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Abstract. Provable security in cryptography is extremely relevant nowadays,
since it is regarded as the basis for the proposal of new ciphers. In that sense,
the designers of new ciphers have to find ways to prove that the proposed cipher
is secure against the most pertinent forms of attack. Being safe against differen-
tial and linear cryptanalysis is still considered the bare minimum standard for
any new cipher. In the last decade, a great deal of attention has been given to
automated ways of proving the security of ciphers against both forms of attacks,
the original one being generating mixed linear integer programs that model the
given cipher in such a way that, by solving it, we are able to know the minimum
number of rounds necessary for the cipher to be secure. In this paper, we apply
this technique in the well known block ciphers LED, SQUARE and CLEFIA, and
compare the results with the original security claims.

1. Introduction
Symmetric cryptography is a very active research field since it is one of the basic building
blocks for secure communication. In particular, many new block ciphers have been de-
veloped, the most famous probably being data encryption standard (DES) and advanced
encryption standard (AES) algorithms. Their design usually takes into account recent de-
velopments of new attacks, and the designers try to build ciphers which are resistant to
particular classes of attack. Resistance against differential and linear cryptanalysis was
and still is one of the main goals of new cipher designs, but proving such things might be
a bit cumbersome for the designer.

In the last decade a couple of automated ways of proving under which conditions
a cipher is resistant to these attacks was developed. Along with the Boolean Satisfiability
Problem [Mironov and Zhang 2006], mixed linear integer programming (MILP) is one
very important tool as an alternative approach to analyze the security bounds of a cipher
[Mouha et al. 2011]. In particular, the MILP method is used to prove security against both
differential and linear cryptanalysis by means of solving a linear mixed integer program
which is directly connected to the working mechanism of the cipher. Since its intro-
duction, MILP has been used to prove the security of many ciphers, including SIMON,
PRESENT, LBlock [Sun et al. 2014], LIZARD [Karthika and Singh 2023], and Midori64
[Zhao et al. 2020].

Besides its use as a means of providing provable security, MILP based methods
have also been used in a variety of applications in modern cryptanalysis, such as searching
for integral distinguishers [Xiang et al. 2016] and looking for differential and linear trails
[Fu et al. 2016]. Moreover, much work has been done in improving the speed of the MILP
model [Zhou et al. 2019] as well as using it in cryptography design [Pal et al. 2023].



Therefore, since its introduction in 2011, the use of MILP models in the area
of cryptology has been relevant, which in turn justifies our choice of topic. However,
applying the MILP modeling from [Mouha et al. 2011] requires the underlying cipher to
have some properties. First of all, the cipher needs to be word-based (nibble, byte) and its
internal mechanisms being based on S-boxes, XOR operations, linear permutation and/or
three-forked branches. This is the case of AES and Enocoro, which were analyzed in the
original paper of [Mouha et al. 2011].

SQUARE [Daemen et al. 1997] is one classic cipher that is still relevant nowa-
days for being the precursor of the AES, as well as having introduced the SQUARE
attack - a type of cryptanalysis directed to AES-like ciphers, such as KIASU-BC
[Dobraunig et al. 2016] and Midori64 [Wardhana and Indarjani 2019]. The LED cipher
[Guo et al. 2011] is well known for being one of the first lightweight ciphers (Light En-
cryption Device), which are commonly used in Internet of Things and other embedded
systems, and for being target of extensive cryptanalysis since its creation although re-
maining secure. CLEFIA [Katagi and Moriai 2011] is also a lightweight cipher. In fact, it
is one of the standardized lightweight encryption algorithms of ISO/IEC 29192-2:2019.

Due to their relevancy, these three block ciphers will be the subject of this paper.
We will apply the MILP modeling to find the minimum number of active S-boxes that
should be activated during a differential/linear attack and compare with their original
security claims. MILP has also been applied before to light encryption device (LED)
and CLEFIA, but in another context. [Hadipour et al. 2022] applied MILP to get faster
distinguishes for LED (8 rounds) and CLEFIA (10 and 11 rounds) using the division
property and [Derbez and Lambin 2022] used MILP to attack 11 rounds of CLEFIA in
the key-recovery setting.

