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2CESAR School

3Universidade Federal do Ceará (UFC)
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Abstract. With the Internet of Things (IoT), cars, home assistants, cameras and
other devices may be part of an ubiquitous network with access to personal
information in real-time, able to interact with the environment and even influ-
ence people. For this reason, empowering such devices with network intrusion
detection algorithms might be vital for the development of a more secure and
trustworthy Internet of Things. In this work we study the performance and ac-
curacy of machine learning models trained for this task, and analyzed the im-
pact of their deployment in a microcontroller-based System-on-Chip used by
IoT devices, along with the impact of TinyML-based optimizations, such as vec-
torization and quantization. From our experiments, Decision Trees presented
very low inference time of 5 microseconds on average, and higher accuracy of
99.9% when compared to Logistic Regression and Neural Networks, being a
viable solution for real-time, accurate and autonomous Network Intrusion De-
tection system for IoT devices.

1. Introduction

Computationally efficient techniques and purpose-specific hardware allow the processing
of artificial intelligence algorithms right at the edge [Abadade et al. 2023]. Executing
such algorithms as close as possible to where data is generated and collected, avoids
transmission of potentially sensitive information to the cloud. However, if end-devices
gather, process and act without sending data to edge or cloud servers, they might be the
only device with access to the environment and thus become the primary target for cyber
attackers.

With the Internet of Things (IoT), cars, home assistants, cameras and other devices
may be part of an ubiquitous network with access to personal information in real-time,
able to interact with the environment and even influence people. For this reason, secur-
ing such devices against cyberattacks is vital for the development of a more secure and
trustworthy Internet of Things.

Recent works point to the use of Machine Learning (ML) for Network Intrusion
Detection (NID), however most of these works do not consider their deployment on IoT
devices [Aldhaheri et al. 2024], relying on gateways, edge or cloud servers to run the NID
system, as depicted in Figure-1(a) and Figure-1(b). Due to the nature of the Internet of
Things, with devices either directly or indirectly connected to the Internet, we believe
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Figure 1. Deployments of Network Intrusion Detection systems: (a) on cloud
servers, (b) on edge servers or gateways, (c) on end-devices. Source:
Elaborated by the authors, using images from Flaticon.com.

On-Device Network Intrusion Detection (OD-NID) should be part of their processing,
as depicted in Figure-1(c), instead of relying on the existence of other devices analysing
network traffic [Rahman et al. 2020], which increases network complexity and might not
even be present in all networks.

Current machine learning techniques for embedded systems [Abadade et al. 2023]
enable On-Device Network Intrusion Detection. However since computationally con-
strained devices, called Low Power Low Connectivity (LPLC) Devices by ITU-
T[ITU-T 2019], might suffer from low memory footprint and low processing power, and
NID is a side task for them, deployment of NID solutions on IoT devices should consume
as few resources as possible to be feasible and accessible for a broad range of devices.
Therefore, the contributions of this work are:

• Evaluate accuracy, average inference duration and memory requirements of dif-
ferent machine learning models performing Network Intrusion Detection on a real
IoT device;

• Evaluate the impact of quantization and vectorization on accuracy, average infer-
ence duration and memory requirements of the models under evaluation;

• Based on experiments, provide insights on the deployment of machine learning
models in real-world IoT devices for On-Device Network Intrusion Detection.

This work is organized as follows: Section 2 introduces recent works on Network
Intrusion Detection for the Internet of Things, Section 3 presents approaches for efficient
execution of machine-learning-based NID on IoT end-devices, Section 4 discusses ex-
periments to assess performance and accuracy of Network Intrusion Detection on such
devices, Section 5 presents the results and Section 6 discuss final conclusions and future
works.

2. Related works
Machine learning techniques for NID have been gaining importance in the last decade.
Many surveys have been carried out to investigate ML-based approaches for Intru-
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sion Detection Systems (IDS) in general [Aldhaheri et al. 2024, Chaabouni et al. 2019,
Da Costa et al. 2019, Ferrag et al. 2020, Hajiheidari et al. 2019].

