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Abstract. At Asiacrypt 2022 and its extended version at Journal of Cryptology
2023, Coutinho et al. proposed Forró, a novel ARX-based stream cipher with
a design reminiscent of Salsa and ChaCha ciphers. The authors demonstrated
that Forró provides a higher security margin using fewer operations, thereby
reducing the total number of rounds while preserving the security level. This
results in a faster cipher across various platforms, particularly on constrained
devices. However, Forró’s primary limitation is its exclusive encryption capa-
bility, with no authentication support. To address this issue, in this paper, we
introduce the XForró14 cipher and combine it with Poly1305 to create an Au-
thenticated Encryption with Associated Data (AEAD) scheme. Furthermore, to
facilitate the practical implementation of this cipher, we have developed a new
fork of the libsodium project (https://doc.libsodium.org/), incorpo-
rating XForró14-Poly1305 as a fresh AEAD alternative. Our project can be
accessed at https://github.com/murcoutinho/libsodium.

Resumo. No Asiacrypt 2022 e em sua versão estendida no Journal of Cryp-
tology 2023, Coutinho et al. propõe o algoritmo Forró, uma nova cifra de
fluxo baseada em ARX com um design similar às cifras Salsa e ChaCha. Os
autores demonstraram que o Forró oferece uma margem de segurança maior
usando menos operações, reduzindo assim o número total de rodadas enquanto
preserva o nível de segurança. Isso resulta em uma cifra mais rápida em várias
plataformas, particularmente em dispositivos restritos. No entanto, a princi-
pal limitação do Forró é sua capacidade exclusiva de encriptação, sem su-
porte para autenticação. Para resolver esse problema, neste artigo apresen-
tamos a cifra XForró14 e a combinamos com a Poly1305 para criar um es-
quema de Encriptação Autenticada com Dados Associados (AEAD). Além disso,
para facilitar a implementação prática desta cifra, desenvolvemos um novo fork
do projeto libsodium (https://doc.libsodium.org/), incorporando
XForró14-Poly1305 como uma nova alternativa de AEAD. Nosso projeto pode
ser acessado em https://github.com/murcoutinho/libsodium.

1. Introduction
In recent years, the demand for secure and efficient cryptographic schemes has increased
significantly, driven by the rapid growth of communication and data storage technolo-
gies. Stream ciphers, in particular, have become indispensable for providing confiden-
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tiality in various applications such as secure communications, digital signatures, and se-
cure storage. Among these, the Salsa and ChaCha ciphers, designed by D.J. Bernstein
[Bernstein 2008a, Bernstein 2008b], have gained widespread popularity due to their se-
curity and performance characteristics. Salsa and ChaCha are examples of ARX ciphers.
An ARX cipher refers to cryptographic algorithms that utilize three primary operations:
Addition, Rotation, and XOR. These operations are chosen for their simplicity, efficiency
on various platforms, and scalability to different word sizes.

Salsa and ChaCha are heavily used. For example, ChaCha is one of the cipher
suites of the new TLS 1.3 [Langley et al. 2016], which has been used by Google on both
Chrome and Android. Not only has ChaCha been used in TLS but also in many other
protocols such as SSH, Noise, and S/MIME 4.0. In addition, the RFC 7634 [Nir 2015]
proposes the use of ChaCha in IKE and IPsec. ChaCha has been used not only for en-
cryption, but also as a pseudo-random number generator in any operating system running
Linux kernel 4.8 or newer. Additionally, ChaCha has been used in several applications
such as WireGuard (VPN) (https://www.wireguard.com) (see [IANIX 2020] for
a huge list of applications, protocols, and libraries using ChaCha).

