
Recovering the Secret on Binary Ring-LWE problem with
Random Known bits*

Reynaldo C. Villena1, Routo Terada1

1Institute of Mathematics and Statistics – University of São Paulo – SP – Brazil

reynaldo@ime.usp.br, rt@ime.usp.br

Abstract. There are cryptographic systems that are secure against attacks by
both quantum and classical computers. Some of these systems are based on
the Binary Ring-LWE problem which is presumed to be difficult to solve even
on a quantum computer. This problem is considered secure for IoT (Internet
of things) devices with limited resources. In Binary Ring-LWE, a polynomial
a is selected randomly and a polynomial b is calculated as b = a.s + e
where the secret s and the noise e are polynomials with binary coefficients.
The polynomials b and a are public and the secret s is hard to find. However,
there are Side Channel Attacks that can be applied to retrieve some coefficients
(random known bits) of s and e. In this work, we analyze that the secret s can
be retrieved successfully having at least 50 % of random known bits of s and e.

1. Introduction
The cryptographic community is searching for new quantum-resistant primitives because
the main asymmetric cryptosystems such as RSA1, (EC)DLP2 are insecure against a
quantum computer. Hence, the National Institute of Standards and Technology (NIST)
initiated a process to search new public key cryptographic algorithms which are post-
quantum secure [Roy et al. 2016]. Some proposals submitted to NIST process are
based on Ring-Learning-with-Errors (Ring-LWE) problem because its implementation
in software and hardware is efficient.

A variant of the Ring-LWE problem, the Binary Ring-LWE problem, has been
recently proposed [Buchmann et al. 2016b]. Its security levels are lower than Ring-LWE.
However, it is sufficient against conventional and quantum cryptanalysis [Göpfert et al.
2017, Albrecht 2017, Bogdanov et al. 2007]. In Binary Ring-LWE, a polynomial a is
selected randomly and a polynomial b is calculated (b = a.s + e since the polynomials
s and e have binary coefficients). The polynomials b and a are public and the secret
s is hard to find because this difficult corresponds to the hardness of lattice problems,
which have theoretical guarantees against powerful quantum computers. However, its
implementation in software or hardware, specially in IoT devices, can be vulnerable to
Side Channel Attacks [Fan and Verbauwhede 2012, Aysu et al. 2018].

A Side Channel Attack (SCA) is any attack based on Side Channel Information
that is obtained when protocols or schemes are executed. Some examples are execution
time, power consumption, electromagnetic leaks, sound, and other information that is

*Supported by organization CAPES.
1Rivest, Shamir and Adleman cryptosystem based on the NP problem of Prime Factoring.
2It is a cryptosystem that uses the Discrete Logarithm Problem over the Elliptic curves.

produced during the running process. These Side Channel Information can be applied
to retrieve (hints about) the values of some coefficients (bits) of the secret s [Buchmann
et al. 2016a, Dachman-Soled et al. 2020]. Applying the same concepts, the recovery of
bits of noise polynomial e is feasible.

1.1. Our Contribution

Due to limited resources on IoT devices, the polynomials s and e are unprotected and
some bits of s and e can be retrieved using SCA. Analyzing the mathematical properties
between the public parameters (polynomials b and a), the secret key s and the noise
polynomial e, we show that all secret s can be successfully retrieved having at least 50 %
of bits of s and e.

2. Preliminaries
For an integer q ≥ 1, let Zq be the residue class ring modulo q and Zq = {0, ..., q−1}. Let
Rq = Zq[x]/(x

n+1) denote the polynomial ring modulo xn+1 where the coefficients are
in Zq. The operations (addition and multiplication) of the elements in Rq are according
to these operations on polynomials.

For x ∈ Rq, let x[i] be the (i)-th coefficient of x for 0 ≤ i < n. Zl
q denotes a set

of vectors of length l and their components belong to Zq. For x ∈ Zl
q, x[i] denotes the

(i)-th component of x for 0 ≤ i < l. {0, 1}l is a set of strings of length l. For x ∈ {0, 1}l,
x[i] denotes the (i)-th bit of x for 0 ≤ i < l. For a set S, x $← S denotes that an element
x is chosen from S uniformly at random. For a distribution χ, x ←χ denotes that an
element x is sampled according to the distribution χ. A polynomial x $← Rq means that

each coefficient of x is chosen randomly from Zq. A polynomial x $← χl means that each
coefficient of x is chosen randomly according to χ.

