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Abstract. Key derivation and password scrambling are crucial procedures in
cryptographic applications, and the security of these methods against brute-
force attacks is a critical concern in face of the increasing computational
power available to perform these attacks. This paper proposes a candidate
memory-hard function for password scrambling and key derivation, based on
some design principles such as flexibility, variable-length output, adjustable
parametrization to achieve high cache miss rates and dynamic update of the
internal buffer.

1. Introduction
Widely used password hashing/key derivation algorithms such as PBKDF and PBKDF2
[Josefsson 2011] aim at imposing a certain computational cost to the task of hashing a
password or deriving a cryptographic key. As a consequence, any attempt of cracking a
password or key will also have a cost, specially if we consider that a brute-force attack
consists of a large number of attempts until the correct password/key is found. Usually,
these algorithms are based on a huge number of iterations of a hash function, such as
SHA256 [Hansen and 3rd 2006], which leads to an increasing amount of time needed to
make a lot of attempts, but the storage complexity of these algorithms is usually low.
With the increasing capacity of parallelism offered by dedicated hardware devices, time
complexity has gradually become less of a problem, as an adversary may perform a large
number of attempts simultaneously [Dandass 2008, Kini et al. 2015].

Memory-hard functions, on the other hand, aim at imposing a high storage
cost to the task of hashing a password or deriving a key, mitigating attacks based on
parallelization techniques. These functions are well known in the literature, includ-
ing Scrypt [Percival and Josefsson 2016], Catena [Forler et al. 2013], balloon hashing
[Boneh et al. 2016], among others. Despite the fundamental differences between each
one of these functions, they are based on some general design principles. Two of these
principles consist of filling a large array (also called an internal buffer) with pseudoran-
dom values (usually obtained by iterating a hash function) and accessing the entries of
this array in a non-sequential, pseudorandom fashion, which makes it mandatory to keep
the whole array in memory during the function evaluation.

A typical attack against memory-hard functions, known as time-space trade-off
[Hellman 1980], consists of trying to compute the function using less storage, while pay-
ing the price of a higher time complexity. In this kind of attack, the adversary usually
avoids to keep the whole array in memory, computing the needed entries on the fly, thus



consuming more time. Some memory-hard functions, such as Lyra [Almeida et al. 2014]
and Lyra2 [Jr. et al. 2015] try to increase the complexity of time-space trade-offs by dy-
namically updating the internal array, which leads to a huge cost to compute its entries on
demand.

This paper shows some preliminary results on a work in progress regarding the
construction of an efficient memory-hard function, mostly based on the same general prin-
ciples that underlie existing constructions, but focusing on the idea of updating the internal
array (in order to mitigate time-space trade-offs), flexibility (by allowing any desired out-
put size and the use of any hash algorithm) and bandwidth hardness [Blocki et al. 2018],
which is strongly dominated by the cache miss rate.

2. Preliminaries
In this section, we establish some basic definitions and notations that will be used through-
out this paper. For our purposes, we denote by ℓ the length in bytes of a single word. This
length is variable and architecture-dependent. The most typical values are ℓ = 4 and
ℓ = 8. A cryptographically secure hash function shall be denoted by H(x), where the
input x is an arbitrary-length array of bytes. The output of the hash function will be con-
sidered as an m-word array of ℓ-byte words, so that the total size in bytes of the output is
equal to ℓm. We also consider concatenation of arrays, denoted by ||, as an operation that
yields a bigger array. Throughout this paper we make use of the function wParity, which
takes as input an array of m words and returns a single ℓ-byte word given by

wParity(w0, w1, · · · , wm−1) = w0 ⊕ w1 ⊕ · · · ⊕ wm−1,

where ⊕ denotes the XOR operator.

3. Design Rationale
Before we describe the inner details of the proposed function, we provide some rationale
for its design choices. We focused on dynamic updating of the internal buffer, flexibility
and bandwidth hardness. We summarize below the main ideas behind the construction of
the proposed function:

1. Dynamic update of the internal buffer: the buffer is constantly updated in order
to increase the cost of low-memory attacks. This is a significant improvement in
regards to most existing memory-hard functions. It also represents a step towards
more efficiency, with respect to algorithms such as Lyra2, as the update mech-
anism replaces the wandering phase of Lyra2, that iteratively overwrites several
entries, by a single update and creates a dependence of the internal state on the
overwritten entries.

2. Flexibility: the proposed algorithm works with any hash construction, with any
output size. As soon as a hash construction becomes obsolete, a new one can be
used in the algorithm by fine-tuning the parameters. In this aspect the proposed
function differs from Lyra2, for example, which essentially depends on the sponge
construction. The output length is also variable.