Nevertheless, there is an ongoing quest for more efficient ciphers that can provide
enhanced security, especially in resource-constrained environments [McKay et al. 2016].
At Asiacrypt 2022 and Journal of Cryptology 2023, Coutinho et al. [Coutinho et al. 2022,
Coutinho et al. 2023] introduced Forró, a new ARX-based stream cipher designed to offer
higher security margins using fewer operations. The cipher’s design is similar to Salsa and
ChaCha, but it reduces the total number of rounds while maintaining the security level,
resulting in a faster cipher across various platforms, with a particular focus on constrained
devices. In particular, recent cryptanalyses [Beierle et al. 2020, Coutinho and Neto 2021,
Dey et al. 2022] show attacks up to 8 rounds of Salsa (time and data complexities of
2217.14 and 2113.14), 7 rounds of ChaCha (time and data complexities of 2221.95 and 248.83),
but only 5 rounds of Forró (time and data complexities of 2158 and 257) with the same
number of operations. This means that 6 rounds of Forró is safer than 7 or 8 rounds of
ChaCha and Salsa.

Despite its superior performance compared to Salsa and ChaCha
[Coutinho et al. 2023], Forró has a significant limitation: it only supports
encryption and lacks authentication capabilities. Authenticated Encryption
with Associated Data (AEAD) schemes are essential components in mod-
ern cryptography, as they ensure both confidentiality and authenticity of data
[Bellare and Namprempre 2000, Jimale et al. 2022]. The importance of authentica-
tion cannot be overstated, as it verifies the integrity of encrypted data and confirms the
legitimacy of the communicating parties, preventing unauthorized access, tampering, or
forgery. In the context of secure communications, this dual functionality significantly
enhances the robustness of cryptographic protocols and helps thwart various types of
attacks.

Given the need for an AEAD scheme that harnesses the efficiency and security
advantages of the Forró cipher, this paper presents the XForró14 cipher, a novel exten-
sion to the original design. By combining XForró14 with the well-established Poly1305
authentication mechanism, we create a comprehensive AEAD scheme that offers a high
level of security and performance. This enhanced versatility makes XForró14-Poly1305
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Notation Description
X a 4× 4 state matrix.

X(m) state matrix after application of m rounds.
X [s] state matrix after application of s subrounds.
Z output of Forró, i.e., Z = X +X(R).

x
(m)
i ith word of the state matrix X(m).

x
(m)
i,j jth bit of ith word of the state matrix X(m).
ki a 32-bit word representing a subkey.
ci a 32-bit word representing a constant.
vi a 32-bit word representing a part of the nonce.
ti a 32-bit word representing a part of the counter.

x+ y addition of x and y modulo 232.
x⊕ y bitwise XOR of x and y.
x ≪ n rotation of x by n bits to the left.
pad(.) a padding function.
len(.) a length function.

Table 1. Notations.

an attractive option for developers and users seeking a secure and efficient cryptographic
solution.

To facilitate the practical implementation of the XForró14-Poly1305 AEAD
scheme, we have developed a new fork of the popular libsodium cryptographic library
[Denis ] (https://doc.libsodium.org/). This fork incorporates the XForró14-
Poly1305 AEAD option, providing developers with an easy-to-use and efficient crypto-
graphic tool. The source code for our project is available at https://github.com/
murcoutinho/libsodium, encouraging community involvement and further devel-
opment.

This paper is organized as follows: Section 2 provides a brief overview of the
Forró cipher and its design principles, and also provides a description of the Poly1305
authenticator. Section 3 introduces the XForró14 cipher including HForró, a key deriva-
tion function using in the design of XForró14. Section 4 gives a mathematical proof
for the security of XForró14. In Section 5, we propose the new AEAD scheme
XForró14-Poly1305 by combining XForró14 with Poly1305. Section 6 presents a im-
plementation of XForró14-Poly1305 as a fork of libsodium, including benchmarks to
compare performance of XForró14-Poly1305 against XChaCha20-Poly1305 (https:
//datatracker.ietf.org/doc/draft-irtf-cfrg-xchacha/). Finally, 7
presents the conclusion and discusses future research directions.