The integer ⌊x⌉ is defined as ⌊x+ 1
2
⌋ ∈ Z.

2.1. Binary Ring-LWE

The Binary Ring-LWE is a new, promising variant of Ring-LWE that achieves smaller key
sizes and more efficient computations [Buchmann et al. 2016b]. The security analysis
of Binary Ring-LWE is corroborated by several authors [Wunderer 2016, Göpfert et al.
2017, Albrecht 2017]. In the Ring-LWE problem, the secret is selected uniformly at
random over Zn

q , and the noise polynomial is generated by Gaussian or Binomial distribution.
However, both polynomials mentioned above are selected uniformly at random over Zn

2

in Binary Ring-LWE.

The Binary Ring-LWE problem fixes a size parameter n that is a power of 2,
a modulus q ≥ 2. Define Rq as the ring Zq[x]/(x

n + 1) containing all polynomials
over the field Zq in which xn is identified with −1. For secret s ∈ Zn

2 , we define the
Binary Ring-LWE distribution An,q,s over Zn

q × Zn
q , obtained by choosing independently

a vector a ∈ Zn
q and e ∈ Zn

2 , that are selected uniformly at random, respectively. One
sample of distribution An,q,s is (a,b = a.s + e), where additions and multiplications are
performed inRq:

{(a,b) | a← Zn
q ,b = a.s+ e, e← Zn

2)} ∈ Zn
q × Zn

q

Definition 1 (Binary Ring-LWE oracle) A Binary Ring-LWE oracle An,q,s is an oracle
which outputs independent random samples according to the An,q,s distribution.

There are two versions of LWE problems:
• Search Binary Ring-LWEq,χ,m: Given access to a Ring-LWE oracle An,q,s, find

the vector s.
• Decision Binary Ring-LWEq,χ,m: The Decision Ring-LWE problem is to distinguish

between the uniform distribution over Z2n
q and the samples given by the oracle

An,q,s.

3. Recovering the secret using random known bits
We have a Binary Ring-LWE instance b = a.s+ e, and some random bits of s and e are
known (the recovery of these bits can be seen in Appendix A). The Binary Ring-LWE
instance b = a.s+ e can be written as matrix operations.

b[0]
b[1]

...
b[n− 1]

 =

a[0] −a[n− 1] . . . −a[1]
a[1] a[0] . . . −a[2]

...
...

a[n− 1] a[n− 2] . . . a[0]

s[0]
s[1]

...
s[n− 1]

+

e[0]
e[1]

...
e[n− 1]

Each b[i] can be expressed as a system of equations

b[i] =
i∑

j=0

a[i− j].s[j]−
n−1∑

j=i+1

a[j].s[n+ i− j] + e[i] for 0 ≤ i ≤ n− 1 (1)

It results in n equations with 2n variables (bits of s and e) that results hard to solve.
However, some bits of s and e are known.

Let ek and eu be the sets of known bits and unknown bits of noise polynomial
e (|ek| + |eu| = n). Let sk and su be the sets of known bits and unknown bits of the
secret polynomial s (|sk| + |su| = n). Let α be the percentage of known bits of s and
e (|sk| + |ek| = α.2n). Therefore, considering the known bits of ek and sk we have n
equations with |eu| + |su| variables. One condition to have the solution of a system of
equations is that the number of variables must be lower than or equal to the number of
equations:

|eu|+ |su| ≤ n

|eu| ≤ |sk| because |sk|+ |su| = n

The above condition is always accomplished since we can set |eu| = 0. One way to get
|eu| = 0 is discarding all equations in Equations (1) where the value of e[i] is unknown,
resulting in |ek| equations and |su| variables. This new system of equations needs |ek| ≥
|su| to be solved.

|ek|+ |sk|+ ≥ |su|+ |sk| because |ek| ≥ |su|
|ek|+ |sk| ≥ n because |sk|+ |su| = n

α.2n ≥ n because |sk|+ |ek| = α.2n

α ≥ 1

2
In other words, we need at least 50 % of bits of s and e to retrieve all unknown bits of s,
allowing us to know the actual value of the secret s.

4. Experiments and Results

An algorithm was implemented in 20 lines of code using sageMath. This algorithm
contains the Gaussian Elimination method to solve equations. It was executed on a
processor Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz with 3 Mb of cache and 8
GB of DDR4 Memory. The code is available online at https://github.com/
reynaldocv/sbseg2023.

