
Improving FALCON’s Key Generation on ARMv8-A
Platforms

Caio Teixeira1, Décio Luiz Gazzoni Filho2,3, Julio César López Hernández3

1Faculdade de Engenharia Elétrica e de Computação
Universidade Estadual de Campinas (UNICAMP) – Campinas, SP – Brazil

2Departamento de Engenharia Elétrica
Universidade Estadual de Londrina – Londrina, PR – Brazil

3Instituto de Computação
Universidade Estadual de Campinas (UNICAMP) – Campinas, SP – Brazil

caio@lasca.ic.unicamp.br, {decio.gazzoni,jlopez}@ic.unicamp.br

Abstract. This short paper proposes two implementation techniques that may
speed up the key generation routine of FALCON, a lattice-based digital signa-
ture scheme recently standardized by NIST. The first is a change in the set of
primes used for splitting polynomials in NTT+RNS representation: by mixing
31-bit and 63-bit primes, we postulate that operations may be computed con-
currently using both the scalar ALU (for 64-bit) and SIMD ALU (computing
four 32-bit operations in a single 128-bit register). The second uses arbitrary-
precision floating-point operations to compute the polynomial reduction step,
which we prototype and benchmark on both Apple M1 SoC and Cortex-A72,
improving on the original implementation for deeper recursion levels.

1. Introduction

Classical cryptography has been under attack since the publishing of Shor’s seminal
work [Shor 1997], which describes a quantum algorithm that solves both discrete log-
arithm and integer factorization problems in polynomial time. Post-Quantum Cryptog-
raphy (PQC) studies the design of cryptosystems whose security relies on problems that
no quantum algorithm is expected to solve. The most prominent PQC cryptosystems
are those based on structures called lattices, a claim confirmed by NIST’s standardization
process [NIST 2017], which has standardized four algorithms, three of them lattice-based.

One such standardized cryptosystem is FALCON, a lattice-based digital signature
scheme. Its design focuses on minimizing communication cost – that is, the sum of both
public key and signature sizes. This property is achieved by using NTRU lattices, which
allow for compact representation of its bases using integer polynomials. However, post-
quantum cryptosystems have higher algorithm execution time and higher communication
cost than their classical counterparts. While the latter is mitigated by design, the former
holds true for FALCON, and as such, efficient implementations are required to ensure the
viability of switching from classical to post-quantum algorithms in practical applications.

Of the three main algorithms (key generation, signature generation and verifica-
tion), FALCON’s key generation is noticeably slow, even when compared to other stan-
dardized PQC cryptosystems. The most time-consuming subroutine is NTRUSolve,

an algorithm that operates on integer polynomials with large coefficients. To mitigate
this cost, these polynomials are represented in a combination of the Number Theo-
retic Transform (NTT) and a Residue Number System (RNS), which speeds up opera-
tions [Pornin and Prest 2019]. Furthermore, its use of polynomial multiplications in a
recursive fashion results in fast growth of coefficient bitsize. This increase is bounded
by performing reductions at every level, through a generalization of Babai’s nearest plane
algorithm [Babai 1986], which we refer to as Babai’s reduction. NTT+RNS arithmetic
and Babai’s reduction algorithm pose major challenges in speeding up key generation.

Performance issues due to the transition to PQC are even more critical on mo-
bile devices, impacting energy consumption and communication latency. These de-
vices predominantly employ the ARMv8-A architecture, transitioning to the backwards-
compatible ARMv9-A on newer devices, making ARMv8-A a prominent target architec-
ture for optimizations. Along with a 64-bit scalar ALU, the architecture also includes
a separate, 128-bit-wide ALU for SIMD (Single Instruction, Multiple Data) operations,
which may be leveraged during implementation to further improve performance. Improv-
ing FALCON’s performance on this platform has been explored by Kim et al. (2022);
however, to the best of our knowledge, this is the only contribution in the literature so far.

Our contributions. We present two techniques to speed up FALCON’s key generation
in software implementations, focusing on the NTRUSolve routine, and evaluate them
on the ARMv8-A architecture. First, we propose using arbitrary-precision floating-point
arithmetic to perform Babai’s reduction in deeper levels of the routine’s recursion. We
provide experimental evidence of performance increase, compared to the reference im-
plementation’s technique of successive approximation of reduction factors using double-
precision arithmetic, as coefficient size grows. We also propose a different layout of
primes for the NTT+RNS representation of polynomials with large coefficients: by mix-
ing 64-bit and 32-bit primes, we may leverage both scalar and SIMD ALUs in parallel.