2. Previous work

In this section, we revise previous work, in particular the stream cipher Forró and the
authenticator Poly1305. To improve readability, Table 1 defines some of the notation of
this work.
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2.1. The Forró stream cipher
Although they have a very similar structure, the literature suggests that ChaCha is safer
than Salsa, due to the fact that both have the same number of rounds but attacks reach
more rounds against Salsa [Aumasson et al. 2008, Choudhuri and Maitra 2016]. At re-
cent work [Coutinho et al. 2022], Coutinho et al. proposed a new cipher called Forró that
achieves higher security when compared to Salsa and ChaCha, being faster in constrained
devices and suited to IoT applications [Costa et al. 2022, Coelho et al. 2022].

Forró consists of a series of ARX (addition, rotation, and XOR) operations on
32-bit words, and is highly efficient in software and hardware. Each round of Forró has
a total of 12 bitwise XOR, 24 additions modulo 232, and 12 constant-distance rotations.
Forró operates on a state of 64 bytes, organized as a 4 × 4 matrix with 32-bit integers,
initialized with a 256-bit key k0, k1, . . . , k7, a 64-bit nonce v0, v1 and a 64-bit counter
t0, t1, and 4 constants c0 = 0x746C6F76, c1 = 0x61616461, c2 = 0x72626173, c3 =
0x61636E61. These constants correspond to the ASCII string “voltadaasabranca”, little-
endian encoded. For Forró, we have the following initial state matrix:

X(0) =


x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

 =


k0 k1 k2 k3
t0 t1 c0 c1
k4 k5 k6 k7
v0 v1 c2 c3

 . (1)

The state matrix is modified in each round by a Subround function (SR), de-
noted by X [m] = SRforro(a, b, c, d, e,X

[m−1]), which receives and updates 5 integers
(see Figure 1 for a visual description of the circuit). This is one parameter more than
Salsa and ChaCha. The reason is that Forró uses a technique called Pollination to bring
non-linearity, diffusion, and confusion faster than other ciphers.

Forró subround function SRforro(a, b, c, d, e)

x
′(m−1)
d = x

(m−1)
d + x

(m−1)
e ; x

′(m−1)
c = x

(m−1)
c ⊕ x

′(m−1)
d ;

x
′(m−1)
b =

(
x
(m−1)
b + x

′(m−1)
c

)
≪ 10;

x
′(m−1)
a = x

(m−1)
a + x

′(m−1)
b ; x

(m)
e = x

(m−1)
e ⊕ x

′(m−1)
a ;

x
(m)
d =

(
x
′(m−1)
d + x

(m)
e

)
≪ 27;

x
(m)
c = x

′(m−1)
c + x

(m)
d ; x

(m)
b = x

′(m−1)
b ⊕ x

(m)
c ;

x
(m)
a =

(
x
′(m−1)
a + x

(m)
b

)
≪ 8;

(2)

In Forró, the last element updated in a subround application (the element x(r)
a ) is

introduced as pollen element (x(r)
e ) in the subsequent subround application, being a source

of confusion and diffusion.

Each round of Forró can be described in terms of its subrounds. More precisely,
each round has 4 subrounds, thus, we have X(r) = X [4r]. Therefore, in an odd round,
when r ∈ {1, 3, 5, 7, . . .}, X(r) is defined from X(r−1) in the following manner

X [4r−3] = SR(0, 4, 8, 12, 3, X [4r−4]); X [4r−2] = SR(1, 5, 9, 13, 0, X [4r−3]);
X [4r−1] = SR(2, 6, 10, 14, 1, X [4r−2]); X [4r] = SR(3, 7, 11, 15, 2, X [4r−1]);



and for even rounds r ∈ {2, 4, 6, 8, . . .} from

X [4r−3] = SR(0, 5, 10, 15, 3, X [4r−4]); X [4r−2] = SR(1, 6, 11, 12, 0, X [4r−3]);
X [4r−1] = SR(2, 7, 8, 13, 1, X [4r−2]); X [4r] = SR(3, 4, 9, 14, 2, X [4r−1]);

The output of Forró14 is then defined as the sum of the initial state with the state
after 14 rounds Z = X(0) +X(14).

