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Abstract. Federated learning (FL) enables the training of machine learning
models on decentralized data, potentially improving data privacy. However,
the FL distributed architecture is vulnerable to poisoning attacks. In this pa-
per, we propose an FL method capable of mitigating these attacks through a
triad of defense strategies: organizing clients into groups, checking the local
performance of global models during training, and using a voting scheme dur-
ing the inference phase. The proposed approach first divides the clients into
randomly sampled groups, with each group generating a different global model.
Each client then receives all global models and selects the one with the best
predictive performance to continue training. The selected global models are
updated by the clients and then submitted again to the central server, which
aggregates these models. During the inference phase, each client classifies its
inputs according to a majority-based voting scheme among the global models.
Our experiments using the HAR and MNIST datasets show that our method can
effectively mitigate poisoning attacks without compromising the global model’s
results.

1. Introduction
Traditional machine learning approaches require centralizing data on a single machine or
datacenter. This data relating to users and organizations may contain private information
that should not be shared, raising privacy concerns [Liu et al. 2021]. Federated Learning
(FL) enables the participants to collaboratively learn a shared learning model while keep-
ing all the data on the device, decoupling the ability to do machine learning from the need
to store all data in a centralized server [Yang et al. 2019], [McMahan and Ramage 2017].
Compared to centralized learning, FL significantly reduces server computation costs by
outsourcing and parallelizing the training process. FL also is a promising paradigm to
empower on-device intelligence and mitigate the privacy and scalability issues in IoT
systems [Witt et al. 2023].

In each iteration of a FL training scheme, the server sends the current global model
to all clients. Then, these clients train the global model using their private datasets and
upload the trained local model to the central server. After the server receives the local
models of all clients, it calculates the new global model by aggregating the received mod-
els. The above steps will be repeated until the algorithm converges. After that, the clients
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use the learned global model to make predictions for new inputs during the inference
phase [Zhang et al. 2021].

Despite its benefits, the FL paradigm is vulnerable to poisoning attacks. More
specifically, malicious clients may infiltrate in the FL scheme to corrupt the global model.
As a result, the corrupted global model would have a low accuracy, which significantly
decreases the performance of the trained model on the inference set [Tolpegin et al. 2020],
[Bouacida and Mohapatra 2021]. There are two main types of poisoning attacks. In data
poisoning attacks, attackers inject malicious data into their local training datasets. In
model poisoning attacks, attackers directly manipulate the gradients or model updates
they send to the central server. An attack in which clients of a distributed system begin
acting maliciously is called a Byzantine attack [Wang et al. 2022], [Fang et al. 2020].

Robustness against Byzantine attacks and the preservation of security and privacy
in FL have been central research topics. Exploring the field of Byzantine robust aggrega-
tion, Xu et al. [2022] and Li et al. [2023] propose aggregation techniques to identify
suspicious local models and enhance robustness. Another widely used method against
poisoning attacks is model analysis; Che et al. [2022] include a scoring system to dif-
ferentiate clients, an election strategy to select representatives, and a selection strategy
for committee formation, fostering a collaborative and secure training environment. Also
using a model analysis method, Jebreel et al. [2024] propose a fragmentation technique
and, in addition, global and local reputation vectors to select trustworthy clients. Zhang et
al. [2023], Cao et al. [2021], and Cao et al. [2022] organize clients into subgroups to en-
sure a robust scenario against the influence of malicious clients. Ultimately, Andreina et
al. [2020] uses a method based on performance evaluation as a defense strategy, exploring
a unique characteristic of FL, the multiple private datasets.

Our proposed approach combines three techniques to mitigate poisoning attacks in
FL: dividing clients into groups, checking global model performance, and making infer-
ences based on a voting scheme. Initially, the central server randomly divides the clients
into groups. After the clients complete local training, they send their local models to
the central server, which generates a global model for each group. The global models
are subsequently distributed to all clients, ensuring that every participant in the federated
learning process receives all the global models generated by the groups. Once the clients
receive the global models, they evaluate them using their own data and select the model
with the best predictive performance. This selected global model becomes the client’s
new local model. These steps are repeated until the training is completed. After the train-
ing phase, the inference phase relies on a voting method. Given an input, a client uses the
global models to make predictions, and the most frequent prediction is chosen as the final
outcome for that input.

