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Abstract. Asm2Vec is an algorithm capable of learning representations for
binary files using word embedding techniques. Researchers have employed
this approach for binary analysis as well as malware classification. Malware
classification is, however, known to be widely affected by drift, i.e., models
built to identify a particular malware family become obsolete rapidly. We ask
whether representation learning approaches such as Asm2Vec help reduce the
impact of drift in malware classification. To answer this question, we design
an experiment using two public malware datasets and train classic machine
learning models with (i) static features extracted from malware headers and (ii)
features obtained using Asm2Vec. Our results show that there is little difference
in relation to the effect of drift and that the classifiers trained with Asm2Vec
resources present worse classification performance. We provide initial insights
into the effects of representation learning on the drift in malware classification.

Resumo. O Asm2Vec é um algoritmo capaz de aprender representações
de arquivos binários com base em técnicas de embeddings de palavras.
Pesquisadores têm utilizado essa técnica para análise de binários, bem como
para classificação de malware. No entanto, a classificação de malware
é conhecida por ser amplamente afetada por drifting, ou seja, modelos
construídos para classificar malware tornam-se obsoletos com o passar do
tempo. Portanto, investigamos neste artigo se as abordagens de aprendizado
de representação, como Asm2Vec, ajudam a reduzir o impacto do drifting na
classificação de malware. Para responder a essa pergunta, projetamos um
experimento usando dois datasets públicos de malware e treinamos modelos
clássicos de aprendizado de máquina com (i) features estáticas extraídas
de cabeçalhos de malware e (ii) features obtidas usando Asm2Vec. Nossos
resultados mostram que há pouca diferença em relação ao efeito de drift e que os
classificadores treinados com os recursos do Asm2Vec apresentam desempenho
de classificação pior. Como contribuição, fornecemos insights iniciais sobre
os efeitos do aprendizado de representação em drifiting na classificação de
malware.

1. Introduction
Word embedding techniques such as Word2Vec [Mikolov et al. 2013a,
Mikolov et al. 2013b] have been proven to extract rich features from natural
language text. Similar approaches have been successfully applied in other scenarios,



such as code embeddings in which representations are learned from computer
languages [Allamanis et al. 2018]. These approaches have found several applications
in cybersecurity, including for assembly code clone searching [Ding et al. 2019],
traffic analysis [Gioacchini et al. 2021, Le et al. 2022, Dietmüller et al. 2022,
Houidi et al. 2022], and honeypot log interpretation [Boffa et al. 2022].

Asm2Vec [Ding et al. 2019], in particular, is a state-of-the-art approach for
learning representations from binary files. Asm2Vec builds vectors that represent
assembly instructions from a corpus of disassembled binaries. These vectors are
then leveraged to obtain representations for the binaries and support a variety of
downstream machine learning (ML) tasks. Notably, Asm2Vec has been proposed for
function clone searching and has been used for malware analysis and classification as
well [Chandak et al. 2021].

Malware classification is a challenging task since malware code is continuously
mutated to evade detection by security systems. Techniques such as packing and
obfuscation have been shown to render ineffective classifiers built with static features
extracted from binaries [Aghakhani et al. 2020]. Equally, traditional ML approaches are
not effective if models are not updated to cope with changes in the malware families.

This problem – called drift – is well-known by the ML community. Model
drift refers to the situation in which the performance of an ML model deteriorates
over time. Here we focus on data drift, i.e., the statistical properties of the dataset
change over time, leading to a mismatch between the training and testing data. The
security community facing malware classification has proposed multiple alternatives
to improve the performance of ML-based malware classifiers in the presence of drift.
Some authors propose algorithms to monitor the drift, applying different approaches to
determine the right moment to retrain models [Jordaney et al. 2017, Yang et al. 2021b,
Barbero et al. 2022]. Others suggest online training alternatives that update models
continuously [Narayanan et al. 2017, Xu et al. 2019, Kan et al. 2021]. Finally, some
works introduce models that, by using semantic information, are less sensitive to
drift [Zhang et al. 2020]. There is, however, a lack of literature on the impact of
representation learning approaches on the drift.