x
(m−1)
a x

(m−1)
b x

(m−1)
c x

(m−1)
d x

(m−1)
e

⊞

⊕⊞

≪ 10

⊞

⊕

⊞

≪ 27

⊞

⊕

⊞

≪ 8

xm
a xm

b xm
c xm

d xm
e

Figure 1. One SRforro

2.2. Poly1305

Poly1305, designed by D.J. Bernstein [Bernstein 2005], is a widely used message au-
thentication code (MAC) algorithm that provides cryptographic authentication for data.
It has become popular due to its efficiency, security, and ease of implementation, making
it a suitable choice for various applications, including secure communications and digital
signatures.

Poly1305 takes a 32-byte one-time key and a message and produces a 16-byte tag.
This tag is used to authenticate the message. Poly1305 operates on a 130-bit prime field
(thus the name "Poly1305") and computes the MAC using a polynomial evaluation.

The key, regardless of its generation method, is divided into two segments, de-
noted as r and s. Each invocation should have a unique and unpredictable pair of (r, s).
Here, denote ri for i = (0, 1, ..., 15) as bytes, then r can be represented as a 16-octet
little-endian number and the modifications are as follows:



• The top four bits of r3, r7, r11, and r15 must be zero, meaning that each byte should
be less than 16.

• The bottom two bits of r4, r8, and r12 must be zero, meaning they should be
divisible by 4.

From the input, the message is divided into 128-bit blocks with a pad to the last
block if necessary. Each block is interpreted as a little-endian integer, integrated into an
accumulator, multiplied by the key, and reduce it modulo 2130 − 5. At the end, s is added
to the accumulator to obtain the 128-bit authentication tag.

3. The proposal of XForró14

In this section, we propose XForró14, a new family of stream ciphers, including
HForró14, an intermediate step towards XForró14.

3.1. Definition of HForró14

HForró14 is a Key Derivation Function (KDF) that produces a 256-bit output key starting
from an input 256-bit key k and a 128-bit nonce v. As in Forró, we write the key and
nonce as 32-bit words (k0, k1, ..., k7) and (v0, v1, v2, v3). We write:

(k∗
0, k

∗
1, ..., k

∗
7) = HForro14((k0, k1, ..., k7), (v0, v1, v2, v3)). (3)

The initial state of HForró14 is then defined as Eq. (1) replacing (t0, t1, v1, v2) by
(v0, v1, v2, v3). From this initial state, HForró14 proceeds just like Forró14, by using
the subround function to compute the state X(14). However, instead of summing it to the
initial state, HForró14 just outputs (x

(14)
6 , x

(14)
7 , x

(14)
14 , x

(14)
15 , x

(14)
4 , x

(14)
5 , x

(14)
12 , x

(14)
13 ). The

indices 6, 7, 14, 15, 4, 5, 12, 13 here are important for the security proof later in this
paper.

3.2. Definition of XForró14

XForró14 is a stream cipher that receives as input a 256-bit key k = (k0, k1, ..., k7), a
192-bit nonce n = (v0, v1, ..., v5), and a counter (t0, t1) and output a 512-bit stream block
Z. XForró14 is divided in two steps:

1. Compute k∗ = HForro14((k0, k1, ..., k7), (v0, v1, v2, v3)).
2. Compute the stream block Z = Forro14(k∗, (v4, v5), (t0, t1)).

From an implementation perspective, when encrypting a long stream with the
same key and nonce (and incremental counters), step 1 may be computed only once.
Then, the resulting k∗ together with (v4, v5) used to encrypt with Forró14 for all counter
values.

4. Security proof

This section proves that HForró14 and XForró14 are secure if Forró14 is secure. The
proof relies on the standard security notion that a cipher is secure if the cipher outputs
for a uniform random secret key are indistinguishable from independent uniform random
strings.



4.1. The basics

To get to the proof, we first need to establish some base definitions and theorems.