3. High level of dependency between the entries of the internal buffer: the internal
buffer has a high level of dependency between non-consecutive entries, including
a cyclic dependency between the first and last rows, which significantly increases
the cost of low-memory attacks.



4. Bandwidth hardness: the function is designed to produce a high rate of cache
misses. The parameters can be adjusted so that consecutive references to the in-
ternal buffer never map to the same cache line.

4. Basic steps
The proposed function takes as input a user password P, a random salt S, a word length ℓ,
a desired key length k, a cost parameter n and a hash function H whose output length in
bytes is equal to mℓ. The value of k represents the number of ℓ-byte words of the desired
key, so the total number of bytes of the output is equal to ℓk. The parameter n refers to
the length of each row (in blocks of m words) of the internal buffer, as we shall see in
details in the next subsection.

We followed the two main principles that underlie every memory-hard construc-
tion: filling an internal buffer with pseudorandom values, which depend on a user defined
password and a random salt, and accessing its entries in a pseudorandom fashion. The
dynamic update of the internal buffer was mainly inspired by Lyra and Lyra2, although
the update mechanism used in this paper substantially differs from the one used in those
functions. Instead of having a wandering phase that iteratively overwrites pseudoran-
dom cells, the novelty of this work consists of updating the current entry being accessed,
namely B[i][j], and another entry B[i][ϕ(j)], which is guaranteed to be sufficiently distant
from B[i][j], ensuring the non-locality required to yield a large number of cache misses.

4.1. Filling the internal buffer
The internal buffer is a key component in the proposed function. It can be viewed as a
bidimensional array with k rows and mn columns, where each entry is an ℓ-byte word.
The i-th row is divided in blocks B(j)

i , for j = 0, 1, · · · , n−1, so that each block is a hash
value, given by a sequence of m words of ℓ bytes. The general structure of the internal
buffer is the following:

B =

B
(0)
0 B
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(n−1)
0

B
(0)
1 B
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1 · · · B

(n−1)
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...
... . . . ...
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where each block B
(j)
i is given by

B
(j)
i = B[i][jm] || B[i][jm+ 1] || · · · || B[i][jm+m− 1] (2)

To fill the buffer, we followed the principle of creating dependencies between non-
consecutive blocks, in order to increase the cost of computing entries on the fly. Even
rows are filled in ascending order, while odd rows are filled in descending order. Algo-
rithm 1 shows the inner details of the procedure to fill the internal buffer. Alternating
between ascending and descending filling patterns aims at creating an extra difficulty to
perform a time-space trade-off. Note that, after we exit the while loop, we perform an
extra update on the first row, creating a cyclic dependency between the first and last rows.
Hence, computing the first row of the internal buffer requires going through the compu-
tation of all other entries. This is intended to significantly increase the cost of computing
entries on the fly during a low-memory attack.



Algorithm 1 fillBuffer(P,S,ℓ,m,n,k)

1: B
(0)
0 ← H(P || S)

2: B
(1)
0 ← H(P || S || B(0)

0 )
3: for j ← 2, · · · , n− 1 do
4: B

(j)
0 ← H(B

(j−1)
0 || B(j−2)

0 )

5: i← 1
6: while True do
7: B

(n−1)
i ← H(B

(n−2)
i−1 || B(n−1)

i−1 )
8: for j ← n− 2, · · · , 1 do
9: B

(j)
i ← H(B

(j−1)
i−1 || B(j+1)

i )

10: B
(0)
i ← H(B

(0)
i−1 || B

(1)
i )

11: i← i+ 1
12: if i == k then

13: Break
14: B

(0)
i ← H(B

(0)
i−1 || B

(1)
i−1)

15: for j ← 1, · · · , n− 2 do
16: B

(j)
i ← H(B

(j+1)
i−1 || B(j−1)

i )

17: B
(n−1)
i ← H(B

(n−1)
i−1 || B(n−2)

i )
18: i← i+ 1

19: B
(0)
0 ← B

(0)
0 ⊕ H(B

(0)
k−1 || B

(1)
k−1)

20: for j ← 1, · · · , n− 2 do
21: B

(j)
0 ← B

(j)
0 ⊕ H(B

(j+1)
k−1 || B

(j−1)
0 )

22: B
(n−1)
0 ← B

(n−1)
0 ⊕H(B

(n−1)
k−1 || B

(n−2)
0 )

23: Return B

4.2. Updating The Internal State
The internal state is represented by an array of k words of size ℓ. Hence, its total number
of bytes equals kℓ. It will be denoted by the vector

S = (s0, s1, · · · , sk−1)

The desired key will be given by the final value of the internal state. Each round of the
proposed function updates a single word of the internal state, iterating through a single
row of the internal buffer. To update the i-th word of the internal state, we iterate through
the i-th row of the buffer. One of the core design principles of the procedure consists of
maximizing the cache miss rate. In order to achieve this goal, the function takes as input
the size c (in words) of the cache line on the target architecture, so that two consecutive
iterations never make reference to the same cache line, thus breaking spatial locality and
increasing the computational cost of evaluating the function.