We provide a preliminary investigation on whether representation learning
approaches, such as Asm2Vec (a recent and successful approach capable of extracting
semantic information from assembly code), contribute to rendering malware classification
less sensitive to drift. We perform experiments using two independent and long-term
datasets of labeled malware samples. Each dataset contains 13 months of malware
samples, which have been labeled by security experts and practitioners. We first isolate
the most prevalent malware samples in the initial months of the datasets and train machine
learning models with (i) static features extracted from the binaries and (ii) features
obtained using Asm2Vec. We then freeze the models and study the model drift.

Our results show that Asm2Vec does not reduce drift effects, except for minor
differences in some tested scenarios. Besides that, using Asm2Vec features produced
worse classification performance in all tested scenarios. As an explanation for these
results, we conjecture that Asm2Vec applied to full (large) binary samples provides
too coarse-grained representations, as opposed to its original application in (small)



function cloning search. Overall, our results provide initial insights into the potential
of representation learning in malware classification and call for further research to better
understand its impact on the drift.

This paper is structured as follows: Section 2 provides background information
on representation learning, malware classification, and drift. Section 3 describes our
methodology and experimental setup, while ection 4 presents our results on the drift
analysis of Asm2Vec. Finally, Section 5 indicates previous works about drift and
Section 6 concludes the paper and outlines future work.

2. Background

2.1. Asm2Vec basics

Word embedding is a widely used technique in NLP tasks.
Word2Vec [Mikolov et al. 2013a, Mikolov et al. 2013b], in particular, utilizes the
co-occurrence of words in sentences to learn a high-dimensional latent space representing
the words. Despite usually being constructed based on word co-occurrence, the obtained
representations ultimately encode semantic and syntactic properties of words. Word2Vec
vectors have served as input for multiple downstream ML algorithms in NLP tasks.
Following the same concept, code embedding algorithms learn representations for
computer languages. Asm2Vec [Ding et al. 2019] is a code embedding algorithm that
focuses on assembly. It has been created to embed assembly code into a latent space,
mapping assembly instructions and functions to vectors in the embedding space.

Asm2Vec learns vector representations using large corpora of assembly code. It
adapts the PV-DM model, which in turn is an extension of the classic Continuous Bag-
of-Words (CBOW) model. Asm2vec jointly learns vector representations for assembly
mnemonics and parameters. Given the current assembly instruction in a function and
its neighboring instructions, the algorithm relies on the context provided by the adjacent
instructions to predict the current mnemonic and parameters.

Off-the-shelf disassemblers (e.g., IDA or RADARE2) can be used to extract
assembly functions and control flow graphs from the binaries. The control flow graphs
form the sequences of instructions passed as documents to Asm2Vec. Asm2Vec requires
a key parameter m, the minimum number of assembly instructions to consider a found
sequence to form a valid function.

Asm2Vec maximizes the log probability of observing a current token tc (a
mnemonic or the instruction parameters), given the current function fs and a window of
w neighboring instructions. The output vector for each instruction has dimension d and
is built by concatenating vectors for the instruction mnemonic and the average of vectors
for its parameters. The final representation for each function (and binary) is obtained by
averaging vectors of the instructions composing the functions. For the sake of brevity, we
refer readers to [Ding et al. 2019] for details of the Asm2Vec training procedure.

In [Ding et al. 2019], authors show that the obtained embeddings capture
relationships between instructions and deliver good performance for assembly
similarity/clone searching [Ding et al. 2019]. Equally, embeddings have been shown to
provide good features for the classification of binary files [Chandak et al. 2021], without,
however, any specific study focusing on drift.



2.2. Measuring drift
Previous studies have shown the robustness of classification models to concept drift using
mainly two approaches: (i) monitoring classic performance metrics of classifiers over
time or (ii) using ad-hoc metrics that directly quantify the drift.