The rest of the paper is organized as follows. In Section 2, we describe the MILP
model from [Mouha et al. 2011] and how it is applied in the context of linear and dif-
ferential cryptanalysis. A brief description of SQUARE, LED and CLEFIA algorithms
focusing on the important mechanism required by MILP will be given in Section 3. Then,
in Section 4, we give the details on the application of the method in each algorithm, re-
porting the results and making appropriate comparisons. Section 5 concludes the paper
and give further directions of research.

2. The MILP model
Since its introduction by [Mouha et al. 2011], MILP modeling of ciphers has been ex-
tensively applied to prove security against linear and differential cryptanalysis in many
different encryption algorithms. One of the advantages of this method is its generality
and its adaptability. In particular, it can be applied to any word-based cipher constructed
using linear permutation layers, S-boxes, XOR operations and/or three-forked branches,
as is the case of Enocoro [Watanabe and Kaneko 2007] and AES.

Another important advantage of this technique is that the workload of the
cryptanalist is reduced to simply describing the cipher by means of linear equations ex-
pressing how the input and output chunks of words relate to each other. Once this step
is done, the equations, and restrictions generated by the internal mechanisms of the ci-
phers are put into a linear solver, and an integer linear equation representing the number
of active Sboxes is minimized. This gives us an almost automatic way of proving security



bounds against both linear and differential cryptanalysis.

It is also worth noting that there are other techniques suitable for finding the min-
imum number of active Sboxes in a cipher but MILP requires less programming efforts
from the cryptanalist (see [Mouha et al. 2011, page 3]).

We will give a brief idea of how the method works in the context of differential
cryptanalysis and refer to the reader to look at [Mouha et al. 2011] for more information.
To make the explanation clear we will describe the case where the input and output of the
operations in a cipher are represented in the level of bytes.

When working with differential cryptanalysis we are interested in the difference
of byte strings and a key concept for applying MILP is the difference vector. For a string
∆ = (∆0,∆1, . . . ,∆n−1) of n bytes, the difference vector x = (x0, x1, . . . , xn−1) is such
that each xi = 0 if the byte ∆i = 0 and xi = 1 otherwise. This is because the only
important information here is whether the byte difference is zero or not, regardless of its
value.

All input and output variables of the ciphers are treated as unique variables, inde-
pendent of the round we are in (in case the cipher is based on rounds). For each operation
(linear transformation, XOR, etc) we have a set of equations describing it. Every opera-
tion involving input and output variables is analyzed, and possibly generates a restriction
involving these variables, which can be written in terms of inequalities. In the end, an
objective function involving only the input variables that enter the Sboxes is created.
Gathering these variables together with these inequalities and the objective function, we
can generate what is commonly known as a MILP problem, which we can type into one of
many available solvers and find out the answer. That answer tells us what is the minimum
number of active Sboxes that comprises with the working mechanisms of the cipher being
analyzed.

For a given operation O, let (xOin1
, xOin2

, . . . , xOinM
) be the input differences and

(xOout1 , x
O
out2

, . . . , xOoutN ) be the corresponding output differences. Another useful concept
is of the differential branch number BD. It is defined as the minimum of the sum of the
number of active bytes in the input and output of the operation, excluding the trivial case
where all input and output bytes are zero. It describes how the input and output bytes
are related in a certain operation. Using BD and the input and output bytes of O, the
inequalities describing it in the MILP model are the following:

xOin1
+ xOin2

+ . . . xOinM
+ xOout1 + xOout2 + · · ·+ xOoutN ≥ BDd

O,
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,
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,

. . . . . .

dO ≥ xOinM
,

dO ≥ xOout1 ,

dO ≥ xOout2 ,

. . . . . .

dO ≥ xOoutN ,

(1)



where dO is a dummy binary variable, which is zero when all input and output is zero
and 1 otherwise. This is necessary to avoid the trivial case where all input and output
are zero and to avoid the resolution of several integer linear programs as was needed in
[Bogdanov 2011].

If O is the XOR operation, then BD = 2 and we can write the first inequality of
(1) as

x⊕in1
+ x⊕in1

+ x⊕out1 ≥ 2d⊕, (2)

where d⊕ is the corresponding dummy variable. The equations describing a linear trans-
formation in a cipher are similar, except that the differential branching number changes
depending on the operation.