Definition 1. Let A(C) be an algorithm that receives as input a component C. We define
the A-distance δ from C to uniform as

δ = |Pr[A(C) = 1]− Pr[A(U) = 1]|,

where U denote the uniform distribution.

The proof of security of XForró14 is based on a general proof for generalized
cascades. Precisely, a generalized cascade is a type of encryption algorithm that involves
combining multiple rounds of different encryption functions in a cascading fashion: each
round of encryption involves applying a different encryption function to the output of the
previous round. The output of the final round is the ciphertext. Previous works already
establishes the security of this construction, and we use results from [Bellare et al. 1996,
Bernstein 2011], to derive our proof.

Here, let K1, I1, K2, I2, L be sets, with K1, K2, L finite. Let H be a function from
K1× I1 to K2. Let F be a function from K2× I2 to L. Define X as a generalized cascade
of the form (k1, i1, i2) 7→ F (H (k1, i1) , i2) from K1 × I1 × I2 to L. The general proof
for generalized cascades of the form X = ((k1, i1, i2) 7→ F (H (k1, i1) , i2)) is based on
an attack with the goal of distinguish an oracle for X (k1), where k1 is a uniform random
element of K1, from an oracle for a uniform random function from I1 × I2 to L. Here
X (k1) means (i1, i2) 7→ X (k1, i1, i2); i.e., (i1, i2) 7→ F (H (k1, i1) , i2). Starting from
a fast successful attack against X (k1), the security proof constructs fast attacks against
H (k1) and S (k2), where k2 is a uniform random element of K2, and shows that at least
one of these attacks must be successful. In other words, if H and F are both secure, then
X must also be secure.

Next, we provide additional definitions that are relevant for describing the main
result on generalized cascades at Theorem 1.

Definition 2. Given an algorithm A, we define algorithms A0, A1, A2, . . . as follows:

• The algorithm A0, given an oracle O : I1 → K2, runs the algorithm A with the
oracle (i1, i2) 7→ F (O (i1) , i2).

• For j ≥ 1 : The algorithm Aj , given an oracle O : I2 → L, generates a uniform
random function U from I1 × I2 to L and, independently of U , a uniform random
function V from I1 to K2. It runs the algorithm A with the following oracle:
respond to (i1, i2) with U (i1, i2) for the first j − 1 distinct query prefixes i1 that
appear, with O (i2) for the jth distinct query prefix, and with F (V (i1) , i2) for all
other query prefixes.

Theorem 1. (Theorem 3.1 of [Bernstein 2011]) Let K1, I1, K2, I2, L be sets, with
K1, K2, L finite. Let H be a function from K1 × I1 to K2. Let F be a function from
K2 × I2 to L. Define X as the function (k1, i1, i2) 7→ F (H (k1, i1) , i2) from K1 × I1 × I2
to L. Let A be an algorithm that makes at most q oracle queries. Define A0, A1, . . . , Aq



as in Definition 2. Define δ0 (Definition 1 as the A0-distance from H (k1) to uniform,
where k1 is a uniform random element of K1. Define δj , for j ∈ {1, . . . , q}, as the Aj-
distance from F (k2) to uniform, where k2 is a uniform random element of K2. Hence,
the A-distance from X (k1) to uniform, where k1 is a uniform random element of K1, is at
most δ0 + δ1 + · · ·+ δq.

Proof. See [Bernstein 2011].

4.2. The security of XForró14
For the proof, we rewrite Forró as a generalized cascade allowing us to use previous
results, simplifying the proof. To do so, define HForrok(i), where k is a 256-bit string
and i is a 128-bit string, as the 256-bit HForró14 output block for key k and nonce i.
Recall that this output is (x

(14)
6 , x

(14)
7 , x

(14)
14 , x

(14)
15 , x

(14)
4 , x

(14)
5 , x

(14)
12 , x

(14)
13 ) where indexes

6,7,14,15 represent the constant position and 4,5,12,13 the nonce.