T. Chua and I. Salam[Chua and Salam 2023] evaluated ML algorithms for NID
using 3 datasets for Network Intrusion Detection in a progressive strategy, with most
recent data from the dataset being separated for tests. The idea is that the testing dataset
can contain some changes in the attack type that reflects how the attacks evolve across
the time, and in this way, can assess the long-term performance of the algorithms. The
experiments did not involve execution on IoT devices.

P. F Araujo-Filho et. al [Freitas De Araujo-Filho et al. 2021] presented an Intru-
sion Prevention System (IPS) for automotive controller area network (CAN). The pro-
posed detection mechanism uses iForest model to detect malicious frames at a high rate
(78µs) and fires a discard frame command before their transmission is completed. The
experiments were executed in a Raspberry Pi 4B.

The work in [Tekin et al. 2023] evaluates energy consumption of ML models
trained for network intrusion detection running on cloud and edge servers, a single-board
computer (Raspberry Pi 4B) and a microcontroller-based IoT device. However, it doesn’t
analyze the impact of vectorization and quantization for the deployment of models on IoT
devices.

Work in [Rahman et al. 2020] proposes a Federated Learnning (FL) approach for
intrusion detection in IoT. In this approach, a generic model is sent to an end-device,
improved using local data and then, the model parameters are sent back to a server that
aggregates the weights and improves the model. This approach executes the ML algo-
rithms on end-devices in the learning phase.

Evaluating the set of works presented in this section, that use different approaches
for intrusion detection applied to different fields, it is possible to realize that the vast
majority of their experiments do not take into account the execution of ML models on
LPLC devices, since most of them are executed in laptops or in a Raspberry Pi 4B, that has
between 2GB and 8GB of RAM and a 64-bit quad-core processor @ 1.8GHz, comparable
to a desktop computer.

Thus, the need to embed NID in LPLC devices is latent and contributes to a major
advance towards safer IoT devices and networks.

3. On-Device Network Intrusion Detection

Recent works on Network Intrusion Detection present a current trend in the use of ma-
chine learning models due to their high accuracy, adaptability to various datasets and po-
tential for compute-time optimizations [Aldhaheri et al. 2024] [Ferrag et al. 2020]. De-
ploying ML models into microcontroller-based IoT devices requires minimization of com-
putational resources usage while keeping high accuracy, since this is a side task for IoT
end-devices but privacy is at risk when intrusion detection fails. In this section we intro-
duce AI models used for Network Intrusion Detection in the context of IoT devices, and
introduce TinyML techniques that can reduce memory and computational overhead under
certain conditions, and can be suitable for the deployment of ML-based NID solutions on
end-devices in the Internet of Things.
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3.1. Machine Learning approaches

From recent works on NID, we listed some machine learning models for classifica-
tion that are commonly evaluated, such as Logistic Regression (LR), Decision Tree
(DT), Random Forest (RF), Artificial Neural Networks (ANN), Support Vector Machines
(SVM) and K-Nearest Neighbors (KNN) [Chua and Salam 2023, Tekin et al. 2023,
Da Costa et al. 2019]. However, some of them might not suit well for inference in LPLC
devices: KNN which requires the device to store the train dataset for inference; RF and
SVM usually present highest inference times. For this reason, we chose Logistic Re-
gression, Decision Tree and MultiLayer Perceptron (MLP), a type of ANN, to analyze,
since they are powerful and present important differences: LR performs a dot product
between the input and its weights vector followed by a non-linear activation function;
MLP expands that to multiple neurons organized in layers, each performing a dot prod-
uct followed by a non-linear activation; and DT leverage branch instructions to perform
comparisons and take decisions.

Both Logistic Regression and MultiLayer Perceptron rely on vector operations of
floating point numbers, which can be optimized using Single Input Multiple Data (SIMD)
instructions when available. Models trained with floating point numbers can also be con-
verted to use fixed-point arithmetic via quantization, which uses integer instead of floating
point arithmetic, potentially reducing storage and execution time.

