
Peer-to-Peer Permissionless Consensus via Reputation

Francisco Sant’Anna, Fabio Bosisio, Lucas Pires

1 UERJ - PEL - Pós-Graduação em Engenharia Eletrônica

francisco@ime.uerj.br, fbosisio@gmail.com, lucasampires@gmail.com

Abstract. Public Internet forums suffer from excess and abuse, such as SPAM
and fake news. Centralized platforms employ filtering and anti-abuse policies,
but imply full trust from users. We propose a permissionless Sybil-resistant peer-
to-peer protocol for content sharing. Our main contribution is a reputation sys-
tem that moderates content and, at the same time, delivers network consensus.
We can trace a parallel with Bitcoin as follows: consolidated posts create repu-
tation (vs proof-of-work), likes and dislikes transfer reputation (vs transactions),
and aggregate reputation determines consensus (vs longest chain). The reputa-
tion mechanism depends exclusively on the human authoring ability (proof-of-
authoring), which is slow and scarce, thus suitable to establish consensus.

1. Introduction

Content publishing in Internet forums and social media is increasingly more centralized
in a few companies (e.g. Facebook and Twitter) [24]. These companies offer free storage,
friendly user interfaces, and robust access, but concentrate excessive power, controlling
and monetizing over private user data. Peer-to-peer alternatives [19] eliminate intermedi-
aries, but strive to achieve consistency when dealing with malicious users.

In an ideal Internet forum, all messages or posts (i) reach all users, (ii) are de-
livered in consistent order, and (iii) are respectful and on topic. In centralized systems,
items (i) and (ii) are trivially achieved assuming availability and delivery order, while
item (iii) requires users to trust the service policies. In decentralized systems, however,
none of these demands are easily accomplished. A common approach in gossiping pro-
tocols is to proactively disseminate posts among peers until they reach all users [19, 9].
However, gossiping does not guarantee consensus since posts can be received in conflict-
ing orders [17]. Consensus is key to distinguish malicious behavior at the protocol level,
and therefore, satisfy item (iii). Without consensus, each client must rely on local anti-
abuse policies, such as SPAM filters, but which only apply a posteriori, when the abusive
messages have already been flooded in the network by potential Sybils [5].

Bitcoin [13] is the first permissionless protocol to resist Sybils, relying on a scarce
resource—the proof-of-work—to establish consensus. The protocol is Sybil resistant be-
cause it is expensive to write to its unique timeline (either via proof-of-work or transaction
fees). However, Bitcoin and cryptocurrencies in general are not suitable for social con-
tent sharing because (i) they enforce a unique timeline to preserve value and immunity
to attacks; (ii) they lean towards concentration of power due to scaling effects; (iii) they
impose an external economic cost to use the protocol; and (iv) they rely exclusively on
objective rules to reach consensus. These issues threaten our decentralization goals, and
more importantly, they renounce subjectivity, which is inherent to content moderation.



For instance, a unique timeline implies that all Internet content is subject to the same con-
sensus rules, while objective rules alone cannot distinguish abuse amid content. Another
limitation of cryptocurrencies is that it is not possible to revoke content in the middle of a
blockchain, which is inadmissible considering illicit content (e.g., hate speech) [12].

In this work, we adapt the idea of scarce resources to reach consensus and eradi-
cate Sybils, but in the context of social content sharing. We indicate 4 main contributions:

a. Recognizing published contents as scarce resources, since they require human
work. Work is manifested as new posts, which if approved by others, reward
authors with reputation tokens, which are further used to evaluate other posts with
likes and dislikes. With such proof-of-authoring mechanism, token generation is
expensive, while verification is cheap and shared by multiple users.

b. Using the reputation system to determine consensus. Due to decentralization and
network partitions, posts in a timeline form a causal graph with only partial or-
der, which we promote to a total order based on the reputation of authors. The
consensus order is fundamental to detect conflicting operations, such as likes with
insufficient reputation (akin to Bitcoin’s double spending).

c. Allowing users to create diversified forums of interest (not a singleton blockchain),
each as an independent timeline with its own subjective authoring etiquette.

d. Supporting content removal without compromising the integrity of the decentral-
ized blockchain. Users have the power to revoke posts with dislikes, and peers are
forced to remove payloads, only forwarding associated blockchain metadata.

We integrated the proposed consensus algorithm into Freechains [16], a peer-to-peer
(P2P) content dissemination protocol that provides strong eventual consistency [6]. To
show the feasibility of the consensus mechanism, we simulated a chat channel and a
newsgroup forum, both extracted from publicly available Internet archives.