Define Forrok(i), where k is a 256-bit string and i is a 128-bit string,
as the 512-bit Forró14 output block for key k, nonce equal to the first half of
i, and block counter equal to the second half of i. Recall that this output is(
x
(0)
0 + x

(14)
0 , x

(0)
1 + x

(14)
1 , . . . , x

(0)
15 + x

(14)
15

)
where

(
x
(0)
6 , x

(0)
7 , x

(0)
14 , x

(0)
15

)
is the Forró14

constant,
(
x
(0)
0 , x

(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
8 , x

(0)
9 , x

(0)
10 , x

(0)
11

)
is the key k,

(
x
(0)
4 , x

(0)
5 , x

(0)
12 , x

(0)
13

)
is

the input i. Consequently XForró

XForrok(i) = ForroHForro (i1) (i2)

where i1 is the first half of the input i and i2 is the second half of the input i.

Now, we can define Theorem 2 that states that XForró14 is secure if Forró14 and
HForró14 are secure.

Theorem 2. Let A be an algorithm that makes at most q oracle queries. Define
A0, A1, . . . , Aq as in Definition 2, where K1 = K2 = {0, 1}256, I1 = I2 = {0, 1}128,
and L = {0, 1}512. Let k be a uniform random element of {0, 1}256. Define δ0 as the A0-
distance from HForro14k to uniform. Define δj , for j ∈ {1, . . . , q}, as the Aj-distance
from Forro14k to uniform. Then the A-distance from XForro14k to uniform is at most
δ0 + δ1 + · · ·+ δq.

Proof. Define H : K1 × I1 → K2 as (k, i) 7→ HForrok(i). Define F : K2 × I2 → L
as (k, i) 7→ Forrok(i). Define X : K1 × I1 × I2 → L as (k, i1, i2) 7→ XForrok (i1, i2).
Then X (k, i1, i2) = F (H (k, i1) , i2). The A-distance from X(k) to uniform is at most
δ0 + δ1 + · · ·+ δq by Theorem 1.

Now, note that Theorem 2 still depends on the security of HForró14, which we
did not establish. To solve this, Theorem 3 states that HForró14/r is secure if Forró14/r is
secure. The theorem applies to any distribution of keys, and in particular to the uniform
distribution considered in Theorem 2. Combining Theorem 3 with Theorem 2 shows that
XForró14/r is secure if Forró14/r is secure.



Theorem 3. Let k be a random element of {0, 1}256. Define s0, s1, ..., s15
as the output of Forró14. Let A be an algorithm. Define Q :
{0, 1}128 × {0, 1}512 → {0, 1}256 by Q (x4, x5, x12, x13, s0, s1, . . . , s15) =
(s6 − c0, s7 − c1, s14 − c2, s15 − c3, s4 − x4, s5 − x5, s12 − x12, s13 − x13) where
(c0, c1, c2, c3) is the Forró14 constant. Define B as the algorithm that, given an
oracle O : {0, 1}128 → {0, 1}512, runs A with the oracle i 7→ Q(i, O(i)). Then the
A-distance from HForrok to uniform is the same as the B-distance from Forrok to
uniform.

Proof. Compare the definitions of Forró14 and HForró14 to see that if i =
(x4, x5, x12, x13) and Forrok(i) = (s0, s1, . . . , s15) then

HForrok(i) = (s6 − c0, s7 − c1, s14 − c2, s15 − c3, s4 − x4, s5 − x5, s12 − x12, s13 − x13)

and then
HForrok(i) = Q (i,Forrok(i)) .

Hence, B (Forrok) = A (i 7→ Q (i ,Forro k(i))) = A (HForrok(i)).

Let U be a uniform random function from {0, 1}128 to {0, 1}512. Define V (i) =
Q(i, U(i)). Thus, V is a uniform random function from {0, 1}128 to {0, 1}256. Further-
more, B(U) = A(V ). The B-distance from Forrok to U is therefore the same as the
A-distance from HForrok(i) to V .

As a corollary, if Forró14 has insecurity ≤ ϵ against any algorithm as fast as B,
then HForró14 has insecurity ≤ ϵ against any algorithm as fast as A. Note that B has
almost the same speed as A.