For the case of linear cryptanalysis we only need to change the differential branch
number (DBN) to the linear branch number (LBN) BL and also treat the three-forked
branch as an operation whose input and output variables need to be taken into account.

With this in mind, we describe in the next section a collection of algorithms that
we found suitable for the application of the MILP technique due to their structure not
only in terms of what operations they involve, but also in terms of how the algorithm is
applied.

3. Chosen block ciphers suitable for MILP applications

All of the following ciphers were chosen due to their academic relevancy and for having
two properties required for MILP to work.

The first required property is being word-based, which means that all operations
work only in a word to word level: there are no bit-wise shifts/rotations or bit-wise per-
mutations. For instance, if a cipher contains an XOR operation of two 8-bit words in a
given part and a 3-bit shift operation in another, than it is not word-based. Using words
of different size throughout the cipher is also unwanted.

The second property we need is having Sboxes as the only non-linearity source.
This means that the cipher’s design adds non-linearity through a function or lookup table
that substitutes a given input by an output in such a way that is non-linear. This is needed
because the MILP model intends to count the minimum number of such Sboxes that must
be activated in order to attack the cipher, either in a differential or a linear context. Other
sources of non-linearity cannot be dealt through this method nor can they be ignored by
it.

Therefore, we looked for the most relevant ciphers with these two properties that
were not already tested (which excluded the most prominent example, AES) and ended up
with two similar ciphers in design. The first one is the SQUARE cipher, well known for
being the predecessor of the Rijndael (AES), by the same authors [Daemen et al. 1997],
and for introducing the Square Attack, a new form of cryptanalysis at the time. The
second algorithm targeted is LED, one of the first in a class of block ciphers labeled as
lightweight which means that this cipher had software implementation speed as the main
focus, while still maintaining enough security to be used. While based on a different
design, the CLEFIA cipher also has the desired property of being word-based and using
S-boxes as the only non-linearity source. It is the security standard for the products of the



Sony company1 and has been subjected to many different analysis by the cryptography
community since its introduction.

The following subsections describe the main mechanisms of each cipher and, since
the key schedule part does not play a role in the application of MILP, we leave it out of
the algorithm descriptions below.

3.1. SQUARE

The block cipher square was introduced in [Daemen et al. 1997] and it has block and key
length of 128 bits. Its design takes into account resistance against differential and linear
cryptanalysis. In terms of performance, careful choice of the building blocks was made
to allow for efficient implementations on many processors.

Each round of SQUARE comprises four different transformations. A linear trans-
formation applied separately to each state row, an Sbox (nonlinear transformation), a byte
transformation (basically interchanging of columns and rows of the state) and a bit-wise
round key addition. All of them operating on a 4 by 4 array of bytes.

The whole cipher SQUARE is defined as eight rounds which are applied after a
key addition.

3.2. LED

LED is a 64-bit block cipher dedicated to compact hardware implementation. It was pre-
sented in [Guo et al. 2011] and is based on the design principles of AES which allows
one to obtain simple bounds in terms of the number of active S-boxes during encryption.
Its design features the well known AES operations such as S-boxes, ShiftRows and Mix-
Columns. To understand the working mechanisms of LED, one can think of the cipher
state as arranged in a 4 by 4 grid where each nibble represents an element from GF (24).
Field multiplication is done with the polynomialX4+X+1. The initial state of the cipher
is a 4 by 4 grid whose entries are formed by the 16 four-bit nibbles of the message. The
cipher has no key-schedule and nibbles of subkeys are added to the state using bit-wise
exclusive-or. The key size can be either 64 or 128 bits and the number of steps during
encryption varies (8 applications of the step function for 64 bit and 12 applications for
128 bit key).

The step function is the core for encryption and it is defined as the application of
the AddConstants (bitwise shift applied just to some constants, which does not affect the
state), SubCells (applies S-Boxes to each state nible), ShiftRows (rotation of rows to the
left) and MixColumnsSerial (multiplication of array state vector by a matrix) operations in
order. The SubCells operation is the most important one since it is the one that introduces
non-linearity to the cipher. For more details see [Guo et al. 2011, Section 2.1].

