-
formation with other processes or a command and control server. AndroCrawl dataset
features like ob fuscation_present are related to application properties. Malware often
employs obfuscation techniques to conceal its malicious code from detection tools.

The inclusion of expert-dependent features in datasets, such as
readbrowserhistoryandbookmarks or contains_url_known_to_be_suspicious, as
shown in Figure [5] and [7] has both advantages and disadvantages. These features have
the potential to improve the accuracy of detection models. This is because skilled human
specialists can detect hidden red flags of malicious applications that machine learning
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Figure 7. SHAP swarm plot for AndroidPermissions dataset.
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Figure 8. SHAP swarm plot for MH-100K dataset.

algorithms may miss. As a result of these expert-dependent features, malware detection
algorithms can become more complex while maintaining accuracy. However, including
expert-dependent features significantly increases the time and resources required for
feature extraction. Unlike automatic feature extraction, which can be performed at scale
and at a faster pace, expert-dependent features necessitate extensive manual review,
which can be costly and time-consuming.

It is important to note that expert support can cause scaling issues. As the number
of applications requiring review grows, manually extracting features from each applica-
tion may become impractical or even impossible. This is especially true in the case of
Android apps, where hundreds of thousands of new apps and upgrades are released each
month. Another potential disadvantage is the eventual human bias. Certain features may
be given disproportionate weight, while others may be missed, depending on the expert’s
expertise, perspective, and even personal biases. This may unintentionally introduce bias
into the detection model, lowering its generalizability and impartiality.

Understanding these features and how malicious applications might use them is



essential for effective malware detection. In a machine learning model, such features are
critical for determining whether an application is benign or malicious. The SHAP frame-
work helps to highlight the importance of these features and provides valuable information
for future research and mitigation efforts.

6. Conclusion

Adopting XAI approaches is a step forward in developing more transparent, trustworthy,
and efficient ML models in malware detection. This evolution can improve our ability to
detect and respond to evolving cybersecurity threats. While enhancing accuracy remains
a critical goal, and our results demonstrate that current methods are efficient in this task,
understanding the model behavior is equally important. If models make decisions based
on particular features that result in unfair or biased findings, it’s essential to identify these
issues during the evaluation process. Such kinds of insights can lead to better model
designs that provide Al systems fairness, transparency, and reliability. XAI approaches
can significantly enhance this comprehension, creating a more responsible ML system.
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