Considering the first group of metrics, we use the overall accuracy and the F1-
score of individual families to monitor drift on new batches of data that are processed
without retraining the models. Given the context of malware classification (which
involves a multi-class classification problem), we can define the overall accuracy as
follows:

Acc =
Correct Predictions

All Predictions
. (1)

The latter metric is calculated from the precision and recall as

F1-score = 2 · Precision · Recall
Precision + Recall

. (2)

Considering metrics proposed for quantifying drift directly, some
authors [Pendlebury et al. 2019, Zhang et al. 2020] rely on a metric that quantifies
the total drift over a fixed period of time, called Area Under Time (AUT). The AUT is
calculated from the model performance in each time slot as follows:

AUT (f,N) =
1

N − 1

N−1∑
k=1

[f(xk+1) + f(xk)]

2

where f is a performance metric (e.g., accuracy or F1-score) and N is the number of test
slots – the higher the metric, the better. We here use AUT (Acc, 12), i.e., we calculate
AUT taking accuracy as metric and summing up the drift observed in 12-time slots (i.e.,
N = 12 months).

However, the AUT (Acc, 12) provides a view into drift based on absolute
performance metrics. In some scenarios, this procedure may result in artifacts. For
example, a model with high initial accuracy may show higher AUT (if its drift is very
severe) than a poorer-performing model that suffers no drift whatsoever. We thus propose
to observe AUT (Acc, 12) together with the Percentage of Performance Decay (PoPD).
The PoPD of a model is calculated as follows:

PoPD =
(AUTc − AUTr)

AUTc

where AUTc is the AUT assuming that the classifier performance remains constant over
time (i.e., no drift is observed) and AUTr is the actual AUT for the model. The lower the
metric, the better – i.e., the classifier has not lost performance. Notice that PoPD may
become negative if performance improves over time. This may happen due to artifacts,
e.g., if the popularity of classes changes.

3. Methodology
3.1. Dataset
We rely on the BODMAS [Yang et al. 2021a] and Malwarebazaar1 datasets to explore
Asm2Vec impact on drift. We use BODMAS for most experiments and Malwarebazaar

1https://bazaar.abuse.ch/



Table 1. Number of binaries for most popular malware families in the datasets.
Only a portion of the files could be disassembled for BODMAS. The table
reports also the number of packed files (BODMAS).

BODMAS

Family Samples Disassembled Packed
Sfone 4 729 3 275 1 897

Wacatac 4 694 4 608 2 094

Upatre 3 901 3 736 382

Wabot 3 673 3 546 0

Small 3 339 3 293 18

Total top-5 20 336 18 458 14 067
ganelp 2 232 2 232 10

dinwo 2 057 2 057 821

mira 1 960 1 960 240

Other Families 6 249 6 249 1 071
MALWAREBAZAAR

Top-5 Families — 46 205 —

to confirm results.

BODMAS is a curated dataset that contains 57,293 malware samples, all in PE32
format, collected between Aug 2019 and Sep 2020. Security experts have labeled the
dataset with 581 different malware families. The dataset also contains 77,142 samples of
benign binaries, which are ignored in this work. In addition to the (disarmed) malware
binaries, BODMAS provides pre-extracted features obtained using LIEF.2 For this,
BODMAS adopts the same format of the EMBER dataset [Anderson and Roth 2018],
a previous public dataset that exposes a total of 2,381 static features.

Malwarebazaar is an open collection of malware samples that are tagged by
experts and practitioners. We download 13 months of PE files from the dataset (46 k
samples), collected between Mar 2020 and Apr 2021. As for BODMAS, we extract the
static features (EMBER) for Malwarebazaar samples.