The rest of the paper is organized as follows: In Section 2, we describe the design
of the reputation and consensus mechanism for public forums and discuss some secu-
rity threats. In Section 3, we describe the concrete reputation rules we implemented for
Freechains and evaluate the performance of the protocol in real-world public forums. In
Section 4, we compare our system with publish-subscribe protocols, federated applica-
tions, and fully P2P systems. In Section 5, we conclude this work.

2. The Reputation and Consensus Mechanism
Without moderation, permissionless P2P forums are impractical due to Sybils abusing the
system. For instance, it should take seconds to generate thousands of fake identities and
SPAM millions of messages. For this reason, we propose a reputation system that works
together with a consensus algorithm to resist Sybils. We consider Sybils as groups of
throw-away identities and machines with no previous reputation in the forums.

In our system, users can spend tokens named reps to post and rate content in
forums: a post initially penalizes authors until it consolidates and counts positively; a
like is a positive feedback that helps subscribers to distinguish content amid excess; a
dislike is a negative feedback that revokes content when crossing a threshold. Table 1
summarizes the general reputation rules and their goals. To prevent Sybils, users with
no reps cannot operate under these rules, requiring a welcoming like from any other user
already in the system. The fact that likes are zero-sum operations, which only transfer



Table 1. General reputation rules in public forums.

reputation, eliminates the incentives from malicious users to invite Sybils into the system.
The only way to generate new reps is to post content that other users tolerate, which
demands non-trivial work resistant to automation.1 In this sense, having one or hundreds
of machines in the network does not affect the capacity to write into the forums.

Bitcoin employs proof-of-work to mitigate Sybil attacks. However, CPU or other
extrinsic resources are not evenly distributed among humans, specially in communications
using battery-powered devices. Instead, considering the context of public forums, we
propose to take advantage of the human authoring ability as an intrinsic resource. Creating
new content is hard and takes time, but is comparatively easy to verify and rate. Therefore,
in order to impose scarcity, we determine that only content authoring generates reps, while
likes and dislikes only transfer reps between users. In our analogy with Bitcoin, Sybil
attacks would require to add human resources, instead of CPU power.

Nevertheless, posts scarcity is not yet sufficient to combat Sybils because con-
sensual order is still required to prevent inconsistent operations. For instance, consider a
malicious author with a single unit of reps posting SPAM messages from multiple peers
at the same time. According to the Expense rule of Table 1, only one of these messages
should be accepted by the network. However, without consensus, it is not possible to
globally determine which message to accept, since each peer would supposedly accept
the first message it receives. On the one hand, in order to validate operations consistently,
we need the same message ordering across all peers in the network. On the other hand,
due to network partitions, we can only represent public forums as DAGs (directed acyclic
graphs) with causal relationships between messages, which provides at most partial order.

2.1. Basic Reputation Consensus

Our key idea to stablish consensus in forum DAGs is to favor forks with posts from users
that constitute the majority of the reputation. These forks have more associated work and
are analogous to longest chains in Bitcoin. In technical terms, we adapt a topological
sorting algorithm to favor reputation when deciding between branches in a forum DAG.

Figure 1.A illustrates the evolution of a forum DAG in the presence of a network
partition: A common prefix has signed posts from users a, b, and c, when they were still
all connected. We assume that within the prefix, users a and b have contributed with better
content and therefore have more reputation combined than c has alone (i.e., 8+5 > 3). We
will use this fact to order branches in the consensus algorithm. Then, user c disconnects
from a and b, and evolves with new users x and y in branch-1. In the meantime, a and

1Note that although human and AI content may become indistinguishable, their frequency and relevance
in forums is still subject to human evaluation in our proposal.



Figure 1. (A) A public forum DAG with a common prefix, two branches, and a
common sufix. (B) Total order between posts of the DAG after consensus.

b participate with new posts in branch-2. After some time, the partitions reconnect and
new posts from x, b and c merge the branches now with a common suffix.

Note that even non-malicious partitions may experience conflicts when merging.
For instance, dislike operations in one branch to past posts in the common prefix could
possibly block posts from users in the other branch. Therefore, we need to order branches
with a global consensus, such that we can validate operations consistently across the net-
work. Note also that, to reach consensus, we should preferably rely on the maximum
information that all branches agree on, which is exactly the posts in the common prefix.

Based on the reputation of users in the common prefix, Figure 1.B indicates the
consensus order between posts in the forum DAG: the common prefix comes first, then
all posts in branch-2, then all posts in branch-1, then the common suffix. The branch-2
with users a and b takes priority over branch-1 with user c because, before the forking
point, a and b have more reputation than c, x, and y have combined.

The basic consensus rule is therefore straightforward: Whenever a fork is found,
we create sets of users with posts in each branch (B1 = {c, x, y} and B2 = {a, b}).
Then, we take each set, and sum its users reps based on the common prefix (S1 = 3 and
S2 = 13), since it is the maximum information that all branches agree. Finally, we order
the branches based on the highest sum of reps found (Figure 1.B).