5. A novel AEAD scheme: XForró14-Poly1305
To create the XForró14-Poly1305 AEAD scheme, we integrate the Poly1305 authen-
tication mechanism with the XForró14 cipher. XForró14-Poly1305 is similar with
ChaCha20-Poly1305 defined in RFC 8439 https://datatracker.ietf.org/
doc/html/rfc8439. XForró14-Poly1305 receives as input a message m, the asso-
ciated data d, a 256-bit key k, and a 192-bit long nonce v. Then, the algorithm proceeds
as follows:

1. Compute k∗ = HForro14((k0, k1, ..., k7), (v0, v1, v2, v3)).
2. Compute the stream block Z = Forro14(k∗, (v4, v5), (0, 0)).
3. Define r as bits 0, 1, ..., 127 of Z, and s as bits 128, 129, ..., 255 of Z.
4. Next, the Forró14 encryption function is called to encrypt the plaintext, using the

same key k∗ and nonce (v4, v5), and with the initial counter set to 1. The resulting
ciphertext is denoted by c.

5. The Poly1305 function is called to compute a tag τ . The Poly1305 function re-
ceives as input the key pair r and s calculated above, and a message constructed
as follows:

m∗ = d|pad(d)|c|pad(c)|len(d)|len(c),

where len(.) computes the length of the additional data in octets, and pad(.) is
a padding up to 15 zero bytes, and it brings the total length so far to an integral
multiple of 16.

https://datatracker.ietf.org/doc/html/rfc8439
https://datatracker.ietf.org/doc/html/rfc8439


6. Finally, the output of the AEAD is the concatenation of c|τ .

We summarize the encryption scheme in Figure 2.

The decryption process shares similarities with encryption, but with a few key
distinctions:

• The roles of ciphertext and plaintext are swapped. In this case, the Forró14 en-
cryption function is applied to the ciphertext, which results in the plaintext.

• The Poly1305 function is executed on the associated data and the ciphertext, not
on the plaintext.

• The computed tag is then compared bit by bit with the received tag. The message
is considered authenticated only if the tags are identical.

The amount of encrypted data possible in a single invocation is 264 − 1 blocks of
64 bytes each, because of the size of the block counter field in the Forró14 block function.
This gives a total of 1,180,591,620,717,411,303,360 bytes, or over a million petabytes.
This should be enough for traffic protocols such as IPsec and TLS, and also for file and/or
disk encryption.

The integration of Poly1305 with the XForró14 cipher not only provides authen-
tication capabilities but also enhances the security of the overall AEAD scheme. The
combined XForró14-Poly1305 AEAD scheme offers robust protection against various at-
tacks, including tampering and forgery, while maintaining the efficiency and performance
advantages of the Forró cipher.

6. Implementation
To demonstrate XForró14-Poly1305, libsodium was forked, adding our proposed AEAD
scheme to it. libsodium is a modern, easy-to-use software library for encryption, de-
cryption, signatures, password hashing, and more. It provides a high-level and com-
prehensive set of cryptographic primitives, aiming to make it easier for developers to
build secure applications. Our implementation can be accessed at https://github.
com/murcoutinho/libsodium. This approach maintains compatibility with exist-
ing libsodium-dependent systems and benefits from its well-tested Poly1305 implemen-
tation.

To implement XForró-Poly1305 into libsodium, HForró14 was incorporated into
the core functionality of libsodium, while Forró14 was included as part of its stream cipher
suite. This incorporation facilitated the utilization of these components in the construction
of the desired scheme. Forró14 offers three distinct implementations: AVX2 and SSSE3,
both of which are derived from chacha’s dolbeau implementation, along with a reference
implementation. The compilation flags for libsodium remain unchanged, building with
gcc using:

-Ofast -pthread -fvisibility=hidden -fPIC -fPIE
-fno-strict-aliasing -fno-strict-overflow
-fstack-protector -Wno-deprecated-declarations
-Wno-unknown-pragmas -ftls-model=local-dynamic
-D_FORTIFY_SOURCE=2

https://github.com/murcoutinho/libsodium
https://github.com/murcoutinho/libsodium
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Figure 2. A graphical representation of XForró14-Poly1305. The blue area (be-
tween dashed lines) represents the XForró14 step. The red area (between
a solid line) represents the encryption step with Forró14, using a total of n
blocks, starting from counter t = 1. The green area (between dotted lines)
represents the authentication with Poly1305.