The combination of these three techniques leverages their strengths to address
issues that arise when they are applied individually. While each technique alone can
reduce the influence of corrupted local models to some extent, their effectiveness de-
creases quickly as the number of malicious clients increases. By integrating these three
approaches, we develop a model that is more resilient to a growing number of malicious
clients and can maintain training and test data within the clients at all times.

The rest of this paper is organized as follows. In Section 2, we overview closely
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related work. In Section 3, we present our proposed approach to mitigate attacks on FL.
We report on our experimental evaluation and results in Section 4. Finally, we conclude
the paper in Section 5.

2. Related Work
In the FL field, robustness against Byzantine attacks and preservation of security and
privacy have been key focus areas. Various methods and frameworks have been pro-
posed to mitigate these threats and ensure the integrity of the globally trained models.
According to Xia et al. [2023], defense strategies against poisoning attacks can be di-
vided into three categories: 1) Model analysis, 2) Byzantine robust aggregation, and 3)
Verification-based methods. Model analysis methods operate under the assumption that
significant differences exist between poisoned and benign models, and that these differ-
ences can be distinguished. In response, the Byzantine robust aggregation strategy serves
as a passive defense mechanism, mitigating the impact of poisoning attacks by altering the
global model’s aggregation method. Complementing this, the Verification-based defense
strategy further strengthens security by introducing a verification step, which prevents
attackers from forging data or models and complicates the execution of attacks.

Within the category of Byzantine robust aggregation defense, Xu et al. [2022]
propose a filtering strategy based on the Truth Discovery aggregation, which is an un-
supervised iterative data aggregation technique designed to determine the most reliable
updates, to identify and eliminate suspicious local models. Complementing this category,
Li et al. [2023] introduce AutoGM, a secure aggregation rule that enhances the robust-
ness of the Geometric Median (GM) method. AutoGM is applied in both traditional FL
paradigms and Personalized FL paradigms, addressing data heterogeneity challenges by
learning personalized models for each device.

Moving towards a decentralized approach, Che et al. [2022] explore the model
analysis defense strategy, presenting CMFL, a serverless FL framework that employs a
committee mechanism. In this framework, some clients are elected as committee mem-
bers responsible for monitoring the training process and ensuring reliable aggregation of
local gradients. CMFL includes a scoring system to differentiate clients, an election strat-
egy to select representatives, and a selection strategy for committee formation, fostering
a collaborative and secure training environment.

Continuing with the model analysis strategy, aimed at enhancing security and pri-
vacy, Jebreel et al. [2024] propose a novel lightweight protocol enabling participants to
privately exchange and mix random fragments of their updates before submitting them
to the server. Since this exchange preserves the original coordinate positions of the pa-
rameters, the server can accurately calculate the average of the mixed updates, preserving
the integrity of the global model. Additionally, global and local reputation vectors are
used to select trustworthy clients and avoid the influence of attackers, strengthening the
robustness of federated training.

Another widely used defense strategy in recent years involves the possible group-
ings of clients. In this context, Zhang et al. [2023] organize clients into subgroups with
a hierarchical k-ary tree structure, using random partitioning and partial parameter dis-
closure. They use model analysis techniques to ensure the security of the aggregation
process, preventing collaboration among attackers.
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In [Cao et al. 2021], an ensemble global model is proposed that uses majority
voting among multiple global models trained on subsets of clients, also leveraging the
defense strategy based on dividing clients into groups. This approach ensures that when
the majority of clients are honest, the resulting model is robust against a limited number
of malicious clients. For instance, their method can achieve a certified accuracy of 88%
on MNIST when 20 out of 1,000 clients are malicious. Similarly, Cao et al. [2022] group
clients into probabilistic or deterministic subgroups to train multiple global models. Each
global model is used to predict input labels, ensuring that the final aggregation is robust
against the influence of malicious clients.

Finally, Andreina et al. [2020] explore a unique FL characteristic, the multiple
private datasets, in a defense strategy that relies on the model performance evaluation.
The authors propose BaFFLe, utilizing validation clients to detect if the global model
update has been compromised by poisoning attacks, and discarding such updates when
necessary. The results obtained from BaFFLe can achieve a detection accuracy of 100%
with a false-positive rate below 5%, on both CIFAR-10 and FEMNIST datasets.