While applying the branches in order, if any post operation fails, all remaining
posts are rejected and removed from the DAG, as if they never existed. As an example,
suppose that the last post by a in branch-2 (in gray) is a dislike to user c. Then, it’s
possible that the last post by c in branch-1 (in red), now suppose with 0 reps, is rejected
together with all posts in sequence, including those in the common suffix. This rejection
rule for remaining posts is a direct consequence of tamper proof Merkle DAGs [4, 13]
typically used in permissionless protocols, which cannot support graph modifications.

There are some other relevant considerations about forks and merges: Peers that
first receive branches with less reputation need to reorder all posts after the forking point.
This might involve removing content in the end-user software. This behavior is similar
to Bitcoin’s blockchain reorganization, when peers detect new longest chains. Likewise,



Figure 2. Stable consensus freezes the order of posts once they cross the thresh-
old. The unstable order may still be affected by incoming branches.

peers that first saw branches with more reputation just need to append the other branch,
with no reordering at all. This behavior is expected to happen in the majority of the
connected network. Legitimate posts in secondary branches might be removed due to
merges, which requires that users repost the messages. Nevertheless, we expect that legit-
imate users gossip among themselves more often, thus preventing this situation. Note that
unlike Bitcoin, forks are not only permitted but encouraged due to the local-first software
principle [10], in which networked applications can work locally while offline. However,
the longer a peer remains disconnected, the more conflicting operations it may see, and
the higher are the chances of posts reordering when rejoining.

In summary, it is important to remark that (i) branches always introduce conflicts,
which (ii) require consensus to order operations, which (iii) is based on a common prefix
reputation, (iv) leading to a global and deterministic result. Note that the consensus order
exists only to account reputation and verify operations, and is only a view of the primary
DAG structure of public forums.

2.2. Malicious Behaviors and Hard Forks

Consider a malicious scenario in which user c in Figure 1 intentionally disconnects from
the network for weeks to cultivate fake identities x and y with the intention to accumulate
reps. When merging, these fake users would become legitimate and take over the ma-
jority of reps in the forum. However, this kind of attack is refutable because, since the
common prefix is the basis of consensus, users in the branch with more reputation can
still react even a posteriori. For instance, users a and b can pretend that they did not yet
see branch-1 and post extra dislikes to user c so that a further merge invalidates all posts
from branch-1, removing them from the DAG. This kind of attack is innocuous because
it requires at least half of the reps accumulated in the common prefix.

As a counterpoint, maybe users a and b have abandoned the forum for months,
and thus branch-1 is actually legitimate. In this case, users a and b would succeed to take
over the forum, since they control the majority of reps in the common prefix. Yet another
possibility is that both branches are legitimate but became disconnected for a long period.
In any case, it is unacceptable that an old remote branch affects a local active forum.

For this reason, the consensus algorithm includes an extra constraint that prevents
long-lasting local branches to merge, leading to hard forks. A hard fork occurs when
a local branch crosses a predetermined threshold of 7 days or 100 posts of activity. In
this case, regardless of the remote branch reputation, the local branch takes priority and is
ordered first. This situation is analogous to a hard fork in Bitcoin and the branches become



Figure 3. State machine of posts: BLOCKED posts are not linked in the DAG.
ACCEPTED posts are linked and retransmitted. The payload of REVOKED
posts are not retransmitted.

incompatible and will never synchronize again. More than simple numeric disputes, a
hard fork represents a social conflict in which reconciling branches is no longer possible.

Figure 2 illustrates hard forks by distinguishing stable consensus, which cannot be
reordered, from unstable consensus, which may still be affected by incoming branches.
The activity threshold counts backwards, starting from the newest local post in the unsta-
ble consensus to older posts until they are permanently frozen.

In summary, the rules to merge a branch j from a remote machine into a branch i

from a local machine are as follows:
• i is first if it crosses the activity threshold of 7 days or 100 posts, regardless of j.
• i or j is first, whichever has more reputation in the common prefix (Section 2.1).
• otherwise, branches use the arbitrary criteria of lexicographical order of the post

hashes immediately after the common prefix.
To conclude this section, we should keep in mind that our consensus algorithm

is based on subjective evaluations of users and posts. For this reason, unlike Bitcoin, in
which forks are discouraged and a single blockchain must prevail, public forums can split
and diverge indiscriminately. For instance, users can explicitly apply hard forks at any
point in time to “reboot” a community from a previous state. Ultimately, the consensus
algorithm provides a transparent mechanism to help users understand the evolution of
public forums and act accordingly, even if it leads to hard forks.