3.3. CLEFIA

CLEFIA was presented in [Katagi and Moriai 2011]. It is a highly efficient block ci-
pher and achieves a good performance both in hardware and software. It has 128 bit
block size with key lengths of 128, 192 and 256. It is constructed based on a general-
ized Feistel structure using two 32 bit F functions at each round. These functions are

1https://www.sony.net/Products/cryptography/clefia/. Accessed 06/06/2023.

https://www.sony.net/Products/cryptography/clefia/


different compared to traditional Feistel structure and they require more rounds. On the
other hand, the F-functions are smaller and plural F-functions can be processed simulta-
neously, surpassing the disadvantage of having more rounds. Two F functions are used in
each round, but they have the same design, except for the choice of the internal S-boxes.
The S-boxes are used to introduce non-linearity through the Diffusion Switching Mech-
anism, which led to strong resistance against certain attacks studied in the original paper
[Katagi and Moriai 2011].

In addition, CLEFIA allows for flexible implementation in both software and hard-
ware.

4. Results
In this section, we study the security of SQUARE, LED and CLEFIA against differential
and linear cryptanalysis through the semi-automated MILP technique. The reasoning for
choosing these algorithms is that they share two properties that are needed for applying
the original MILP method as was explained in the beginning of Section 3.

For each of these ciphers, the main objective was to obtain the MILP program
in such a way that a solver is able to find out what is the minimum number of Sboxes
needed to be activated for a differential or linear attack to be applied. Both SQUARE and
LED have the same MILP program for both linear and differential cryptanalysis because
the differential and linear branch numbers are equal for each operation of these ciphers,
as they are all SPNs. On the other hand, CLEFIA is a Feistel cipher, which implies the
presence of three-forked branch operations. This operation is only relevant for linear
cryptanalysis. We have a similar situation for the XOR operation, which is needed for
differential cryptanalysis but not for linear cryptanalysis.

In the following subsections, we describe and compare our results to the existing
literature. All of our tests were conducted by generating the MILP program of each rele-
vant number of rounds for each cipher. The resulting programs were then fed to the open-
source MILP solver SCIP [Bestuzheva et al. 2021] which returned the minimum amount
of Sboxes necessary for each of the aforementioned cases. For replication purposes, our
MILP programs as well as the results for the SCIP execution can be found at https:
//github.com/MfMhj3uNy5gfp4Z/MILP-results/tree/master.

We ran all tests on a AMD FX(tm)-8320 Eight-Core Processor 3.50 GHz and,
in general, the results were obtained in less than 20 seconds for up to 10 rounds for all
ciphers, ramping up to anywhere between 5 to 10 minutes for cipher LED and CLEFIA for
18 rounds. Since LED has 48 rounds, it lakes long periods of time to finish all of the above
19 rounds and thus, for any attempt to execute past a established time constraint given
by the available computational capacity we forcefully stopped the solver if the expected
results based on its design were already attained (see the observation in Table 2).

4.1. SQUARE

The SQUARE cipher was constructed with the famous wide trail design strategy
[Daemen 1995], in which the choices for the construction of the cipher are based in two
criteria:

1. The maximum difference propagation probability δ (security against differential

https://github.com/MfMhj3uNy5gfp4Z/MILP-results/tree/master
https://github.com/MfMhj3uNy5gfp4Z/MILP-results/tree/master


attacks), as well as linear propagation probability λ (security against linear at-
tacks) of the chosen Sboxes must be as low as possible.

2. The linear parts must not leave any trail with few active Sboxes.

This design strategy has been used across the board in the creation of block ciphers
and specially Substitution Permutation Networks. The most prominent ones being the
SQUARE and Rijndael [Daemen and Rijmen 2002] ciphers. The latter became known as
AES and is the American national standard for symmetric encryption, as well as one of
the most used block ciphers in the world.

In this context, SQUARE presents an Sbox with δ = 2−6 and λ = 2−3, which
means that any attack that activates at least 22 Sboxes is unfeasible since it would imply
1
δ22

= 2132 plaintext-ciphertext pairs for a differential attack whereas there are only 2128

possible pairs for the SQUARE cipher.