3.2. TinyML optimization techniques

Artificial Intelligence (AI) has been used in a wide range of areas, such as healthcare,
autonomous driving, natural language processing and more, but usually require expensive
specialized hardware for faster training and inference, sometimes with the use of cloud
computing for cost reduction, which imposes constraints and brings concerns regarding
data privacy, the need for constant connectivity and high carbon footprint.

TinyML emerged with various approaches to reduce memory and processing re-
quirements for the computations involved in processing AI, either during training or infer-
ence, commonly relying on hardware-specific capabilities for more efficient and accurate
execution [Abadade et al. 2023]. Two approaches are broadly used for the deployment of
AI models on microcontroller-based devices: quantization and vectorization.

3.2.1. Quantization

is used to convert floating-point into fixed-point arithmetic, which for large models dom-
inate processing time due to matrix-vector multiplications performed by various machine
learning models [Vanhoucke et al. 2011]. It also reduces memory requirements, since
floating point numbers are usually stored in 32-bit or 16-bit formats, but when in fixed-
point they are usually stored in 8-bit integers or smaller.

Quantization imposes a trade-off between model size and accuracy, since it intro-
duces quantization error the smaller the integers used [Abadade et al. 2023]. Also, quan-
tizing inputs and intermediate vectors require floating point arithmetic between floats and
integers, which are usually not hardware-accelerated, thus might not be a viable approach
if model size is small enough to not pay-off those conversions.
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3.2.2. Vectorization

relies on hardware-specific instructions, the so-called Single Instruction Multiple Data
(SIMD), that perform multiple operations with a single instruction. It aceelerates multipli-
cation and addition of multiple pairs of numbers for example, very useful for various ma-
chine learning models, like neural networks, which require potentially massive amounts
of matrix-vector multiplications. In the past, the introduction of Intel’s Streaming SIMD
Extensions (SSE) and AMD’s 3DNow! paved the way for AI algorithms running on con-
sumer Personal Computers [Vanhoucke et al. 2011]. Nowadays, microcontrollers with
support for SIMD instructions have achieved unprecedent performance processing AI al-
gorithms [Abadade et al. 2023], giving rise to the area of Artificial Intelligence of Things
(AIoT).

3.3. Deployment strategy

As illustrated in Figure-1, NID systems are usually deployed in the cloud or at the edge,
but on a range of devices.

Figure-1(a) illustrates their deployment in the cloud, where cloud servers are used
due to high availability of compute resources and centralized setup, alleviating the config-
uration overhead performed in IoT networks. However, this type of deployment requires
that information about network traffic is sent to the cloud in real-time for further process-
ing, creating communication overhead in the network, requiring constant connectivity to
the cloud and introducing delays.

Figure-1(b) illustrates deployment of NID systems at the edge, where processing
occur on edge servers, gateways or both. This setup requires that every IoT network have
its own dedicated hardware setup for the processing of network traffic information, which
can make such deployment infeasible in various scenarios where users lack the knowledge
to setup such systems and networks. This setup also suffers from the need for collection
of traffic information, which can add communication overhead to the network.

Finally, Figure-1(c) illustrates On-Device Network Intrusion Detection, in which
detection is performed by each and every device in the network on their own behalf, alle-
viating the need for any setup in the network for this purpose, which has the potential to
broaden adoption of intrusion detection. Also, no communication overhead is added to the
network for the purpose of disseminating traffic information. With the use of lightweight
algorithms and TinyML techniques, the impact of performing On-Device Network Intru-
sion Detection can be minimized, easing adoption by different vendors on a wide range
of types of IoT devices.