2.3. Content Removal
Finally, we consider that revoking posts is fundamental in the context of social content
publishing, and thus, an important contribution of this work.

As described in Figure 3, a forum post has three possible states: BLOCKED,
ACCEPTED, or REVOKED. If the author has reputation, a new post is immediately ACCEPTED

in the forum. Otherwise, it is BLOCKED and requires a like from another user.

Blocked posts are not considered part of the forum DAG in the sense that new
posts do not link back to it. In addition, peers are not required to hold blocked posts nor
retransmit them to other peers. However, if blocked posts are not disseminated, new users
will never have the chance to be welcomed with a like. Therefore, a reasonable policy is
to hold blocked posts in a temporary bag and retransmit them for some visibility.



Once accepted, a post becomes part of the forum and can never be removed again,
since Merkle DAGs are immutable by design. However, if the number of dislikes exceeds
an arbitrary threshold (e.g., more dislikes than likes), the post becomes REVOKED and its
payload is not retransmitted to other peers. Note that a post hash does not depend on its
associated payload, but only on the payload hash. Hence, it is safe to remove the payload
as long as one can prove its revoked state. Later, if the post receives new likes, it means
that the payload is still known somewhere and peers can request it when synchronizing
again, since the post becomes ACCEPTED again.

2.4. Peer Synchronization and Byzantine Faults

Similarly to Bitcoin, the underlying network protocol replicates on each peer the full state
of the Merkle-DAG representing the causal relationships between posts. When peers
synchronize, they mutually exchange missing branches such that they reach the same
DAG structure [9]. As they synchronize, each peer runs the consensus algorithm locally
and verifies if all received posts are consistent.

Because the protocol relies on tamper-proof DAGs, and because each peer self ver-
ifies the posts as they synchronize, the protocol becomes tolerant to Byzantine faults [11].
Note that no information coming from any peer is trusted a priori. For instance, a mali-
cious peer that tries to synchronize branches with erratic data can be detected on the first
inconsistent post. This allows the correct peer to close the connection immediately and
blacklist the malicious peer from future connections.

Therefore, although Byzantine peers may still perform some sort of denial of ser-
vice attacks in the network, they cannot modify the DAG structure, nor create arbitrary
content, nor impede that two correct nodes synchronize directly.

3. Public Forums in Freechains
Freechains [16] is an unstructured P2P topic-based publish-subscribe protocol, in which
each chain is a replicated Merkle-DAG representing the causal relationships between
posts. The protocol operation is typical of publish-subscribe systems: an author publishes
a post to a chain, which subscribed users eventually receive.

In order to support content moderation and mitigate abuse, we integrated the pro-
posed reputation and consensus mechanism of Section 2 with Freechains. Table 2 details
the reputation rules we conceived for Freechains, which is compatible with the general
rules of Table 1. Authors have to sign posts in order to be accounted by the reputation
system and operate in the chains. We start by creating an identity whose public key is
assigned as the pioneer in a chain named forum:

> freechains keys pubpvt ’pioneer-password’
4B56AD.. DA3B5F.. <-- public and private keys
> freechains ’forum’ join ’4B56AD..’
10AE3E.. <-- hash representing the chain
> freechains ’forum’ post --sign=’DA3B5F..’ ’The chain purpose is...’
1_CC2184.. <-- hash representing the post

The join command in rule 1.a bootstraps a public chain, assigning 30 reps
equally distributed between an arbitrary number of pioneers indicated through their pub-
lic keys (one in this example). The pioneers shape the initial culture of the chain with



Table 2. Reputation rules for public forum chains in Freechains. The chosen
constants (30 reps, 24h, etc) are arbitrary and target typical Internet forums.

the first posts and likes, while they gradually transfer reps to other authors, which also
transfer to other authors, expanding the community. The post command in sequence is
signed by the single pioneer and indicates the purpose of the chain for future users.

In order to resist Sybils, we propose a mix between social trust graphs and explicit
costs for new posts: Rule 4.a imposes to authors at least 1 rep to post, effectively blocking
Sybil actions. To vouch for new users, rule 3.a allows an existing user to like a newbie’s
post to unblock it, but at the cost of 1 rep. This cost prevents malicious members to
unblock new users indiscriminately. For the same reason, rule 2 imposes a temporary
cost of 1 rep for each new post. Note that the pioneers rule 1.a solves the chicken-and-
egg problem imposed by rule 4.a: if new authors start with no reps, but require reps to
operate, it is necessary that some authors have initial reps to boot the chains.