For our experiments, we work with parameters n = 256, q = 256 (parameters
defined in [Aysu et al. 2018]) and α ∈ [49, 60]. For each value of α, 1000 public
keys ⟨b, a⟩ were generated and for each public key, 100 samples were generated with
α percentage of random known bits of s and e. In total, 1200000 experiments were
executed. For all experiments, the method Gaussian Elimination was applied and the
unknown bits of the secret s were successfully retrieved since α ≥ 50%. Each experiment
takes at most 6 seconds.

For experiments with α = 49%, the number of variables are greater than number
of equations, therefore there are many candidates to s. With a smaller value α, the number
of candidates generated is increased exponentially.

5. Conclusion

We described a scenario where some random bits of the polynomials s and e can be
retrieved. Using the mathematical definition of the Binary Ring-LWE problem and these
retrieved known bits, the unknown bits of the secret s can be retrieved using the Gaussian
Elimination method. Our result was proved mathematically and experimentally where we
need at least 50 % of random known bits of s and e to retrieve the actual value of the
secret s. In other words, with a sufficient number of known bits of s and e, the (Binary)
Ring-LWE is a solvable system of equations.

This work can be extended to Ring-LWE problem giving us the same result.
However, we need to retrieve some random known coefficients of s and e, but this task
can be more difficult, yet not impossible because the coefficients of s and e are integers,
not bits (0 or 1).

As we know, the hardness of the (Binary) Ring-LWE problem is to find s. There
are some works focused on the protection of the secret s [Aysu et al. 2018] and the
polynomial e is left out since e is only used one time (in the KEYGEN process, see
Appendix A). We must be more careful with the noise polynomial e because the recovery
of its coefficient makes the (Binary) Ring-LWE problem weaker.

Acknowledgement This paper was partially funded by the project INCT of the Future
Internet for Smart Cities: FAPESP proc. 2014/50937-1 / CNPq proc. 465446/2014-0

References

Albrecht, M. R. (2017). On dual lattice attacks against small-secret lwe and parameter
choices in helib and seal. In Advances in Cryptology–EUROCRYPT 2017: 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30–May 4, 2017, Proceedings, Part II, pages 103–
129. Springer.

Aysu, A., Orshansky, M., and Tiwari, M. (2018). Binary ring-lwe hardware with
power side-channel countermeasures. In 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1253–1258. IEEE.

Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C., Poschmann, A., Robshaw, M. J.,
Seurin, Y., and Vikkelsoe, C. (2007). Present: An ultra-lightweight block cipher.
In Cryptographic Hardware and Embedded Systems-CHES 2007: 9th International
Workshop, Vienna, Austria, September 10-13, 2007. Proceedings 9, pages 450–466.
Springer.

Buchmann, J., Göpfert, F., Güneysu, T., Oder, T., and Pöppelmann, T. (2016a). High-
performance and lightweight lattice-based public-key encryption. In Proceedings of
the 2nd ACM international workshop on IoT privacy, trust, and security, pages 2–9.

Buchmann, J., Göpfert, F., Player, R., and Wunderer, T. (2016b). On the hardness of
lwe with binary error: Revisiting the hybrid lattice-reduction and meet-in-the-middle
attack. In Progress in Cryptology–AFRICACRYPT 2016: 8th International Conference
on Cryptology in Africa, Fes, Morocco, April 13-15, 2016, Proceedings, pages 24–43.
Springer.

Dachman-Soled, D., Ducas, L., Gong, H., and Rossi, M. (2020). Lwe with side
information: Attacks and concrete security estimation. Cryptology ePrint Archive,
Paper 2020/292. https://eprint.iacr.org/2020/292.

Fan, J. and Verbauwhede, I. (2012). An updated survey on secure ecc implementations:
Attacks, countermeasures and cost. Cryptography and Security: From Theory to
Applications: Essays Dedicated to Jean-Jacques Quisquater on the Occasion of His
65th Birthday, pages 265–282.

Göpfert, F., van Vredendaal, C., and Wunderer, T. (2017). A hybrid lattice basis reduction
and quantum search attack on lwe. In Post-Quantum Cryptography: 8th International
Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings
8, pages 184–202. Springer.