What implementation is being compiled dictates the inclusion or exclusion of ei-
ther -mavx2 or -mssse3.

Following the integration of the schemes, it becomes possible to assess their per-
formance in comparison to other available AEAD schemes. The performance evaluation
encompasses various metrics, which are presented in Table 2. Based on these findings,
XForró14-Poly1305 demonstrates superior performance on resource-constrained devices,
particularly on resource-limited devices like the ARMv7l found in the tested Xilinx Pynq-
Z1, which features a Cortex-A9 processor. Furthermore, even on the ARMv8 platform,
specifically the Cortex-A72 processor in a Raspberry Pi 4B, XForró14-Poly1305 out-
performs XChaCha20-Poly1305, through the use of the Xote technique discovered in
[Coutinho et al. 2022, Coutinho et al. 2023].

Table 2. Performance Comparison of AEAD Schemes on ARMv7l and ARMv8 64-
bit, including AEGIS [Wu and Preneel 2013] which is available in libsodium.

AEAD Scheme ARMv7l (cycles/byte) ARMv8 64-bit (cycles/byte)
XForró14-Poly1305 23.33 11.88
XChaCha20-Poly1305 26.75 12.89
ChaCha20Poly1305 26.73 12.88
AEGIS256 425.66 228.27
AEGIS128L 286.73 152.45

Another interesting comparison can be drawn against lightweight cryptographic
alternatives, such as ASCON, a winner of the NIST competition [Dobraunig et al. 2016].
Unfortunately, libsodium does not support ASCON, and its implementation was beyond
the scope of this paper. Nevertheless, the authors report performance metrics of 33.3
and 10.5 cycles/byte for ARMv7 (Cortex-A9) and ARMv8 (Cortex-A72), respectively,
demonstrating that XForró14-Poly1305 stands as a competitive alternative. It’s worth
noting that while ASCON may perform approximately 1 cycle/byte faster on the ARMv8
architecture, it only provides 128 bits of security. In contrast, XForró14-Poly1305 offers
a higher level of security at 256 bits, making it an important consideration in assessing
the relative merits of these algorithms. These findings suggest that XForró14-Poly1305
offers a promising solution for efficient cryptographic operations on constrained devices.

7. Conclusion

In this paper, we address the authentication limitation of the Forró cipher by introducing
the XForró14 cipher and combining it with the Poly1305 authentication mechanism to
create a comprehensive Authenticated Encryption with Associated Data (AEAD) scheme.
The resulting XForró14-Poly1305 AEAD scheme leverages the efficiency and security
advantages of the original Forró cipher while providing the critical authentication func-
tionality necessary for a wide range of use cases.

To ensure the practical implementation of the XForró14-Poly1305 AEAD scheme,
we developed a new fork of the libsodium cryptographic library, which incorporates our
proposed solution as a readily available AEAD option. This allows developers to utilize
a secure and efficient cryptographic tool in their projects with ease, contributing to the
broader adoption of the XForró14-Poly1305 AEAD scheme.



Our work demonstrates that it is possible to enhance the capabilities of an ex-
isting cipher, such as Forró, by extending it with authentication features, resulting in a
more versatile and secure cryptographic solution. Future research could explore further
optimizations, performance improvements, and potential applications for the XForró14-
Poly1305 AEAD scheme. Moreover, the cryptographic community could benefit from a
thorough security analysis of the proposed scheme, assessing its resilience against various
attack vectors and confirming its suitability for deployment in real-world applications.
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