In the next sequence of commands, a new remote user joins the same public chain
and posts a message, which is welcomed with a like signed by the pioneer:

> freechains keys pubpvt ’newbie-password’
503AB5.. 41DDF1.. <-- public and private keys
> freechains ’forum’ join ’4B56AD..’
10AE3E.. <-- same pioneer as before
> freechains ’forum’ post ’Im a newbie...’ --sign=’41DDF1..’
2_C3A40F.. <-- blocked post
> freechains ’forum’ like ’2_C3A40F..’ --sign=’DA3B5F..’
3_59F3E1.. <-- hash representing the like

Note that chains with the same name but different pioneers would be incompatible
because the hash of genesis posts depends on the pioneers’ public keys.

Figure 4 illustrates the chain DAG up to the like operation. The pioneer starts
with 30 reps (rule 1.a) and posts the initial message. New posts penalize authors with
-1 reps during at most 12 hours (rule 2), which depends on the activity succeeding (and
including) the new post. The more activity from reputed authors, the less time the discount
persists. In the example, since the post is from the pioneer controlling all reps in the chain,
the penalty falls immediately and she remains with 30 reps. This mechanism limits the
excess of posts in chains dynamically. For instance, in slow technical mailing lists, it is



Figure 4. The like approves the newbie message into the #forum DAG.

more expensive to post messages in sequence. However, in chats with a lot of active users,
the penalty can decrease to zero quickly.

Back to Figure 4, a new user with 0 reps tries to post a message (hash 2 C3A40F..)
and is blocked (rule 4.a), as the red background highlights. But the pioneer likes the
blocked message, decreasing herself to 29 reps and increasing new user to 1 rep (rule 3.a).
Note that the newbie post is not penalized (rule 2) because it is followed by the pioneer
like, which still controls all reps in the chain.

With no additional rules to generate reps, the initial 30 reps would constitute the
whole “chain economy” forever. For this reason, rule 1.b rewards authors of new posts
with 1 rep, but only after 24 hours. This rule stimulates content creation and grows the
economy of chains. The 24-hour period gives sufficient time for other users to judge
the post before rewarding the author. It also regulates the growth speed of the chain. In
Figure 4, after 1 day, the pioneer would now accumulate 30 reps and the new user 2 reps,
growing the economy in 2 reps as result of the two new consolidated posts.

Likes and dislikes (rules 3.a and 3.b) serve three purposes: (i) welcoming new
users, (ii) measuring the quality of posts, and (iii) revoking abusive posts (SPAM, fake
news, etc). The quality of posts is subjective and is up to users to judge them with likes,
dislikes, or simply abstaining. The reputation of a given post is the difference between its
likes and dislikes, which can be used in end-user software for filtering and highlighting
purposes. On the one hand, since reps are finite, users need to ponder to avoid indis-
criminate expenditure. On the other hand, since reps are limited to at most 30 reps per
author (rule 4.b), users also have incentives to rate content. Hence, these upper and lower
limits work together towards the quality of the chains. Note that a dislike shrinks the
chain economy since it removes reps from both the origin and target. Finally, the actual
contents of a post may be revoked if it has at least 3 dislikes, and more dislikes than likes
(rule 3). However, considering that reps are scarce, dislikes are encouraged to combat
abusive behavior, but not to eliminate divergences of opinion.

3.1. Experiments with Public Forums in Freechains

We performed experiments to evaluate the performance of Freechains and its consensus
algorithm. As detailed next, we measure the following evaluation parameters: (a) meta-
data overhead, (b) consensus runtime, (c) graph forks, and (d) blocked messages. Our goal
is to stress the consensus algorithm to show that permissionless public forums are viable,
regardless of the inherent slower performance in comparison to permissioned protocols.

We simulate the behavior of two publicly available forums as if they were using
Freechains: a chat channel from the Wikimedia Foundation2, and the comp.compilers

2Chat: https://archive.org/download/WikimediaIrcLogs/



newsgroup3. Chats and newsgroups represent typical public forums with faster interac-
tions with shorter payloads (chats), and slower interactions with larger payloads (news-
groups). We only simulate the first 10.000 messages of the forums, which represent 3
months of activity in the chat and 9 years in the newsgroup.

The simulation spawns N peers, each joining the same chain with the same argu-
ments. For each message in the original forum, we (i) set the timestamp of peers to match
the original date, (ii) create a pair of keys if the author is new, (iii) post the message from
a random peer in N , (iv) like the post if the author has no reputation, and (v) synchronize
the chain with M random peers. Since all messages are part of the original archive, we
always perform step (iv) to unblock messages from newbies, which we also use to mea-
sure the evaluation parameter (d). Step (v) will inevitably create forks in the chain for any
M<N, which we measure in evaluation parameter (c).