Algorithm 2 shows the details of the internal state update. It takes as input the
internal buffer B, a hash algorithm H, the desired key length k, the size of the hash output
m, the cost parameter n and the size c of the target cache line. The procedure to update
the internal state makes use of an indexing function ϕ, which is a mapping over the set of
indices I = {0, 1, · · · , nm− 1} with the following properties:

• Non-locality: there must be a huge gap between x and ϕ(x), for all x ∈ I . For-
mally speaking, we must have |x− ϕ(x)| ≥ c for all x ∈ I .

• Bipartiteness: it is an extension of non-locality, implying that ϕ(x) ≥ nm/2 if
x < nm/2, and ϕ(x) < nm/2 for all x ≥ nm/2.

• Spreadedness: there is a huge gap between ϕ(x) and ϕ(x + c), which means that
|ϕ(x)− ϕ(x+ c)| ≥ c for all x ∈ I .

• Input-independence: the mapping is independent of the password and the salt, in
order to avoid side-channel attacks.

Non-locality ensures that each iteration modifies two entries that are distant enough,
which contributes to increase the cache miss rate and the cost of computing entries on
demand in a time-space trade-off. Bipartiteness is just a specialization of non-locality,



Algorithm 2 updateState(B,H,k,m,n,c)
1: for i← 0, 1, · · · , k − 1 do
2: S[i]← wParity(H(B[i][0]))
3: for w ← 0, 1, · · · , c− 1 do
4: r ← σ(w) ▷ σ is a pseudorandom permutation
5: for l← 0, 1, · · · , nm/c− 1 do
6: j ← r + π(l)c ▷ π is another pseudorandom permutation
7: x← B[i][j]⊕B[i][ϕ(j)]
8: S[i]← S[i]⊕ wParity(H(x))
9: B[i][j]← B[i][j]⊕ S[i]

10: B[i][ϕ(j)]← B[i][ϕ(j)]⊕B[i][j]

11: return S[0] || S[1] || · · · || S[k − 1]

making sure that the second half of the internal buffer is modified during the access of
its first half. Finally, spreadedness is another strategy to maximize the cache miss rate.
Input-independence aims to prevent side-channel attacks based on timing techniques, also
allowing a quick discard of the password and the salt, which helps to avoid dumping at-
tacks. It is worth mentioning that an adversary could try to take advantage of this input-
independence by filling the buffer in a different order, in an attempt to increase the num-
ber of cache hits during the internal state update. However, we argue that this approach
is infeasible. Firstly, the adversary could try to relocate the buffer entries B[i][j] and
B[i][j+π(l)c] for consecutive values of l, in order to have more cache hits in consecutive
iterations of the inner loop. However, because j is defined as a function σ which is a pseu-
dorandom permutation of the possible values of w, and also because the increment of j is
given by a pseudorandom value (given by the permutation π), the adversary has no way of
knowing in advance which entries should be relocated in order to yield more cache hits.
Furthermore, if the adversary tries to relocate the entries B[i][j] and B[i][ϕ(j)], it would
probably break the spatial locality of consecutive iterations of the inner loop, resulting in
more cache misses.

Finally, in order to give an estimate on the cost of a low-memory attack, assume
that an adversary wishes to compute the buffer entries on the fly during the internal state
update. We note that the same block will be accessed multiple times, but its individual
words will have been modified, which also contributes to increase the cost of a low-
memory approach. Because each buffer entry is modified during the internal state update,
the execution of any iteration of the internal state update procedure by an adversary re-
quires the recomputation of the current buffer entry, which depends on previous entries
that have been already modified in previous iterations. Hence, every iteration of the ex-
ternal loop requires the whole execution of all previous iterations, and this will have to be
done for all the iterations of the inner loop (considering a low-memory adversary, with no
extra storage available).

5. Future Work and Final Remarks

This paper presented a work in progress regarding the construction of a memory-hard
function. The proposed function is based on some well-known design principles that
underlie similar constructions, but focuses on flexibility, by allowing the use of any hash



algorithm and any key size, as well as bandwidth hardness by presenting high cache miss
rates during its evaluation. Future works include practical instantiations of the mapping
function ϕ and efficient implementations, as well as the finalization of the formal proofs
of memory-hardness and bandwidth-hardness for the proposed construction.
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