As for a linear attack, at least 43 Sboxes need to be activated to make the attack
unfeasible, since 1

λ43
= 2129 is bigger than the available 2128 pairs.

Table 1 shows our results on the cipher SQUARE. It is possible to notice that 4
rounds are enough to guarantee security against differential cryptanalysis and 6 rounds
suffices for resistance against linear cryptanalysis.

Table 1. Minimum amount of Sboxes to be active in any given differential or linear
attack for the SQUARE cipher, obtained through the MILP program.

# rounds 1 2 3 4 5 6 7 8 9 10 11 12
# Sboxes 1 5 9 25 26 30 34 50 51 55 59 75

4.2. LED

The LED cipher is also termed as an AES-like cipher since it uses the same kind of oper-
ations as the AES. AES-like ciphers all use as basis the wide trail strategy. Therefore, we
should expect to find the same minimum Sboxes per round as the SQUARE. Furthermore,
the states and the branch numbers of the operations are remarkably similar.

The main difference though is that LED uses a 64 bit state divided into words of
size 4, also called nibbles. Consequently, the Sbox has to be different and, accordingly,
has different values for the differential probability δ and linear probability λ. The Sbox is
reused from the PRESENT cipher [Bogdanov et al. 2007] and it has δ = 2−2 and λ = 2−7.

Since the block state has 64 bits, the maximum amount of plaintext-ciphertex pairs
to be used for an attack has to be at most 264. Table 2 shows that the threshold or number
of rounds for guaranteed security through the MILP method against differential attacks is
such that the corresponding minimum number of Sboxes s is given by 1

δs
= 22s ≥ 264.

The minimum number of rounds is 7 (22×34 = 268 ≥ 264). For the linear case, one has
1
λs

= 27s ≥ 264 and hence 4 rounds are enough (27×25 = 2175 ≥ 264).

Although we are handling the cipher as composed simply by rounds, it is actually
composed by steps, which in turn are composed of 4 consecutive rounds. The 64-bit key
version of LED has 6 steps while the 128-bit key version has 12 steps. Thus, using the
aforementioned calculations, LED needs two steps to be secure against differential attacks
and only one step to be secure against linear attacks.



Table 2. Minimum amount of Sboxes to be active in any given differential or lin-
ear attack for the LED cipher, obtained through the MILP program. These
results were obtained by the solver before finishing its entire search. Al-
though that means it would be theoretically possible finding a better re-
sult, the wide trails design strategy used to construct LED supports that
the best estimate could not be smaller than the ones obtained bellow.

# rounds # Sboxes # rounds # Sboxes # rounds # Sboxes # rounds # Sboxes
1 1 13 76 25 151* 37 226*
2 5 14 80 26 155* 38 230*
3 9 15 84 27 159* 39 234*
4 25 16 100 28 175* 40 250*
5 26 17 101 29 176* 41 251*
6 30 18 105 30 180* 42 255*
7 34 19 109 31 184* 43 259*
8 50 20 125* 32 200* 44 275*
9 51 21 126* 33 201* 45 276*

10 55 22 130* 34 205* 46 280*
11 59 23 134* 35 209* 47 284*
12 75 24 150* 36 225* 48 300*

4.3. CLEFIA

The CLEFIA cipher uses a different base structure in comparison to the other two ciphers
we have seen so far. While SQUARE and LED are Substitution Permutation Networks,
CLEFIA is a generalized Feistel cipher. Generalized Feistel ciphers characteristically
have their state divided into a power of two number d and only half of those are used as
input to a non-linear function F whose output is XORed to the other half of the state.
Then, a simple rotation is applied to all parts in the state.

This internal structure implies that there are three-forked branches before the input
is sent to F . This operation is relevant to the linear attack but not to the differential one,
which in turn contrasts with the XOR operation, that is relevant only to the differential
attack.

Notably though, Table 3 shows that both cases are remarkably similar, the only
difference being the minimum amount of Sboxes necessary for 6 rounds, in which dif-
ferential attacks need 12 Sboxes, while linear attacks require 11. This result was also
obtained by the authors [Katagi and Moriai 2011] through ad-hoc computational search.

