Unsupervised SOM-Based Intrusion Detection System
for DNS Tunneling Attacks

Julio F. Luz'2, Paulo Freitas de Araujo-Filho!,
Henrique F. Arcoverde'?, and Divanilson R. Campelo'

!Centro de Informatica — Universidade Federal de Pernambuco (CIn - UFPE)
Av. Jorn. Anibal Fernandes — s/n — Recife — PE — Brazil

{jcfl,pfaf,hfa,dcampelo}@cin.ufpe.br

2Tempest Security Intelligence
Paco Alfandega Shopping - Loja 216A, Recife, Pernambuco, 50030-030, Brazil

{julio.farias,henrique.arcoverde}@tempest.com.br

Abstract. Although the Domain Name System (DNS) is an essential protocol
for Internet operation, it may also be used for malicious activities, such as data
exfiltration, through the establishment of malicious DNS tunnels. In this paper,
we propose an unsupervised intrusion detection system (IDS) for detecting ma-
licious DNS tunneling activities by leveraging self-organizing maps (SOM). Our
experimental results show that our proposed solution achieved an F1-score of
0.9460, outperforming similar existing techniques in publicly available datasets,
and successfully detected attacks conducted in a corporate network.

1. Introduction

Domain Name System (DNS) refers to the distributed database implemented in a hierar-
chy of DNS servers and to the application layer protocol that allows users to query this
database. Despite its primary purpose of translating domain names into IP addresses,
malicious actors exploit this protocol for illegal purposes by establishing DNS tunnels,
i.e., communication channels, between an attacker-controlled server and an infected de-
vice. Such a communication channel can then be used to transmit and receive data ma-
liciously into the DNS protocol fields [Wang et al. 2021]]. For instance, in a data ex-
filtration scenario, DNS queries’ subdomains are used to transmit data from the victim
using queries with the form “stolen-data.attacker-domain.com”, where “stolen-data” rep-
resents the transmitted data using an encoding technique, such as base32, which allows
the query to be resolved by the DNS infrastructure and the attacker to retrieve the ex-
filtrated data [Wang et al. 2021]]. Many malicious actors, including OilRig and xHunt,
employ this technique, with the latter having used it to attack governmental organizations
[PaloAlto 2021]]. Therefore, while DNS is essential to Internet operation, attackers can
exploit it to steal sensitive data and cause significant financial loss to institutions.

One of the main reasons attackers rely on DNS tunneling for conducting several
cyber-attacks is that it often goes unnoticed by defense mechanisms. For instance, fire-
walls are typically configured to allow packets on port 53, which is the default port for
the DNS protocol, otherwise they would compromise the normal operation of the In-
ternet. Hence, they cannot detect malicious activities conducted through DNS tunnels
[Wang et al. 2021]]. Moreover, signature-based intrusion detection systems (IDSs), which

rely on signatures of known attacks, cannot detect different malicious activities conducted
through DNS tunnels [Wang et al. 2021]. In addition, most of the existing anomaly-based
IDSs, which model the benign behavior of networks and systems and detect attacks by
measuring deviations from those behaviors, rely on supervised learning techniques that
require labeled training data. However, obtaining labeled attack data is costly and super-
vised IDSs usually do not perform well at detecting attacks that have not been considered
in training [Nguyen et al. 2020].

To overcome such limitations, in our work, we propose an unsupervised IDS re-
lying on self-organizing maps (SOM), which is a machine learning technique capable of
reducing the dimensionality of data and that has been showing promising results at detect-
ing intrusions [Campbell and Zincir-Heywood 2020]. In constrast to other DNS tunneling
detection solutions, our proposed IDS trains the SOM using only benign DNS queries so
that it does not require labelled attack data and is not biased for detecting only attacks
that have been considered in training. In summary, the main contributions of our work
are: (1) The proposal of an unsupervised SOM-based IDS that detects DNS tunneling
data exfiltration attacks and achieves a 0.9460 F1-score; (2) Experiments evaluating our
proposed IDS in a real enterprise network; (3) Experiments evaluating our proposed IDS
using public datasets; (4) Comparison of the proposed method with state-of-the-art.