To assess Asm2Vec’s impact on the drift, we first focus on the most popular
malware families. With this selection, we reduce oscillations in results due to unpopular
classes, easing the observation of drift. For example, for BODMAS the top-5 families
add up to 20,336 samples and represent 35% of the original dataset. We also aggregate a
sample of the remaining families into an Other class when performing experiments in an
open-world scenario.

Table 1 summarizes the datasets, showing the number of samples per class. We
provide more details for the BODMAS dataset, as we rely on this dataset primarily
for the experiments. For BODMAS we could not dissemble 5,698 binaries for the

2https://lief.quarkslab.com/



selected families.3 When performing experiments with Asm2Vec, we drop these
samples. Finally, we have confirmed that 11,065 samples from the BODMAS dataset
are packed. ML models that use static features have difficulties in classify packed
malware samples [Aghakhani et al. 2020]. We thus perform specific experiments with
these samples to assess whether Asm2Vec brings any advantage to this scenario.

3.2. Malware embeddings and classifiers

We run all experiments on a Linux server running Ubuntu 22.04, with an Intel Xeon Gold
6140 at 2.30GHz with 72 virtual cores (including hyperthreading) and 320GB RAM.

We leverage a PyTorch implementation of Asm2Vec for learning the malware
code embeddings.4 We tested several Asm2Vec parameter setups when learning the
embeddings, verifying the performance of downstream classifiers using our training
dataset (described next). In particular, we explore the impact of (i) the minimum
length of assembly functions m and (ii) the embedding dimension d since previous
efforts [Ding et al. 2019, Marcelli et al. 2022] report results using different values for
the parameters. All other parameters of ASM2VEC that were not explicitly tested were
utilized in the default configuration of its implementation.

We use the two initial months of each dataset (e.g., August and September 2019 for
BODMAS) as the training set and the remaining months as independent testing sets. For
learning the classifiers, we rely on a simple (yet effective) shallow classification model.
In particular, we use a Random Forest (RF) with the following parameters: number of
estimators equal to 10; criterion as “entropy”, and random states 42. We have also tested
other configurations and conclusions that follow holds. We leave a similar analysis with
more sophisticated ML models (e.g., deep neural networks) for future work.

We define multiple experiments to test combinations of features, malware
samples, and parameters. In particular, we call EMBER all RF models built with static
features. We generically call Asm2Vec (specifying the key parameters d and m when
relevant) the RFs built with the embeddings generated with Asm2Vec.

We build different RF models using (i) all samples of the top-5 malware families
(BODMAS) – note that we ignore Asm2Vec in this case, as it cannot operate with the
samples that are not disassembled; (ii) the disassembled samples of the top-5 families
(for both BODMAS and Malwarebazaar); (iii) the previous case, with an additional class
composed of other malware families, so to simulate an open-world scenario (BODMAS);
(iv) only the packed malware samples (BODMAS).

4. Assessing Asm2Vec’s impact on drift

We now present our evaluation of the impact of Asm2Vec on the drift. We first compare
the classification performance of the RF models built with static features and the off-the-
shelf setup of Asm2Vec when facing only the top malware families in BODMAS and
MalwareBazaar datasets (Section 4.1). To deepen results, we use the BODMAS dataset
to explore other Asm2Vec parameters (Section 4.2) and test different scenarios, such as
in an open-world use case (Section 4.3) and with packed binaries (Section 4.4).

3Automated script using RADARE’s af command could not find assembly functions in some binaries.
4https://github.com/oalieno/asm2vec-pytorch



Table 2. Summary of results: The closer AUT is to 1, the better the accuracy; the
smaller PoPD, the smaller the drift. Results marked as “average” show the
average when testing with dimensions 20, 50, 100, 200, and 400.