2. Fundamentals
To contextualize the techniques we improve upon, we first define the class of NTRU
lattices used by FALCON, which is the core component of key generation.

Definition 1 (NTRU Lattices). Let n ∈ Z be a power of two, q a prime, and f, g ∈
Z[x]/(xn+1). We define two bases for the same lattice by computing different polynomials
based on f, g. First, from the polynomial h = g ·f−1 mod q, we define the basis B2×2

h,q =
[1 h | q 0]. Furthermore, calculating F,G ∈ Z[x]/(xn+1) that satisfy the NTRU equation

f ·G− g · F = q mod (xn + 1), (1)

the same lattice accepts another basis, namely B2×2
f,g = [g − f |G − F].

FALCON’s public key is h, and the private key is (f, g, F,G). To generate these
keys, we first sample (f, g), following a discrete Gaussian distribution. Then, we solve
the NTRU equation through the extended Euclid algorithm; however, performing this
operation on polynomials is very costly. As FALCON employs a tower-of-fields structure
[Pornin and Prest 2019], we may recursively map degree-2m polynomials into degree-
2m−1 polynomials through the field norm all the way to integers, where the equation is

easily solvable. Results are then lifted back up as the recursion unwinds, and reduced to
smaller coefficient polynomials that still solve the equation through Babai’s reduction.

We now define the field norm, used to map polynomials into smaller subfields.
Then, we present two algorithms: NTRUSolve, which solves the NTRU equation;
and Reduce, which performs Babai’s reduction, as Algorithms 2.1 and 2.2. We refer
to FALCON’s documentation [Fouque et al. 2020, Section 3.8.2] for further explanations.

Definition 2 (Field Norm). The field norm N is a map of elements of a field L onto a
subfield K. We define it for a particular case of interest. Let n ∈ Z be a power of
two, L = Q[x]/(xn + 1) and K = Q[x]/(xn/2 + 1). The field norm, for this case, of a
polynomial f ∈ L, written as f(x) =

∑n−1
i=0 aix

i, is defined as

N (f) = f 2
0 − xf 2

1 ,

where f0(x) =
∑n/2−1

i=0 a2ix
i and f1(x) =

∑n/2−1
i=0 a2i+1x

i, with f0, f1 ∈ K. Equivalently,

N (f)(x2) = f(x) · f(−x) mod (xn/2 + 1),

which is more convenient when f is represented in either FFT or NTT domains.

Algorithm 2.1 NTRUSolven,q(f, g)

Require: f, g ∈ Z[x]/(xn + 1), where n is a power of two.
Ensure: Polynomials F,G ∈ Z[x]/(xn + 1) satisfying Equation 1.

1: if n = 1 then
2: (u, v, d)← xgcd(f, g) ▷ xgcd(f, g) finds u, v, d ∈ Z that solve uf + vg = d.
3: if d ̸= 1 then
4: return ⊥
5: else
6: (F,G)← (−vq, uq)
7: return (F,G)

8: else
9: f ′ ← N (f) ▷ N (f) is the field norm, as per Definition 2,

10: g′ ← N (g) ▷ and thus f ′, g′ ∈ Z[x]/(xn/2 + 1).
11: (F ′, G′)← NTRUSolven/2,q(f

′, g′) ▷ F ′, G′ ∈ Z[x]/(xn/2 + 1).
12: F ← F ′(x2)g(−x)
13: G← G′(x2)f(−x)
14: (F,G)← Reduce(f, g, F,G)

15: return (F,G)

3. Implementation challenges
As the field norm is applied during NTRUSolve, the number of bits per coefficient grows
considerably, from 4 bits up to 6320 bits on the lower recursion levels [Fouque et al. 2020,
Section 4.4.3]. Furthermore, lifting operations further increase coefficient sizes, as a result
of the multiplications in lines 12 and 13 of Algorithm 2.1; therefore, Babai’s reduction is
applied at every level, following Algorithm 2.2, so that the coefficient size of (F,G) is
brought closer to (f, g) by calculating a reduction factor k, also an integer polynomial.

Algorithm 2.2 Reduce(f, g, F,G)

Require: f, g, F,G ∈ Z[x]/(xn + 1), where n is a power of two.
Ensure: (F,G), reduced with respect to (f, g).