From an on-device perspective, Figure-2 shows the packet processing steps in-
troduced by an AI-based on-device Network Intrusion Detection System (NIDS). What
information and statistics from each particular flow will be computed depends on the AI
model feature set. A larger corpus of features might incur in higher processing overhead.
Besides that, converting flow information into an input vector for the NIDS AI model is
another source of additional overhead, and varies from model to model. For example, if
data normalization or quantization is required, it may involve costly computations. For
this reason, care must be taken when choosing an AI model to avoid introduce too much
overhead in this step.
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Figure 2. On-device packet processing pipeline. Red lines indicate NIDS-specific
processing steps.

4. Experiments

To investigate how Machine Learning models trained for Network Intrusion Detection
perform on embedded devices, we trained 3 machine learning models on a dataset, then
deployed multiple versions of them, each with a different TinyML-based optimization
technique. During experiments we measured their accuracy and average inference time,
which in turn affect throughput, since each network packet has to be analyzed when in
production.

4.1. Dataset

Supervised models require a dataset with ground truth information for their learning
phase. For that purpose, we chose the LUFlow, a recent dataset which contains large
amounts of samples from real-world traffic and was built to serve as a strong ground truth
[Mills et al. 2022]. The LUFlow dataset contains flow-based information from traffic col-
lected in a honeypot setup inside of the Lancaster University. It autonomously classifies
traffic as benign when comes from services inside their own network, malign when tar-
geted at the honeypot, and anomalous when traffic did not fit within the typical monitoring
profile and is kept for further analysis.

For data pre-processing and features selection, we followed the procedure from
[Chua and Salam 2023], which analyzes features importance and recommends the use
of a subset of them. The importance of features selection in this scenario is beyond
the high dimensionality problem. In LPLC devices, more features means more oper-
ations which might increase inference time. By applying the procedures described in
[Chua and Salam 2023], we chose the subset of features described in Table-1.

4.2. Methodology

System-on-a-chip (SoC) microcontrollers arised as cheap yet powerful platoforms for ex-
pediting the development of Internet of Things applications. They usually embed support
for wireless communications via WiFi and Bluetooth, integrate with cloud services like
Microsoft’s Azure IoT and Amazon’s AWS IoT and provide hardware-accelerated vector
operations which enables the use of TinyML techniques like vectorization and quantiza-
tion. The ESP32S3 SoC, shown in figure 3, is an important microcontroller of this class
and was chosen for use in our experiments.
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Table 1. LUFlow features selected

Features Descriptions
bytes in Cumulative number of bytes received
bytes out Cumulative number of bytes sent
dest port Flow’s receiver port number
entropy Flow’s data entropy in bits per byte
num pkts out Cumulative number of packets sent
num pkts in Cumulative number of packets received
proto Protocol number
src port Sender’s port number
total entropy Entropy from all data fields of the flow in bytes
avg ipt Average of the flow’s inter-packet transmission time

Figure 3. IoT device with an ESP32S3 chip.

To evaluate the performance of machine learning models on IoT devices and the
impact of vectorization and quantization to memory usage, accuracy and inference time,
we embedded variations of Logistic Regression, MultiLayer Perceptron and Decision
Tree classifiers into an ESP32S3-based device. They were trained with data from 20
days of monitoring of The LUFlow dataset, a total of 12603010 samples from fev/2021
and june/2022 with equal number of malign and benign traffic classes. The dataset was
split into train and test sets, with 10082408 and 2520602 samples respectively, but only
the first 10000 samples from the test set were used for evaluation. During the experiments,
10000 samples were statically embedded into the device’s flash memory and a message
via its serial port indicates which model should be used to process all of them, then all
outputs along with total inference time were sent back via the serial port.

For the training, Logistic Regression and Decision Tree models were implemented
with the SK-Learn python framework, and MultiLayer Perceptrons were implemented
with the Pytorch framework. To reduce the need for computationally expensive non-
linear activation kernels, the ReLU activation was used in the MLP hidden layer, that can
be implemented with an if condition inside of a loop. Also, we experimented with hidden
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layers of 3 sizes: 16, 32 and 64 neurons. However, accuracy didn’t differ much, while
inference time and size increased noticeably, so for the purposes of comparison with other
models, we chose to only use the 16-neuron MLP in the experiments.