Setting AUT (Acc, 12) PoPD (%)
BODMAS DATASET

EMBER Top-5 0.874 8.86

EMBER Disas. 0.870 10.08

EMBER Disas. Open-World (OW) 0.678 12.07

EMBER Packed 0.748 4.22

EMBER Packed Open-World (OW) 0.376 39.01

Asm2Vec Disas. m=10 (average) 0.795 9.38

Asm2Vec Disas. m=35 (average) 0.794 6.02

Asm2Vec Disas. d=100, m=10 OW 0.618 13.00

Asm2Vec Packed d=100, m=10 0.694 6.92

Asm2Vec Packed d=100, m=10 OW 0.240 26.09

MALWAREBAZAAR DATASET

EMBER 0.535 33.96

ASM2VEC d=100, m=10 0.307 59.32

Table 2 summarizes the results, showing the AUT (Acc, 12) and PoPD for
various experiments. Each line reports the results for an experimental configuration,
encoding the used features (EMBER or Asm2Vec), the samples used for learning
and testing (top-5, disassembled, open-world, or packed), and the relevant algorithm
parameters.

4.1. Asm2Vec vs EMBER features

4.1.1. BODMAS

Figure 1(a) shows the results for accuracy when using the BODMAS dataset over the
test months for three different setups: i) EMBER top-5, our closed-world scenario with
all samples of the top-5 malware families; ii) EMBER disassembled, thus restricting the
analysis to samples that can be classified by Asm2Vec as well; iii) Asm2Vec with d = 100
and m = 10, which are the default parameters of the algorithm.

It is possible to notice a similar behavior in the three depicted series. Notice how
the accuracy for RF models built with EMBER features drops sharply around June 2020
and then increases in the following months. This behavior is somehow expected and can
be observed in the original BODMAS paper too, due to a sudden increase in the popularity
of the Sfone malware family. This family is under-represented in the training samples, as
it was not a widespread malware in the initial months of the dataset.

The accuracy for the RFs built with EMBER features varies little when discarding
files that could not be disassembled. This suggests that the absence of these files has little



10
/2

01
9

11
/2

01
9

12
/2

01
9

01
/2

02
0

02
/2

02
0

03
/2

02
0

04
/2

02
0

05
/2

02
0

06
/2

02
0

07
/2

02
0

08
/2

02
0

09
/2

02
0

Month

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

EMBER Top-5

EMBER Disas.

Asm2Vec Disas. (d=100, m=10)

(a) BODMAS

05
/2

02
0

06
/2

02
0

07
/2

02
0

08
/2

02
0

09
/2

02
0

10
/2

02
0

11
/2

02
0

12
/2

02
0

01
/2

02
1

02
/2

02
1

03
/2

02
1

04
/2

02
1

Month

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

EMBER

ASM2VEC

(b) MalwareBazaar

Figure 1. Accuracy for EMBER vs. Asm2Vec features.

impact on the accuracy result throughout the test period. From now on, we thus ignore
the samples that could not be disassembled.

The accuracy obtained with Asm2Vec is lower than that obtained with EMBER
features. As we can see in Table 2, the AUT (Acc, 12) metric is reduced from 87%
(EMBER disassembled) to 80% (Asm2Vec disassembled d=100, m=10). That is, the RFs
built with the Asm2Vec features (in the algorithm’s default parameters) deliver worse
performance than the static features.

Overall, the figure suggests that all models suffer from some drift, with consistent
fluctuations across all tested configurations. Table 2 shows that using Asm2Vec
features results in slightly better PoPD metrics, e.g., obtaining 8.32% for the Asm2Vec
disassembled case (d=100, m=10) as opposed to 10% with the BODMAS disassembled.
Yet, these differences seem to come from the lower performance of the RF built with the
Asm2Vec features. In other words, Asm2Vec features result in a classifier performing
worse than EMBER features. However, the accuracy of the Asm2Vec-based classifier is
slightly more constant over time.

4.1.2. MalwareBazaar

To verify the consistency of the results, we repeat the tests using the MalwareBazaar
dataset. Recall that we have only disassembled files for the top-5 malware families in this
case. Results are in Table 2 and Figure 1(b).