1: repeat
2: k ←

⌊
Ff∗+Gg∗

ff∗+gg∗

⌉
▷ Ff∗+Gg∗

ff∗+gg∗
∈ Q[x]/(xn + 1), k ∈ Z[x]/(xn + 1)

3: F ← F − kf
4: G← G− kg
5: until k = 0
6: return (F,G)

Calculating k requires polynomial multiplication and inversion. This is simpler
inside the Fast-Fourier Transform (FFT) domain, which maps polynomials into a set of
complex numbers, represented as a double-precision floating-point number in the refer-
ence implementation. Due to the 53-bit precision of this representation, only about 30
bits of coefficient size are eliminated at each iteration, as k is only roughly approximated.
As (F,G) are around triple the size of (f, g), a large number of iterations are required on
deeper recursion levels – at worst, we reduce coefficients of 9500 bits to around 3100 bits.

Another challenge in handling these large integers is the choice of both repre-
sentation and polynomial arithmetic algorithms. Efficient arithmetic may be performed
using the Number Theoretic Transform (NTT), which maps an integer polynomial in
Zp[x]/(x

n + 1) to a set of n evaluations in Zp. However, to apply this transform, we
must either choose a prime large enough to fit even the largest coefficients, or change
primes at every recursion level, both of which introduce heavy representation overheads.

To solve this challenge, the authors of FALCON implement a Residue Number
System (RNS), representing polynomial f as a set of polynomials fj = f mod pj , for
distinct small primes pj , which may be reversed by applying the Chinese Remainder
Theorem. Furthermore, if every pj is “NTT friendly”, we may apply NTT for each split
polynomial and NTT-domain arithmetic instead, greatly reducing cost. However, we note
that calculating Babai’s reduction’s k may not be performed in NTT+RNS due to the
incompatibility of division in Q[x] followed by rounding to Z[x] and arithmetic in Zp[x],
and so polynomials must be reconstructed before reduction, introducing some overhead.

By upper bounding coefficient sizes at each level, we may split polynomials us-
ing the minimum number of primes required to fit them; then, as recursion deepens, we
increase the number of primes with little overhead, calculating new moduli only for the
required new primes. In the reference implementation, all primes are 31 bits in size, as to
make computations easy with pure integer arithmetics [Fouque et al. 2020, Section 4.4.3].

4. Proposed techniques
We propose two distinct techniques to speed up key generation. The first consists of mod-
ifying the set of primes used for the NTT+RNS representation. Recall that the reference
implementation uses 31-bit primes for the RNS, amounting to 520 primes in the worst
case. The large prime count slows down the splitting and reconstruction of polynomials
in NTT+RNS representation, so reducing the number of primes may speed up the algo-
rithm. Furthermore, we may leverage more parallelism by using both scalar and SIMD

ALUs at the same time, greatly speeding up computations. Thus, we propose splitting the
prime set into 63-bit primes and 31-bit primes, keeping the productory bitsize the same.
Polynomials in 63-bit moduli are operated on by the scalar ALU, while the SIMD ALU
processes 31-bit moduli for 4 polynomials in parallel using 4× 32-bit vector instructions,
as NEON does not provide multiplication instructions for 64-bit lanes.

For the second technique, we replace the double-precision approximation of k in
line 2 of Algorithm 2.2 by an exact computation using arbitrary precision in the deeper
recursion levels. We now sketch why this is promising from a computational complexity
perspective. Let b be the bitsize of the largest coefficients in (F,G), and d be the polyno-
mial degree at a given recursion level. Each iteration in using double-precision removes
a fixed number of bits from the polynomials (F,G); thus, the number of iterations in the
loop of Algorithm 2.2 is O(b). Lines 3 and 4 perform, for fixed d, a fixed number of opera-
tions on integers of b bits multiply kf ; this cost is dominated by the cost of b-bit coefficient
multiplications, which we denote by M(b). Since the reference implementation uses the
CPU’s native double-precision arithmetic instructions, with assumed unit cost, computing
line 2 costs O(1) for fixed d. Thus, the cost of Algorithm 2.2 in the reference implemen-
tation is O(bM(b)). Our technique computes line 2 in arbitrary-precision floating-point
arithmetic; for fixed d, this requires a fixed number of arbitrary-precision operations, each
costing O(M(b)). The cost of lines 3 and 4 remain unchanged at O(M(b)). Since we
compute k exactly, a single execution of lines 2, 3 and 4 is sufficient; therefore, the cost
of our algorithm is O(M(b)), a factor of b better than the reference implementation’s.

5. Experimental results

To prototype our second proposal, we implemented two versions of Reduce (Algo-
rithm 2.2) using FLINT [Hart 2010], a C library that provides polynomial, as well as
arbitrary-precision integer and floating-point, arithmetic. The first implements the algo-
rithm using a double-precision floating point variables for FFT when calculating k, fol-
lowing the technique used by the reference implementation. The second uses arbitrary-
precision floating-point variables for FFT, finishing the whole reduction in a single step.