The proposed approach combines three defense techniques against poisoning at-
tacks. Similarly to what Cao et al. [2021] and Cao et al. [2022] propose, the first step
of our approach is a probabilistic grouping division. The next technique we used for at-
tack mitigation is model performance evaluation. Andreina et al. [2020] propose a strat-
egy where clients’ private datasets are used to verify if an attack has compromised the
global model. In our approach, each client receives the global models and uses their pri-
vate dataset to evaluate these models. After the evaluation, each client selects the global
model with the best predictive performance to be their new local model. Finally, this
work uses a voting strategy for inference, similar to the ensemble global model used by
[Cao et al. 2021] and [Cao et al. 2022]. During the final step of our approach, each client
receives the global models and uses majority voting among them to predict the labels.
Table 1 compares the reviewed studies and the proposed approach.

Anais do SBSeg 2024: Artigos Completos

4



Table 1. Comparison among the reviewed approaches based on their reliance
on client grouping strategies, whether the central server allows different
types of aggregation, and the use of client feedback for evaluating model
performance. It also lists the types of attacks simulated in each study.

Related work Uses grouping Allows different
aggregations

Uses client
feedback

Simulated Attacks

[Xu et al. 2022] × × ×

Label-Flipping,
Arbitrary Model,
Krum, Trim and

Backdoor

[Li et al. 2023] × × × Label-Flipping and
Gaussian

[Che et al. 2022] × ✓ ✓
Malicious
Gradients

[Jebreel et al. 2024] ✓ × ✓
Label-Flipping and

Gaussian

[Andreina et al. 2020] × × ✓ Label-Flipping

[Zhang et al. 2023] ✓ × × Label-Flipping and
Adaptive Semantic

[Cao et al. 2021] ✓ ✓ × Malicious
Gradients

[Cao et al. 2022] ✓ ✓ ×
Label-Flipping,

Same-Value, Krum
and Trim

Our Approach ✓ ✓ ✓
Label-Flipping and

Same-Value

3. Proposed Approach
Unlike traditional FL models, our proposed method begins with the random grouping of
n clients into N groups of k clients each. The purpose of sampling the clients into groups
is that, as long as we do not have a vast majority of malicious clients, we still have a high
chance of retaining uncompromised groups. When most clients are benign, the influence
of malicious clients is reduced, as a malicious client can only affect the groups to which
it belongs. It is also important to highlight that the random division of groups is done
in a way that a client can belong to more than one group. Figure 1 shows the grouping
process.

Once the groups are defined, the training is initiated. The central server sends a
learning model to all clients, with this initial model having automatic weights that follow
a uniform distribution, which will be updated over the training process. After receiving
the model, the clients update it using their local data, thus generating n local models.
Then, the clients send their local models to the central server.
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GM1 GM2 GMN...

client1 client2 client3 client4 clientn...

Central Server

Figure 1. Example of the group division process with n = 5, N = 3 and k = 2.

The central server uses the groups defined earlier to aggregate the local models.
Each one of the N groups generates a global model GMi that is the result from the ag-
gregation of the local models of the clients belonging to that group. Thus, we will have
GM1, GM2, GM3, ..., GMN . This process can be observed in Figure 2. Aggregation is an
important step in FL systems. Our approach makes it possible to choose any aggregation
method, as this does not affect the functioning of our method. After the global models are
computed, the central server sends them to each client, a step that can be seen in Figure 3.

client1

client2

client3

client4

clientn

1.  Local 
     Training

GM1 GM2 GMN

...

2.  Aggregate
Global

     Model

2.  Aggregate
Global

     Model

2.  Aggregate
Global

     Model ...

1.  Local 
     Training

1.  Local 
     Training

1.  Local 
     Training

1.  Local 
     Training

Central Server

Figure 2. First and second steps of our proposal, where we can visualize the
clients training a local model with their private dataset and the central
server aggregating the local models into the global models according to
the group division.

Sequentially, the proposed approach carries out a performance evaluation step,
which aims to improve the whole system performance using clients’ private datasets
D1, D2, ..., Dn. Once the clients receive all the global models, they use their private
validation datasets Di to evaluate the global models GM1, GM2, ..., GMN . Then, each
client computes the F1-score for each global model based on their own data. Next, each
client selects the global model that achieved the highest F1-score in the evaluation pro-
cess and this global model becomes the new local model for that client, as shown in Figure
4. Global models produced by compromised groups tend to perform worse in terms of
F1-score, as they were affected by poisoned models. Avoiding these models provides an
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client1

client2

client3

client4

clientn

GM1 GM2 GMN

...