CLEFIA also uses two Sboxes ( S0 and S1) while both SQUARE and LED use
just one. For the Sbox S0 we have δ0 = 2−4.67 and λ0 = 2−4.38 and for S1 we have
δ1 = λ1 = 2−6. Since both are used in parallel, the analysis can become complex and
even gets outside the scope of the MILP method.

Therefore, we chose δ = δ0 and λ = λ0 for all calculations, since they are the best
ones. This implies that we assume all Sboxes that are active are S0. Although unrealistic
in a practical sense, this still conforms to the main purpose of the method, which is to find
a lower bound to the number of rounds necessary to guarantee security.

We now use the same calculations as for SQUARE and LED to compute the



Table 3. Minimum amount of Sboxes to be active in any given differential or linear
attack for the CLEFIA cipher, obtained through the MILP program.

Differential Linear
# rounds # Sboxes # rounds # Sboxes # rounds # Sboxes # rounds # Sboxes

1 0 10 18 1 0 10 18
2 1 11 20 2 1 11 20
3 2 12 24 3 2 12 24
4 6 13 24 4 6 13 24
5 8 14 25 5 8 14 25
6 12 15 26 6 11 15 26
7 12 16 30 7 12 16 30
8 13 17 32 8 13 17 32
9 14 18 36 9 14 18 36

minimum amount of rounds necessary. A CLEFIA block has 128 bits, thus any at-
tack that requires over 2128 plaintext-ciphertext pairs is unfeasible. Then, the amount
of rounds is such that the associated minimum number of active Sboxes s conforms to
1
δs

= 24.67×s ≥ 2128 for differential and 1
λs

= 24.38×s ≥ 2128 for linear attacks.

For the differential case, 16 rounds are enough, since it requires 30 Sboxes to carry
an attack which satisfies 24.67×30 = 2140.1 ≥ 2128. Although the linear probability is lower
than the differential, the same amount of rounds is necessary for linear attacks as the same
30 Sboxes satisfy 24.38×30 = 2131.4 ≥ 2128.

Besides the use of two Sboxes, CLEFIA also has two different linear operations,
which makes it harder to explore cancellations and thus increases the minimum amount of
Sboxes necessary to apply an attack. Unfortunately, the word-based MILP method lacks
flexibility to deal with these intricacies.

5. Conclusion

In this paper, we applied the MILP method to show proof of security against differential
and linear cryptanalysis for the ciphers SQUARE, LED and CLEFIA. All three algorithms
are secure as expected, SQUARE needing only 6 rounds to be safe against differential and
4 to be safe against linear, while LED needs 2 steps (7 rounds) for differential and 1 step
(4 rounds) for linear. CLEFIA requires 6 rounds to be secure from differential attacks and
11 for linear.

The results obtained here are consistent with the ones presented by the original
authors, i.e., the same minimum amounts of Sboxes expected are equal to the ones ob-
tained by our MILP model for all three ciphers. Indeed, the authors of both SQUARE and
LED got their results in a theoretical manner. Through the wide trail design strategy they
showed that the minimum amount of Sboxes grows in a fixed rate following a (1, 4, 4, 16)
pattern (ex. LED with 4,5,6,7,8 rounds have 25, 26, 30, 34, 50 minimum Sboxes, which
agrees with the results of both Tables 2 and 1). On the other hand, the authors of CLEFIA
use a computer program to conduct an ad-hoc search to find the minimum amounts of
Sboxes, since it’s design does not have a theoretical result backing it up. Therefore, the
MILP model is a formidable tool for proving the security against linear and differential



cryptanalysis for certain types of ciphers.

Although the word-based MILP method is useful for some ciphers, its use is lim-
ited since it is unable to give a more accurate lower bound to the number of Sboxes for
more complex designs, such as the use of more than one linear operation in parallel in the
CLEFIA cipher.

For that reason, further research involves exploring more complete ways to de-
velop MILP programs, such as the use of the bitwise MILP method which is capable of
dealing with the intricacy of CLEFIA, as well as other ciphers that contain bitwise linear
operations, such as DES, ARIA, Twofish, FEAL and Serpent.
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