We benchmarked the results using Google Benchmark on both the Apple M1
system-on-chip and a Cortex-A72 processor. In Table 1, we present the timings of each
version, for each recursive call depth, and the average bitsize of the polynomials (f, g)
and (F,G) before reduction. The depths range from 0 to 9 (where 10 is where the GCD
is computed, requiring no reduction), following the Falcon1024 parameter set.

We notice a trend in Table 1: double precision performs better than arbitrary pre-
cision in the initial stages of recursion, while the roles are reversed in the bottom stages.
The former can be attributed to the overhead of arbitrary-precision arithmetic for small co-
efficients and emulation of floating-point using integer operations, while double precision
arithmetic has native hardware support. In deeper recursion levels with larger coefficients,
more efficient algorithms can be used for arbitrary precision, while double precision arith-
metic requires more iterations of the costly reduction steps. This corroborates our com-
plexity analysis, and suggests a fruitful avenue for further research. However, we also
note that while our proposed techniques do not impact the scheme’s theoretical security,
libraries used in our prototype may not perform constant-time operations; imposing such
a requirement may have performance implications.

Table 1. Comparison of key generation’s reduction step using 53-bit precision
(double C type) and arbitrary-precision (using FLINT)

Recursion
depth

of
coeffs.

Avg.
Bitsize
(f, g)

Avg.
Bitsize
(F,G)

Apple M1
double

precision

Apple M1
arbitrary
precision

Cortex-A72
double

precision

Cortex-A72
arbitrary
precision

0 1024 4.00 19.61 1178µs 23173µs 5801µs 137958µs
1 512 10.99 39.82 594µs 11132µs 2941µs 64942µs
2 256 24.07 78.20 561µs 5402µs 2715µs 32831µs
3 128 50.37 153.65 534µs 3071µs 2580µs 18529µs
4 64 101.62 303.49 496µs 1833µs 2715µs 10848µs
5 32 202.22 599.81 686µs 921µs 3662µs 5915µs
6 16 400.67 1188.68 704µs 522µs 3879µs 3725µs
7 8 794.17 2361.84 773µs 279µs 4437µs 1809µs
8 4 1576.87 4703.30 982µs 189µs 6870µs 1206µs
9 2 3138.35 9403.29 1486µs 125µs 10024µs 802µs

With regards to future work, we believe using lower-overhead techniques, such
as double-double and quad-double arithmetic, might further speed up reduction in in-
termediate recursion levels. As for NTT+RNS, we must investigate the concrete gains
of our proposed parallelization, reimplementing and benchmarking operations. We also
note that the balance of primes may depend on the target microarchitecture – especially
the number of pipelines and instruction throughput –, which requires more investigation.
Furthermore, Intel architectures may also benefit from the same techniques due to archi-
tecture similarities in terms of scalar and SIMD ALUs.

References
Babai, L. (1986). On Lovász’ lattice reduction and the nearest lattice point problem.

Combinatorica, 6(1):1–13.

Fouque, P.-A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T., Ricos-
set, T., Seiler, G., Whyte, W., and Zhang, Z. (2020). Falcon: Fast-Fourier lattice-
based compact signatures over NTRU. Submission to the NIST Post-Quantum Cryp-
tography Standardization Project. https://falcon-sign.info/falcon-
round3.zip.

Hart, W. B. (2010). Fast Library for Number Theory: An Introduction. In Proceedings of
the Third International Congress on Mathematical Software, ICMS’10, pages 88–91,
Berlin, Heidelberg. Springer-Verlag. https://flintlib.org.

Kim, Y., Song, J., and Seo, S. C. (2022). Accelerating Falcon on ARMv8. IEEE Access,
10:44446–44460.

NIST (2017). Post-Quantum Cryptography. https://csrc.nist.gov/
Projects/post-quantum-cryptography/.

Pornin, T. and Prest, T. (2019). More efficient algorithms for the NTRU key generation
using the field norm. In Lin, D. and Sako, K., editors, Public-Key Cryptography – PKC
2019, pages 504–533, Cham. Springer International Publishing.

Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509.

https://falcon-sign.info/falcon-round3.zip
https://falcon-sign.info/falcon-round3.zip
https://flintlib.org
https://csrc.nist.gov/Projects/post-quantum-cryptography/
https://csrc.nist.gov/Projects/post-quantum-cryptography/

	Introduction
	Fundamentals
	Implementation challenges
	Proposed techniques
	Experimental results