...

3. Receive All     
Global Models

3. Receive All     
Global Models

3. Receive All     
Global Models

3. Receive All     
Global Models

3. Receive All     
Global Models

Central Server

Figure 3. Third step of our approach, where each client receives all previously
calculated global models.

additional layer of security and aims to preserve the integrity of the global model. Fur-
thermore, this solution allows us to use the availability of clients’ private datasets without
compromising privacy.

4.  Evaluete All
Global

Models

5.  Selects the Global
     Model with the
     best F1-score

6.  The selected Global             
      Model is the client's 
      new Local Model

client

For each client: 

...

GM1

GM2

GMN

F11

F12

F1N

...

Figure 4. Fourth, fifth and sixth steps of our approach, where each client eval-
uates the received global models and selects the best of them to become
their new local model.

The steps described above are repeated until the end of the training. When the
training is completed, we move to the inference phase, which relies on a voting method.
Similarly to the previous steps, the clients’ local models are aggregated according to the
initially defined groups. Shortly after, the global models are sent to all clients. Once the
clients have received all the global models, they start the voting step, where each client
makes inferences with their own data. During the inference phase, the N global models
are used to predict labels for inputs. Specifically, given a test input x, the client uses
each global model to predict its label. After that, the client calculates the frequency of
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all predicted labels, which is the number of global models that predict a certain label
for x. Thus, the client takes a majority vote among the N global models to predict the
label for the input x. The label with the highest number of predictions is the resulting
label. This scheme can be observed in Figure 5. The aim of this step is to ensure that the
resulting label from the majority vote among the N global models remains unaffected by
a limited number of malicious clients. When there are ties, i.e., multiple labels have the
same highest frequency, the client randomly selects one of the tied labels.

client
x

y

y

y'

7.  For each test input x,   
     all Global Models 
     predict its label

8.  Calculate 
     the most 
     predicted 
     label

9.  The label with the
     most frequency   
     is the predicted   
     label

For each client:

...

GM1

GM2

GMN

y

Figure 5. Seventh, eighth and ninth steps of our approach, where each client
makes inferences for their test data taking into account the majority vote
among global models.

3.1. Dealing with Malicious Selections

As the global models are evaluated by clients, malicious clients may deliberately lie to
compromise the entire system. In the approach described earlier, during the performance
evaluation step, a malicious client might, instead of selecting the global model with the
highest F1-score, do the opposite, choosing the global model with the lowest F1-score
as the new local model. However, the results are not affected as long as the number of
malicious clients, m, is less than n

2
.

This occurs because, in the voting system, the most frequent label wins. Therefore,
if the majority of clients are benign (m < n

2
), the output label is more likely to be the

correct one, minimizing the influence of malicious clients. This way, even if some clients
attempt to sabotage the process, the benign majority ensures the integrity and accuracy of
the final global model.

4. Evaluation and Results
In this section, we present the results from a series of experiments carried out on the
approach proposed in Section 3 and the experimental setup. Since in our approach the
inference step is performed on each client’s device, each client will generate their own
metrics individually. However, for visualization purposes, we calculate an overall F1-
score of all clients. We chose to calculate the F1-score because it provides a balanced
measure that accounts for both false positives and false negatives, as it combines precision
(the accuracy of positive predictions) and recall (the ability to find all positive instances)
into a single metric.
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4.1. Experimental Setup

Datasets: We utilize the MNIST and Human Activity Recognition Using Smartphones
(HAR) datasets.

• MNIST: The MNIST dataset [Deng 2012] is a widely used dataset in machine
learning, comprising 70,000 grayscale images of handwritten digits (0-9), each
sized 28×28 pixels. Given its popularity for training machine learning models, we
employed it to simulate FL scenarios. Our experiments were conducted with 30
and 50 clients. Initially, the dataset was split into training, validation, and test sets,
with 50,000 samples for training, 10,000 for validation, and 10,000 for testing.
In our federated environment, these subsets were evenly distributed among the
clients, simulating each client having its own private dataset.