Lyubashevsky, V., Peikert, C., and Regev, O. (2013). On ideal lattices and learning with
errors over rings. Journal of the ACM (JACM), 60(6):1–35.

Roy, S. S., Karmakar, A., and Verbauwhede, I. (2016). Ring-lwe: applications
to cryptography and their efficient realization. In Security, Privacy, and Applied
Cryptography Engineering: 6th International Conference, SPACE 2016, Hyderabad,
India, December 14-18, 2016, Proceedings 6, pages 323–331. Springer.

Wunderer, T. (2016). Revisiting the hybrid attack: Improved analysis and refined security
estimates. Cryptology ePrint Archive.

A. Recovering random known bits
In this section, we describe one Public Key Encryption Scheme based on Binary Ring-
LWE problem, and the recovery of some bits of the secret and noise polynomials is
explained.

A.1. Binary Ring-LWE Public Key Encryption Scheme
Binary Ring-LWE Public Key Encryption was proposed in [Lyubashevsky et al. 2013].
The algorithms are shown in Figure 1 and described below.

• KEYGEN: Key generation sets a polynomial a′ ∈ Rq and samples two polynomials
r1, r2 ∈ {0, 1}n and compute p = r1 − r2.a

′ ∈ Rq.
The public key is pk = ⟨p, a′⟩ and the private key (secret key) is sk = ⟨r2⟩.

• ENCRYPTION: Firstly, three polynomials e1, e2 and c3 are selected uniformly
random over Zn

2 . The ciphertext is the pair of polynomials c1 = a′.e1 + e2 and
c2 = p.e1 + e3 + m̄ ∈ Rq. The value of m̄ is obtained by multiplying each
coefficient of message m with ⌊ q

2
⌋.

• DECRYPTION: This algorithm reconstructs the message m by using the secret
key sk = ⟨r2⟩. It Computes m′ = c1.r2 + c2 and decodes the coefficients of m′

using the threshold decoder th(.). Each coefficient of m′ is processed separately,
returning a binary value, if m′[i] lies in the range (q/4, 3q/4), then the value of
m[i] is 1 else the value of m[i] is 0. The threshold decoder th(.) can be defined as
th(x) = ⌊2.x/q⌉ (mod 2).

Figure 1. Binary Ring-LWE Public Key Encryption

The Binary Ring-LWE PKE scheme was proposed for Lightweight applications
(e.g. constrained IoT nodes). The security level achieved is 84 bits against conventional
computers and 73 bits against quantum computers [Wunderer 2016, Göpfert et al. 2017].
This scheme was implemented in hardware using a configuration that sets n = 256 and
q = 256 [Aysu et al. 2018].

In Binary Ring-LWE PKE scheme, the public key pk = ⟨p, a′⟩ and the secret key
sk = ⟨r2⟩ are mathematically related p = r1 − r2.a

′, and it can be expressed as a Binary
Ring-LWE instance b = s.a+ e with b = p, s = r2, e = r1, and a = −a′.

We know the value of r1 is used only in the KEYGEN process, therefore we can
retrieve some bits of r1 applying a SCA when the KEYGEN process is executed. As
we know, the value p is defined as p = r1 − r2.a. Firstly, the value r2.a is calculated,
and the value of r1 is added. Each i-th bit of r1 with a value equal to zero, does not
modify the value of the bit (r2.a)[i]. However, when the i-th bit of r1 is one, the value
of (r2.a)[i] is altered. This adjustment provokes a power consumption, timing delay, and
other information that can be measured, allowing us to differentiate the bits one from zero
of r1 [Aysu et al. 2018]. Using other SCA, the absolute value of one coefficient of s
can be retrieved. Therefore the recovery of some bits of s is feasible since s ∈ {0, 1}n
[Dachman-Soled et al. 2020]. The value of r2 is used in a multiplication operation in
KEYGEN and DECRYPTION processes. These multiplications are exploited to retrieve
the bits of r2. If the bit r2[i] is zero no register is modified; else, when the bit r2[i] is
equal to one, a sum operation is done. This difference can help retrieve the bits of r2.
Aysu analyzed the correlation between the bits and power consumption (Simple Power
Analysis and Differential Power Analysis) to retrieve the bits of r2 [Aysu et al. 2018].

Summarizing, the recovery of some bits of s = r2 and e = r1 is feasible using
some Side Channel Attacks,