2. Related Works

Many authors have proposed supervised IDSs for detecting malicious DNS tunnel-
ing activities. For instance, the work in [Lambion et al. 2020] relied on convolutional
neural networks (CNNs) and random forests to detect malicious activities using lin-
guistic features acquired from DNS queries, achieving an accuracy of 96.65% and an
Area Under the Receiver Operating Characteristic Curve (AUCROC) of 0.9984. How-
ever, since the detection capability of supervised methods lies within the malicious
data used in training, [Lambion et al. 2020] cannot detect well unknown attacks and re-
quires labeled attack data, which is challenging and expensive to obtain. The authors of
[Campbell and Zincir-Heywood 2020] employed the SOM algorithm for DNS tunneling
detection. Although they considered some experiments training with only benign data,
they focused on cases where malicious instances were also present in the training set. The
inclusion of malicious instances in the training data can lead to the same issues highlighted
for supervised models. The authors of [Nguyen et al. 2020]] used the density-based spatial
clustering of applications with noise (DBSCAN) algorithm to detect anomalies in network
traffic achieving an AUCROC of 0.992. However, they neither clarify how DNS tunneling
activities considered were conducted nor evaluated their method in a real network.

3. Proposed Architecture

In our work, we propose an unsupervised anomaly-based IDS for detecting DNS tun-
neling attacks, such as data exfiltration. Our system is composed of four modules: data
collector, preprocessor and feature extractor, detection agent, and notifier. The data col-
lector acquires DNS queries from DNS traffic logs and forwards them to the preprocessor
and feature extractor module, which then preprocesses and extracts features from the re-
ceived DNS queries. The extracted features provide domain name characteristics, such as
domain length (i.e., total number of characters of a fully qualified domain name string)
and vowel count. They are forwarded to the detection agent module, which employs an

unsupervised SOM model that, after having been trained only on benign data to learn the
normal behavior of DNS queries, computes an anomaly score for each new DNS query
it analyzes. Finally, since high scores indicate a high likelihood of a query being an
anomaly, the notifier module generates alerts for notifying security analysts of suspicious
DNS queries whenever the computed anomaly detection score is higher than a threshold.
Figure I shows our proposed architecture.

Infected machines, endpoints and servers Security analyst

/
& 8 % Data collector Preprocessor and Detection agent Notifier 8
Nad 8 N feature extractor

Figure 1. Proposed IDS architecture

Our detection agent employs the anomaly detection technique proposed by
[Tian et al. 2014, utilizing SOM and the k-nearest neighbor (KNN) algorithm. SOM
networks are composed of “nodes” or “neurons” associated with a vector of weights of
the same dimension as the input data. The idea of SOM involves adjusting these neu-
ron weights, distributed within a 2D grid, so that their weights are similar to the input
data, and that neurons of similar weights are also close to each other, reflecting input
data patterns in the 2D grid. Initially, SOM training initializes neuron weights randomly.
Through iterative steps, SOM adjusts these weights, taking each training instance, and
measuring the Euclidean distance between the instance and all neurons. The neuron with
the smallest distance, called as the “best matching unit” (BMU), is selected. The BMU’s
weights, along with those of its neighboring neurons within the 2D grid, are adjusted and
shifted closer to the input data. The process is executed for a specified number of iter-
ations. Once the network has been trained, the neurons that were not elected as BMUs
for at least a minimum number of training instances are considered to represent outlier
behaviors and removed. Then, the KNN algorithm is used to identify the k-nearest BMUs
to the input data so that an anomaly detection score is computed as the average Euclidian
distance from the data input to its k-nearest BMUs. Finally, the computed anomaly detec-
tion score is compared to a threshold so that queries with scores higher than the threshold
are reported as suspicious. Further details and equations concerning the technique applied
by our detection agent can be obtained from [Tian et al. 2014]].

4. Methodology and Experimental Evaluation
4.1. Datasets

To validate our proposed solution, we considered two publicly available datasets: DNS
Tunneling Queries for Binary Classification dataset [Bubnov 2019] and CAIDA UCSD
IPv4 Routed /24 DNS Names Dataset [[CAIDA 2021]]. The former contains malicious
data exfiltration activities conducted through DNS tunnels using different tools, such as
dns2tcp, dnscapy, iodine, and tuns. On the other hand, the latter dataset contains benign
fully qualified domain names (FQDNs) obtained from studies on Internet topology and
consists of tens of millions of domain names. Hence, we combined those two datasets to
construct a training, a validation and a testing set. The training set contains only benign
data and is used to train our proposed solution. The validation set is used to optimize
the hyper-parameters of the trained models. Finally, the testing set is used to evaluate
our solution’s results and compare them to the results of other works. Table |1| shows the
number of benign and malicious samples in the training, validation, and testing sets.