For the newsgroup, we use N=15 and M=5, which represents a larger number of
peers with few interconnections to stress the local-first nature of the protocol. For the chat,
we use N=5 and M=3, which is a smaller number of peers but with more interconnections.
We executed each simulation 4 times in a desktop PC (i7CPU, 8GBRAM, 512GB SSD).
Since the variations were negligible, we always discuss the median measures.

Evaluation item (a) measures the protocol overhead due to blockchain metadata,
which consists of a timestamp, author signature, and hashes (post id, payload, backlinks,
and likes). The original chat archive is 800kB in size, or 80B for each message, which
includes a timestamp, a username, and the actual payload. The simulated chat chain is
8MB in size, which indicates a 10x overhead. The original newsgroup is 30MB in size,
or 3kB for each message, which includes a timestamp, a sender, a subject, and the actual
payload (typically much longer). The simulated newsgroup chain is 42MB in size, which
indicates a 50% overhead. It is clear that the metatada overhead is not negligible, specially
for short chat messages, but decreases as the payload increases.

Evaluation item (b) accounts the consensus algorithm applied locally. We mea-
sured the time to sort posts in a local DAG both for the first time. and incrementally
from stable consensus caches. For the chat chain, it takes 125s and 50ms for the initial
and incremental sorts, while for the newsgroup chain, it takes 100s and 70ms. The in-
cremental sort is limited to 7 days or 100 posts by design (as discussed in Section 2.2),
regardless of the size of the chain, which conveniently settles an upper bound on the input
size of the consensus algorithm. Given that we use plain JSON files in the file system, we
consider an incremental consensus under 100ms to be a practical upper bound.

Evaluation item (c) counts the number of forks in chain DAGs, which indicates
the level of asynchrony between peers following the local-first principle. We calculate the
ratio of forks over the total number of messages, e.g., a DAG with 100 messages and 10
forks has a ratio of 10%. We found a ratio of 18% for the chat and 14% for the newsgroup,
which confirms that the simulation achieves a reasonable level of asynchrony.

Evaluation item (d) measures how much bookkeeping is required to sustain active
users in the forums. Even though the newbie rule 4.a in Table 2 is key to combat Sybils,
ideally it should not recurrently deny access to active users with low reputation. The eval-
uation counts the number of blocked messages requiring extra likes after the welcoming

3Newsgroup: https://archive.org/download/usenet-comp



likes (which are disconsidered) and calculates the ratio over the total number of messages
in the chain. As an example, if 10 users posted 110 messages requiring 20 likes, we dis-
count the 10 initial messages and welcoming likes (when the user first appears), and find a
ratio of 10% ((20-10)/(110-10)). For the chat with 80 users, we found a ratio of 3.7%.
For the newsgroup with 5000 users, we found a ratio of 3.5%. Considering that users
were not aware of the reputation rules, the low ratios indicate that their ”natural” posting
behavior matches the constraints of the rules. We assume that users would use the revoke
mechanism to combat abusive content, having no further effects on our evaluation.

4. Related Work

Decentralized topic-based publish-subscribe protocols, such as ActivityPub [23] and gos-
sipsub [21], decouples publishers from subscribers in the network. A key limitation of
pubsubs is that the brokers that mediate communication still have a special role in the
network, such as authenticating and validating posts. Nevertheless, some pubsubs do not
rely on server roles, and instead, use P2P gossip dissemination [3, 14, 21]. Most of these
protocols focus on techniques to achieve scalability and performance, such as throughput,
load balancing, and real-time relaying. However, these techniques alone are not sufficient
to operate permissionless networks with malicious Sybils [20]. Being generic protocols,
pubsubs are typically unaware of the applications built on top of them. In contrast, as
stated in Section 3, the pubsub of Freechains is conceptually at the application level and
is integrated with the semantics of chains, which already verifies posts at publishing time.
For instance, to flood the network with posts, malicious peers need to spend reputation,
which takes hours to recharge (rule 2 in Table 2). In addition, blocked posts (Figure 3)
are not a concern either, because they have limited reachability. Another advantage of
a tighter integration between the application and protocol is that Merkle DAGs simplify
synchronization, provide persistence, and prevent duplication of messages.

Federated protocols, such as e-mail, allow users from one domain to exchange
messages with users of other domains. Diaspora, Matrix, and Mastodon are recent feder-
ations for social media, chat, and microblogging [7], respectively. As a drawback, iden-
tities in federations are not portable across domains, which may become a problem when
servers shutdown or users become unsatisfied with the service [1]. In any of these cases,
users have to grab their content, move to another server, and announce a new identity to
followers. Moderation is also a major concern in federations [7]. As an example, mes-
sages crossing domain boundaries may be subject to different policies that might affect
delivery. With no coordinated consensus, it is difficult to make pervasive public forums
practical. For this reason, Matrix supports a permissioned moderation system4, but which
applies only within clients, after the messages have already been flooded in the network.
As a counterpoint, federated protocols seem to be more appropriate for real-time applica-
tions such as large chats rooms. The number of hops and header overhead can be much
smaller in client-server architectures compared to P2P systems, which typically include
message signing, hash linking, and extra verification rules (as evaluated in Section 3.1).