Again, the EMBER features allow more accurate classifiers than the Asm2Vec
ones, with AUT (Acc, 12) = 0.535 for the former and AUT (Acc, 12) = 0.307 for the
latter. The AUT (Acc, 12) and PoPD metrics suggest strong drift in both cases. Numbers
for Asm2Vec are clearly worse, questioning the appropriateness of these features in this
downstream task.

These bad results are, however, explained not only by changes in the features
of each malware family but also by changes in the proportion of samples observed
throughout the months. Indeed, observing the distribution of the top-5 families in the
Malwarebazaar dataset over time (Figure 2), we can see that the number of samples for
each family is very different from month to month. Two of the 5 families (dridex and
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Figure 2. Distribution of the popularity of samples per month (top-5 families) in
the MalwareBazaar dataset.

heodo) are indeed under-represented in the training set. Notice how their increase in
popularity is coincident with the sharp drop in the performance of the classifiers.

To evaluate better the accuracy without that effect, Figure 3 shows the evolution of
the F1-Score of the models for the Agenttesla family only. This is the most popular family
in our training set for the Malwarebazaar dataset. The F1-Score trend indeed improves
– notice for example how numbers are better around Dec 2020. Yet, both models still
present strong drift – in this case due to changes in the samples of the family. Asm2Vec
features are affected the most, with both AUT (Acc, 12) and PoPD pointing to stronger
drift when classifying samples of this family (omitted for brevity).
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4.2. Impact of Asm2Vec parameters

We next verify whether varying parameters of Asm2Vec could reduce the performance
gap of its downstream RF model compared to the one built with the EMBER static



features. To check that, we vary the embedding dimension d and the minimum number of
instructions m and record the obtained AUT (Acc, 12) and PoPD.

Figure 4 summarizes results with different plots for each metric. The x-axis
reports the tested embedding dimensions d, while the lines show results with different
parameters m. Table 2 summarizes numeric results.

Figure 4(a) shows that the variation in the minimum number of instructions m
does not cause significant changes in accuracy. From Figure 4(b), there is a small but
consistent decrease in the PoPD when increasing the value of m from 10 to 35. In other
words, a greater m leads to a slight reduction in the drift effect. Quantitatively, we can
observe from Table 2 that the average value (considering the 5 tested dimensions) for
AUT is practically the same (0.795 for m = 10 and 0.794 for m = 35). Meanwhile, the
average value for PoPD is 3.36 percentage points lower for m = 35 (9.38 against 6.02).

Overall, the performance of the RF built with Asm2Vec features is only marginally
affected by the algorithm parameters.

4.3. Open-world scenario

We now present experiments in an open-world scenario, i.e., by considering also samples
of the other malware families. In this case, we add samples from three classes (ganelp,
dinwo and mira) encompassing a total of 6 249 samples of malicious binaries. These
samples are not present during training and are generically mixed in a class “Other” during
testing. The multiple trees present in the RFs are used to decide whether the testing
binaries are out-of-sample during classification time. This is a more realistic use case,
which tests the robustness of the models when applied to real datasets that may contain
unknown malware families.

Figure 5 depicts the accuracy of the models over time in this scenario. When
comparing these numbers to those in Figure 1(a), we see that models built with both
feature sets deliver an accuracy that is much lower than their respective figures in the
previous scenario. As expected, the presence of multiple unknown malware families
during testing complicates the classification, leading to a reduction of up to 20% in
accuracy. We see that the Asm2Vec features result in a classifier that has lower accuracy
also in the open-world case.
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From Table 2, we can see that the comparative results between feature extraction
approaches (EMBER x Asm2Vec) are indeed very similar to the other tested cases (e.g.,
EMBER features have AUT = 8.85% higher than Asm2Vec). All in all, the previous
conclusions hold also in this case: Asm2Vec leads to slightly lower performance than the
EMBER features, without significantly improving the drift.