Table 1. Dataset description
‘ Public dataset ‘ Real DNS traffic dataset

Number of domains

‘ Training set Validation set Testing set ‘ Training set Validation set ~ Testing set

Number of benign domains 200,000 8,000 8,000 2,345,219 128,820,871 210,136,888
Number of malicious domains 0 8,000 8,000 0 3,385 247,501

Table 2. Used features and description

Feature Description

Entropy Shannon’s entropy for a string

Number of subdomains Number of subdomains of a domain from the third-level domain. (i.e., "www.google.com” has 1)
Maximum label length Maximum length of a domain level. (i.e., "www.google.com” has 6)

Length Total number of characters of a domain

Length of continuous integer Maximum length of continuous integer sequence (i.e., ”123abcd45ef.net” has 3)
Length of continuous string ~ Maximum length of continuous alphabet letters sequence (i.e., ”123abcd45ef.net” has 4)

Special character count Total number of appearances of special characters (excluding dots)

Special character ratio Total number of appearances of special characters (excluding dots) divided by the length of domain
Integer character count Total number of appearances of integer characters

Integer character ratio Total number of appearances of integer characters divided by the length of domain

Vowel character count Total number of appearances of integer characters

Vowel character ratio Total number of appearances of integer characters divided by the length of domain

Reputation value Value extracted from the popularity of the n-grams found in the string

Reputation value per n-gram Reputation value divided by the number of n-grams obtained for reputation value calculation.

4.2. Experimental setup

We initially developed the preprocessor and feature extractor module. The first step of
this module involves applying filters to remove queries that could not be used for DNS
tunneling, as they would have minimal contribution to the model training and evaluation.
Following the approach in [Lambion et al. 2020]], our module excludes single-level do-
main queries and reverse DNS queries such as “8.8.8.8.in-addr.arpa”. Afterwards, the
second step of the module is to extract the linguistic features that are listed in Table [2]
Most of these features were inspired by the work in [Park et al. 2022]]. For instance, the
reputation value consists of a value extracted from the popularity of the n-grams found in
a domain name, adding a weight Wx_cram (i) = l0g2(N X Cn_Gram(i)) to each n-gram
found in the string, where Wy _gram () is the weight given to the i-th n-gram of a string,
N is the character size of the n-gram and Cy_gram(i) is how many times this n-gram ap-
peared in the top 100,000 most accessed domains of the 1 million most accessed domains
in the world, obtained from Majestic Million [Majestic 2023].

We trained our proposed SOM using a 30x30 neural network and tuned its hyper-
parameters such as learning rate, initial radius, number of neighbors, and minimum num-
ber of training instances per BMU. While such experiments were first conducted using
the training, validation, and testing sets described in Section . 1} we later conducted addi-
tional experiments on the internal network of Tempest Security Intelligence (TSI), which
has over 500 connected endpoints generating DNS logs. We used DNS queries collected
in March 2023 for constructing our training and validation sets, and DNS queries collected
in April 2023 for constructing our testing set, assuming that they represented benign sam-
ples. In addition, we conducted several DNS tunneling data exfiltrations using the iodine
and DNSExfiltrator tools in April 2023 for obtaining the malicious DNS queries needed
for our validation and testing sets. Finally, a main constraint of our experiments on the
enterprise network was to minimize false positives as we could not overwhelm analysts
with numerous false alarms. Table [1l summarizes our real DNS traffic datasets.

5. Results and Discussion

We evaluated our solution’s detection results by computing its accuracy, F1-Score,
precision, recall, true positive rate (TPR), false positive rate (FPR), true negative
rate (TNR), and false negative rate (FNR). In addition, using the same datasets as
those of our methodology for training, hyperparameter tuning, and result evaluation,
we compared our results to those from an implementation inspired in the work of
[Campbell and Zincir-Heywood 2020], which also proposed a SOM-based IDS for de-
tecting malicious DNS tunneling activities. Unlike ours, this method assigns a sample
under evaluation to the bening or malicious class according to its closest neuron, which
has been previously assigned to a class after training. In contrast, our solution does it
according to an anomaly score that is computed by measuring the distances between the
sample and its k closest SOM neurons. As shown in Table 3| our solution obtained better
results for all considered metrics. Finally, we computed the AUCROC of our proposed
IDS, obtaining a value of 0.9815, as shown in Figure

Table 3. Results for experiments
Model Accuracy F1-Score Precision Recall TPR FPR TNR FNR

Proposed architecture 94.38% 0.9460 0.9107 09841 98.41% 9.65% 90.35% 1.59%
[Campbell and Zincir-Heywood 2020] 92.24% 0.9265 0.8800 09783 97.83% 13.34% 86.66% 2.16%

True Positive Rate
© @ o o o »
o N S)] o o

—— ROC Curve: (AUC= 0.9815)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 2. ROC Curve and AUC