• HAR: The Human Activity Recognition Using Smartphones (HAR) dataset
[Reyes-Ortiz et al. 2012] was created from recordings of daily activities per-
formed by individuals carrying a smartphone on their waist, which was equipped
with inertial sensors. The experiments involved 30 volunteers aged 19 to 48,
each performing six activities corresponding to the six labels in the dataset
(WALKING, WALKING UPSTAIRS, WALKING DOWNSTAIRS, SITTING,
STANDING, LAYING). The dataset includes 561 features and 10,299 instances.
The HAR dataset is naturally federated for 30 clients, since the data for each
volunteer can be easily converted to the private dataset for a client. For this
reason, HAR clients do not have the same number of samples (since the volunteers
did not produce the same amount of samples). Therefore, the first step was to
partition the dataset into private datasets for the clients, followed by splitting
these private datasets into training, validation, and test sets based on percentages:
70% for training, 10% for validation, and 20% for testing.

FL setup: For the MNIST dataset, scenarios with two variations in the number of
clients were tested, n = 30 and n = 50. For the 30-client scenario, three variations of N
were tested: N = 7, N = 13, and N = 17. In the 50-client variation, three variations of
N were also tested: N = 15, N = 25, and N = 35. Experiments with the HAR dataset
were conducted with 30 clients, as the dataset is naturally federated for 30 clients. Three
variations of N were tested: N = 9, N = 15, and N = 21. Moving on to the number of
clients per group, we selected values that closely aligned with those reported in the liter-
ature, so all scenarios described above were tested with 3 and 5 clients per group (k = 3
and k = 5). The chosen aggregation method was FedAvg. The FedAvg aggregation is
calculated using the average of local models. This approach was selected for its perfor-
mance, efficiency, and scalability potential. Additionally, compared to other aggregation
methods like Krum, Trimmed Mean, and Median, FedAvg has reduced operational costs.

Model Architectures and Parameter Settings: For the MNIST dataset, we
used a convolutional neural network (CNN) architecture proposed by [Cao et al. 2021].
Key parameters included a batch size of 32, a learning rate of 0.001, and stochastic
gradient descent as the optimizer. The number of epochs was set to 100, with 10 global
iterations. For the HAR dataset, we employed a deep neural network (DNN) with two
fully connected hidden layers, each containing 256 neurons and using ReLU activation
functions, this architecture was proposed by [Cao et al. 2021]. The parameters were a
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batch size of 64, a learning rate of 0.001, and stochastic gradient descent as the optimizer.
The number of epochs and global iterations were 200 and 20, respectively.

Attacks: We chose two poisoning attacks with distinct strategies, one targeting
the model and the other the data.

• Same-Value Attack: this attack targets the learning model by setting all its pa-
rameters to a single value, zero in our case. It aims to compromise the model’s
functionality by nullifying its ability to learn and make accurate predictions. In
our scenario, this attack is performed on the local model of a malicious client
whenever it sends its local model to the central server.

• Label-Flipping Attack: this attack targets the training data by altering the labels of
training samples. The goal is to induce a local model with wrongly labeled data.
For the MNIST dataset, malicious clients changed their data labels to “0”. For the
HAR dataset, malicious clients altered their data labels to “WALKING”.

4.2. Results

Single-global-model FedAvg vs. Our Approach: As a baseline, we implemented an FL
setup based on the FedAvg aggregation algorithm without any defense strategy, which we
named “Single-global-model FedAvg”. Using this basic FL setup, we can assess whether
our defense strategies improve the FL’s capacity to resist the poisoning attacks. The re-
sults for Single-global-model FedAvg are identified in the plots as “FL”.

Figures 6, 7, and 8 show a comparison between the F1-score results of our pro-
posal and the Single-global-model FedAvg approach. In Figure 6, we can observe the
results of our proposal on the MNIST dataset with n = 50. These tests were conducted
considering Label-Flipping and Same-Value attacks. Additionally, we varied both the
number of groups (N ) and the number of clients per group (k). Figure 7 shows the results
obtained from experiments using the MNIST dataset with 30 clients (n = 30), also with
variations in N and k. Figure 8 illustrates the results obtained from tests on the HAR
dataset. As this dataset is already naturally federated, we kept n = 30 and conducted tests
with N = 9, N = 15, and N = 21. Furthermore, all the tests also show the variation in
the number of clients per group (k = 3 and k = 5).