4.4. Asm2Vec and Packing

We carried out additional tests using only the packed malware samples, again using the
BODMAS dataset. As there were no packed samples for two malware families in our
top-5 (Sfone and Wabot), we replace them with the next two most popular ones for which
we could identify packing (Ganelp and Dinwod), thus keeping 5 families in the dataset.

Figure 6 shows the accuracy obtained for EMBER and Asm2Vec features. Both
approaches have a very similar performance in this experiment. Generally, accuracy is
lower than in the previous experiments, as expected since the classification of packed
malware is known to be harder for ML models. Asm2Vec and EMBER deliver a very
similar profile in terms of drift, with no remarkable differences. We tested also a similar
configuration in the open-world setting, and the results are indeed inline – These numbers
are shown only in Table 2 for brevity.

Generally, we notice only minor differences in the AUT and PoPD metrics for
the two types of features in multiple settings. These results reinforce the conclusions of
the previous section, about the equivalence of the features in terms of drift effects.

5. Related work
Previous works have proposed different approaches to address the drift effect by
considering that the ML model can be updated through retraining with new (which means
"drifted") malware objects. Hence, some studies focused on developing metrics that allow
identifying the ideal moment in which retraining should be done [Jordaney et al. 2017,
Yang et al. 2021b, Barbero et al. 2022]. Furthermore, other authors proposed online
learning approaches, which allow the model to identify the concept drift in a malware
object in real time and use it for retraining[Narayanan et al. 2017, Xu et al. 2019,
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Figure 6. Accuracy by month for EMBER vs. Asm2Vec features - Only packed
files.

Kan et al. 2021]. However, such approaches do not address the issue of designing a more
concept-drift-robust model to concept drift.

On the other hand, other authors addressed the problem of developing a more
robust model to concept drift by using semantic information (malware behavior), which
is less less prone to change over time. [Onwuzurike et al. 2019] proposed using an
abstraction of Android malware API calls as a feature, utilizing only information from
its package and family. Similarly, [Zhang et al. 2020] used a structure called APIGraph,
capable of abstracting Android API calls to semantic clusters of APIs. However, these
works rely on crafted features (API calls) to generate more generalized abstractions.

This work stands out from previous studies by investigating if a representation
learning technique capable of extracting semantic information from code can be useful
for the development of more concept-drift-robust malware classification models.

6. Discussion and future work
We investigated whether using Asm2Vec to learn representations for binaries could make
ML classification models more robust to concept drift. Using two datasets that include
hundreds of thousands of malware samples collected during several months, we compared
models trained with static features and the Asm2Vec vectors.

Our experiments showed that the Asm2Vec provides similar (or lower)
classification performance as static features. Moreover, in almost all tested cases,
Asm2Vec did not enhance the classification robustness against drift. Whereas our results
do not allow us to pinpoint the causes for the lower performance of the Asm2Vec features,
we conjecture that the features are (i) too coarse and (ii) impacted by noise.

Regarding the first point, recall that Asm2Vec obtains a single vector for whole
binary, obtained by averaging the embedding vectors of each of its functions. We believe
that this representation washes out knowledge obtained from the sequence of instructions,
thus reducing the potential of the approach. Regarding the second point, the disassembled
code of a binary usually includes thousands of functions, and most of those are irrelevant
to characterize a binary (e.g., libraries or noncritical code paths). Asm2Vec has been



proposed as a means to easy assembly function clone identification, a scenario in which
both problems are not critical. For full binary classification, our initial results show that
the application of Asm2Vec as-is does not provide gains, thus calling for further research
on the potential of representation learning for this scenario.

In future work, we will investigate other approaches (eventually not based on
Asm2Vec) to learn representations for full binary files. Other techniques for code
representation will be tested in the context of malware classification. Moreover, we also
intend to explore other ML techniques besides RF, verifying whether they can extract
better knowledge from the code representation vectors. Finally, an investigation of the
malware drift behavior in other classification techniques (e.g., heuristics, behavior-base
analysis, signature-based)
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