Experiments were also conducted on real DNS traffic data using the same training,
validation, and testing sets for the two approaches. [Campbell and Zincir-Heywood 2020]
exhibited a relatively high false positive rate of 1.13%, resulting in over 2M false positives,
making it difficult to implement in real environments. Moreover, this method does not
propose the use of a threshold or any other mechanism to minimize the number of false
positives. On the other hand, our proposal results show that only 121 queries were false
positives, which corresponds to less than 0.0001% of FPR. We also found that when
considering the count of false positives in 5-minute time windows, none of them had
more than 15 false positives. Thus, we could further decrease the number of false alarms
by triggering alerts only when more than 15 positive alarms have occurred in a 5-minute
time window. The results regarding the detection of individual DNS queries from our
proposal for real data are shown in Table 4] Since the queries were generated within a
single company, it was easier for the SOM to identify query patterns than when using
the public data, which was collected from multiple sources. Hence, our proposed model
achieved a high TPR for a very low FPR for the data collected from TSI. Finally, we
highlight that our proposed IDS effectively detected all conducted attack experiments.
Since DNS tunneling data exfiltration attacks typically produce hundreds of malicious
queries for each attack occurrence, and our IDS detects most of those queries, our solution
successfully identified all occurrences of the conducted attacks.

Table 4. Posterior test results for real DNS traffic data

Tool Exfiltrated file size Accuracy F1 Score Precision Recall TPR FPR TNR FNR
1.6 MB 99.99% 0.8524 0.9982 0.7438 74.38% 0.00006% 99.99994% 25.62%
Todine 200 KB 99.99% 0.8295 0.9899 0.7138 71.38% 0.00006% 99.99994% 28.62%
32 KB 99.99% 0.7623 0.9745 0.6261 62.61% 0.00006% 99.99994% 37.39%
1.6 MB 99.99% 0.9993 0.9989 0.9998 99.98% 0.00006% 99.99994% 0.02%
DNSExfiltrator 200 KB 99.99% 0.9959 0.9930 0.9989 99.89% 0.00006% 99.99994% 0.11%
32 KB 99.99% 0.9904 0.9850 0.9959 99.59% 0.00006% 99.99994% 0.41%

6. Conclusions and Future Work

In this work, we proposed an unsupervised IDS for detecting DNS tunneling data exfiltra-
tion. Our solution eliminates the need for malicious domains in training. Thus, it reduces
costs related to acquiring malicious domains, such as attack simulations and label assign-
ments expenses. It achieved an F1-Score of 0.9460 and showed promising results for the
IDS deployment in a real enterprise network. In the future, we will consider volumetric
features of DNS traffic in our proposed solution to improve its detection results.

References

[Bubnov 2019] Bubnov, Y. (2019). DNS Tunneling Queries for Binary Classification.
Mendeley Data.

[CAIDA 2021] CAIDA (2021). The CAIDA UCSD IPv4 Routed /24 DNS Names Dataset.
https://www.caida.org/catalog/datasets/ipv4_dnsnames_dataset/.

[Campbell and Zincir-Heywood 2020] Campbell, A. J. and Zincir-Heywood, N. (2020). Ex-
ploring tunneling behaviours in malicious domains with self-organizing maps. In 2020
IEEE Symposium Series on Computational Intelligence (SSCI), pages 1419-1426.

[Lambion et al. 2020] Lambion, D., Josten, M., Olumofin, F., and De Cock, M. (2020).
Malicious DNS Tunneling Detection in Real-Traffic DNS Data. In 2020 IEEE Inter-
national Conference on Big Data (Big Data), pages 5736-5738.

[Majestic 2023] Majestic (2023). Top 1 million websites in the world.
https://majestic.com/reports/majestic-million.

[Nguyen et al. 2020] Nguyen, T. Q., Laborde, R., Benzekri, A., and Qu’hen, B. (2020). De-
tecting abnormal dns traffic using unsupervised machine learning. In 2020 4th Cyber
Security in Networking Conference (CSNet), pages 1-8.

[PaloAlto 2021] PaloAlto (2021). Real-world Examples Of Emerging DNS Attacks and
How We Must Adapt. https://www.paloaltonetworks.com/blog/2021/05/netsec-dns-
attacks/.

[Park et al. 2022] Park, K. H., Song, H. M., Yoo, J. D., Hong, S.-Y., Cho, B., Kim, K., and
Kim, H. K. (2022). Unsupervised Malicious Domain Detection with Less Labeling
Effort. Comput. Secur., 116(C).

[Tian et al. 2014] Tian, J., Azarian, M. H., and Pecht, M. G. (2014). Anomaly Detection
Using Self-Organizing Maps-Based K-Nearest Neighbor Algorithm.

[Wang et al. 2021] Wang, Y., Zhou, A., Liao, S., Zheng, R., Hu, R., and Zhang, L. (2021).
A comprehensive survey on DNS tunnel detection. Computer Networks, 197:108322.

	Introduction
	Related Works
	Proposed Architecture
	Methodology and Experimental Evaluation
	Datasets
	Experimental setup

	Results and Discussion
	Conclusions and Future Work