Regarding P2P protocols, Bitcoin [13] is probably the most successful permission-
less network, but serves specifically for electronic cash. IPFS [4] and Dat [15] are data-
centric protocols for hosting large files and applications, respectively. Scuttlebutt [18] and

4Matrix moderation: https://matrix.org/docs/guides/moderation



Aether [7] are closer to Freechains goals and cover human communication.

Bitcoin adopts proof-of-work to achieve consensus, which does not solve the cen-
tralization issue entirely, given the high costs of equipment and energy. Proof-of-stake is
a prominent alternative [2] that acknowledges that centralization is inevitable, and thus
uses a function of time and wealth to elect peers to mint new blocks. As an advantage,
these proof mechanisms are generic and apply to multiple domains, since they depend on
extrinsic resources. In contrast, we chose an intrinsic resource, which is authored content
in the chains themselves. We believe that human work grows more linearly with effort
and is not directly portable across chains with different topics. These hypotheses support
the intended decentralization of our system. Another distinction is that generic public
ledgers require permanent connectivity to avoid forks, which opposes our local-first prin-
ciple. This is because a token transaction only has value as part of the longest chain. This
is not the case for a local message exchange between friends, which has value in itself.

IPFS [4] is centered around immutable content-addressed data, while Dat [15]
around mutable pubkey-addressed data. IPFS is more suitable to share large and stable
content such as movies, while Dat is more suitable for dynamic content such as web
apps. Both IPFS and Dat use DHTs as their underlying architectures, which are optimal
to serve large and popular content, but not for search and discovery. In both cases, users
need to know in advance what they want, such as the exact link to a movie or a particular
identity in the network. On the one hand, DHTs are probably not the best architecture to
model decentralized human communication with continuous feed updates. On the other
hand, replicating large files across the network in Merkle DAGs is also impractical. An
alternative is to use DHT links in Merkle payloads to benefit from both architectures.

Scuttlebutt [18] is designed around public identities that follow each other to form
a graph of connections. This graph is replicated in the network topology as well as in data
storage. For instance, if identity A follows identity B, it means that the computer of A
connects to B’s in a few hops and also that it stores all of his posts locally. Note however
that the basic unit of communication in Scuttlebutt is unidirectional , with a public identity
broadcasting a feed to its followers (1→N ). For open groups communication (N↔N ),
Scuttlebutt uses the concept of channels, which are in fact nothing more than hash tags
(e.g. #sports). Authors can tag posts, which appear not only in their feeds but also in
local virtual feeds representing these channels. However, users only see channel posts
from authors they already follow. In practice, channels simply merge friends posts and
filter them by tags. In theory, to read all posts of a channel, a user would need to follow all
users in the network (which also implies storing their feeds). A limitation of this model
is that new users struggle to integrate in channel communities because their posts have no
visibility at all. As a counterpoint, channels are safe places that do not suffer from abuse.

Aether [7] provides P2P public communities aligned with public forums of
Freechains (N↔N ). A fundamental difference is that Aether is designed for ephemeral,
mutable posts with no intention to enforce global consensus across peers. Aether employs
a very pragmatic approach to mitigate abuse in forums. It uses established techniques,
such as proof-of-work to combat SPAM, and an innovative voting system to moderate
forums, but which affects local instances only. In contrast, Freechains relies on its per-
missionless reputation and consensus mechanisms for moderation.



Some works for P2P file sharing propose to account the reputation of peers to form
a web of trust based on their behavior history [22, 8]. However, there are three key aspects
in terms of scope that distinguishes our reputation system: its focus on the contents, its
subjective nature, and its dependency on consensus. First, it is the actual contents that
are stored and evaluated in the forums, with the identities being a secondary attribute.
Second, content evaluation is subjective, as well as any decision to revoke posts or to fork
forums. Third, at any given point in time, peers must agree on a common forum DAG
prefix with global and deterministic accuracy to act identically as a whole. In this case,
consensus is fundamental, since a subtle off-by-one discrepancy in reputation creates an
irreconcilable fork in the network. Achieving consensus on a permissionless network is
the key contribution of this work.

5. Conclusion
In this paper, we propose a permissionless consensus and reputation mechanism for social
content sharing in P2P networks. We enumerate three main contributions: (i) human
authored content as a scarce resource (proof-of-authoring); (ii) diversified public forums,
each as an independent blockchain with subjective moderation rules; and (iii) abusive
content removal preserving data integrity.