It is important to note that compared to the Single-global-model approach, our
method incurs higher computational costs due to the additional operations required to
mitigate attacks. The enhanced security measures necessitate more extensive computa-
tions, which results in increased processing time and resource usage.

The Impact of n, N , and k: In Figures 6 and 7, we used the same dataset
(MNIST) but varied the number of clients (n = 50 and n = 30, respectively). There-
fore, it is possible to observe the impact of varying the number of clients, especially
considering Figures 6a and 7b, which use almost the same number of groups (N = 15
and N = 13). We can observe a slight difference in mitigation capacity. For 30 clients,
performance started to decline when 80% of the clients were malicious. For 50 clients,
performance began to degrade when about 90% of the clients were compromised.

The impact of varying the number of groups (N ) can be better observed in Figure
9, where the values of n and k are fixed for better comparison. We can conclude that
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Label-Flipping Attack

Same-Value Attack

(a) N = 15 (b) N = 25 (c) N = 35

MNIST with n = 50

Label-Flipping AttackLabel-Flipping Attack

Same-Value Attack Same-Value Attack

Figure 6. Comparing the results of the Single-global-model FedAvg approach
with our Approach using the MNIST dataset with n = 50.

there is no difference in mitigation capacity. Performance consistently starts to decline
at the same point. This indicates that we can use the smallest N among them, as the
system would have fewer groups and need to work with fewer global models, reducing
the computational cost. Figures 6, 7, and 8 all show the impact of varying the number
of clients per group (k), and in all results, the variation of k was barely noticeable. In
this scenario, it is more prudent to employ k = 5 to enhance the number of local models
contributing to the development of the global model.

In all scenarios, the proposed approach presented a high mitigation capacity. In
the case of MNIST, the system handled well with 80% to 90% of malicious clients. For
HAR, it tolerated just over 2/3 of the malicious clients.

Dealing with different attacks: We analyze the effectiveness of our proposal
against different attacks, namely the Label-Flipping Attack and Same-Value Attack. Each
tested attack represents a distinct strategy, one targeting the model and the other the data.
When testing our proposal against the Label-Flipping attack, we demonstrated that our
approach can mitigate malicious label alterations, preserving the integrity of the trained
model. Conversely, against the Same-Value attack, we demonstrated that our approach
can mitigate the impact of setting all parameters to zero, without drastically compromis-
ing the model’s functionality. Our solution proved robust in both scenarios, showcasing
its ability to prevent diverse threats, thereby ensuring the reliability and accuracy of the
trained models. Figures 6, 7, and 8 provide comparisons using both the Label-Flipping
attack and the Same-Value attack.

Dealing with malicious selections: As mentioned in Section 3.1, malicious
clients can deliberately lie. During the performance evaluation phase of the proposed

Anais do SBSeg 2024: Artigos Completos

11



Label-Flipping Attack

Same-Value Attack

(a) N = 7 (b) N = 13 (c) N = 17

MNIST with n = 30

Label-Flipping AttackLabel-Flipping Attack

Same-Value Attack Same-Value Attack

Figure 7. Comparing the results of the Single-global-model FedAvg approach
with our Approach using the MNIST dataset with n = 30.

approach, a malicious client might choose the global model with the worst F1-score in-
stead of the best one, using it as the new local model. In Figure 10, we can observe the
results obtained in this case and analyze that even with malicious votes, our approach
remains superior to the Single-global-model FedAvg approach. As long as the number of
malicious clients is less than n

2
, the learning model maintains a high F1-score.

5. Conclusion

In this article, we proposed an FL system combining three different techniques to mitigate
poisoning attacks. Our approach divides the clients into randomly sampled groups, evalu-
ates the global models performance using the client’s private datasets, and, during its final
step, uses a majority voting scheme to predict the labels. We assessed the effectiveness of
our proposal against two different attacks, one targeting the model and the other the data.
Our solution proved robust in both scenarios, showcasing its ability to protect against both
threats. All results obtained demonstrated improvements over a basic FL approach with-
out defenses. For the MNIST dataset, the results showed an F1-score above 0.8 even with
90% of malicious clients, and for the HAR dataset, the F1-score results were above 0.8
even with 66.6% of malicious clients. For future work, we intend to expand our proposal
to non-IID scenarios, explore new methods of protecting privacy, and finally, carry out
tests with different datasets and aggregation rules.
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