The key insight of the consensus mechanism is to use the human authoring ability
as a scarce resource to determine consensus. This contrasts with extrinsic resources, such
as CPU power, which are dispendious and not evenly distributed among people. Consen-
sus is backed by a reputation system in which users can rate posts with likes and dislikes,
which transfer reputation between them. The only way to forge reputation is by author-
ing new content under the judgement of other users. This way, reputation generation is
expensive, while verification is cheap and decentralized.

The reputation and consensus mechanism is integrated into Freechains, a P2P pro-
tocol, in which users can create public forums of interest and apply diverse moderation
policies. In particular, users can revoke content considered abusive according to the ma-
jority, not depending on centralized authorities. We simulate the behavior of existing chat
and newsgroup forums as if they were using Freechains to show the practicability of the
protocol as a descentralized alternative for public forums.

Finally, we do not claim that the proposed reputation system enforces “good” hu-
man behavior in any way. Instead, it provides a transparent and quantitative mechanism to
help users understand the evolution of forums and act accordingly. Human creativity con-
trasts with plain economic resources (e.g., proof-of-work), which do not appraise social
interactions and also tend to concentrate power over the time.

References
[1] A. Auvolat. Making federated networks more distributed. In 2019 38th Symposium on

Reliable Distributed Systems (SRDS), pages 383–3831. IEEE, 2019.

[2] L. M. Bach et al. Comparative analysis of blockchain consensus algorithms. In
MIPRO’18, pages 1545–1550. IEEE, 2018.

[3] R. Baldoni et al. TERA: Topic-Based Event Routing for Peer-to-Peer Architectures. In
DEBS’07, pages 2–13, 2007.



[4] J. Benet. Ipfs-content addressed, versioned, p2p file system. arXiv:1407.3561, 2014.

[5] J. R. Douceur. The sybil attack. In International workshop on peer-to-peer systems, pages
251–260. Springer, 2002.

[6] V. Gomes et al. Verifying strong eventual consistency in distributed systems. volume 1,
pages 1–28. ACM New York, NY, USA, 2017.

[7] J. Graber. Decentralized social ecosystem review. Technical report, BlueSky, 2021.

[8] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm for
reputation management in p2p networks. In Proceedings of WWW’03, 2003.

[9] M. Kleppmann. Making crdts byzantine fault tolerant. In Proceedings of the 9th Workshop
on Principles and Practice of Consistency for Distributed Data, pages 8–15, 2022.

[10] M. Kleppmann et al. Local-first software: you own your data, in spite of the cloud. In
Onward’19, pages 154–178, 2019.

[11] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. In Concurrency:
the works of leslie lamport, pages 203–226. 2019.

[12] R. Matzutt et al. A quantitative analysis of the impact of arbitrary blockchain content on
bitcoin. In FC’18, Nieuwpoort, Curaçao, pages 420–438. Springer, 2018.

[13] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report, 2009.

[14] J. A. Patel et al. Rappel: Exploiting interest and network locality to improve fairness in
publish-subscribe systems. Computer Networks, 53(13):2304–2320, 2009.

[15] D. C. Robinson, J. A. Hand, M. B. Madsen, and K. R. McKelvey. The dat project, an
open and decentralized research data tool. Scientific data, 5(1):1–4, 2018.

[16] F. Sant’Anna, F. Bosisio, and L. Pires. Freechains: Disseminação de conteúdo peer-to-
peer. In Workshop on Tools, SBSeg’20.

[17] C. Sun et al. Achieving convergence, causality preservation, and intention preservation in
real-time cooperative editing systems. ACM TOCHI’98, 5(1):63–108.

[18] D. Tarr et al. Secure scuttlebutt: An identity-centric protocol for subjective and decen-
tralized applications. In ACM ICN’19, pages 1–11, 2019.

[19] S. A. Theotokis and D. Spinellis. A survey of peer-to-peer content distribution technolo-
gies. ACM Comput. Surv., Dec. 2004.

[20] D. Vyzovitis et al. Gossipsub: Attack-resilient message propagation in the filecoin and
eth2. 0 networks. Technical report, Protocol Labs, 2020.

[21] D. Vyzovitis and Y. Psaras. Gossipsub: A secure pubsub protocol for unstructured, de-
centralised p2p overlays. Technical report, Protocol Labs, 2019.

[22] Y. Wang and J. Vassileva. Trust and reputation model in peer-to-peer networks. In Pro-
ceedings of P2P’03, pages 150–157, 2003.

[23] C. Webber et al. Activitypub. W3C Recommendation, 2018.

[24] J. Zittrain. Fixing the internet. volume 362, pages 871–871. American Association for
the Advancement of Science, 2018.