All models were also implemented in C to be compiled to native code for the
ESP32S3 chip. Model parameters were copied from the python implementation and
stored as static arrays. Each model was implemented with floating and fixed-point arith-
metic, and some were also implemented with support for vectorization using hardware-
specific instructions supported by the ESP32S3 chip. All implementations are described
in Table-2.

Table 2. Implementations of each machine learning model.

Model implementation Description
LR Floating point LR
LR SIMD Floating point LR with vectorization
LR INT8 Fixed-point LR
LR INT8 SIMD Fixed-point LR with vectorization
MLP Floating point MLP
MLP SIMD Floating point MLP with vectorization
MLP INT8 Fixed-point MLP
MLP INT8 SIMD Fixed-point MLP with vectorization
DT Floating point DT
DT INT8 Fixed-point DT

Model quantization without the use of SIMD was implemented in C using 8-bit
integers for weights quantized in the Q.7 fixed point format. When using SIMD, we
leveraged a library called IDF-DSP from the vendor of ESP32S3 chips, which requires 16-
bit integers in the case of quantized models, we stored Q.7 numbers in 16-bit integers and
a slight difference in precision can be observed due to different implementation details.
For the decision tree, quantization was performed using the Q.15 fixed point format, since
from experiments we noticed that Decision Trees are more sensitive to the quantization
scheme than Neural Networks or Logistic Regression.

During experiments, three metrics are measured: average inference time, calcu-
lated by dividing the total execution time by the number of test samples; accuracy, com-
puted as the number of correct classifications divided by the total number of test samples;
and memory required to store model parameters. It is important to note that input quanti-
zation is included in the total duration used to compute the average inference time.

5. Results
This section presents results from the execution of all model implementations for Network
Intrusion Detection in an ESP32S3 SoC.

Figure-4 presents the average duration of an inference. The first noticeable result
is that Logistic Regression and Decision Trees spent up to 5 microseconds per inference
on average, which translates into the processing of more than 200000 packets per second.
It is also noticeable that quantized models had significantly higher inference times, that’s
because since the models are already very small, quantizing the input means performing
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Figure 4. Average inference time.

floating-point arithmetic on the input vector, which accounts for a significant portion of
the computing time. With MLPs, quantization is also performed after each hidden layer.
For such small models in a device with a floating point unit, quantization actually might
no be recommended, which is an important result. When comparing the impact of SIMD,
it is noticeable that it had an important impact on MLPs, which need to perform more
vector operations. From these results, Decision Trees and Logistic Regression were the
best models for deployment so that minimal impact on performance is caused.

Figure 5. Accuracy.

Figure-5 presents the accuracy of each model after processing 10000 test samples.
From these results, Logistic Regression had worse accuracy to the point that it might
not be suited for real-world deployments. Decision Trees and MultiLayer Perceptrons
on the other hand achieved more than 99% of accuracy on all implementations, which
are very impressive results given their model size and inference time. From all models
implementations, the floating point Decision Tree presented highest accuracy.

It is important to observe how each model classifies benign and malicious traf-
fic individually, so we guarantee they don´t overspecialize in only one class. Figure-7
presents confusion matrices of models with and without quantization. Both MLPs and
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Figure 6. Model sizes based on the number of parameters.

DTs were slightly better at classifying negative cases when compared to positive, but
overall all models did very well in dealing with both classes.

Finally, one important aspect of deploying ML models on IoT end-devices is the
amount of storage required. Figure-6 compares how much memory each morel requires to
store its parameters. From that analysis, Decision Trees required more memory then the
Logistic Regression and Neural Networks models, which must be taken into consideration
if storage is a strict constraint.

As a lesson learned from the experiments presented in this work, with such small
models, inference is fast enough to make input quantization and normalization a poten-
cial performance bottleneck, since they can involve floating point arithmetic during con-
versions, as can be seen in Figure-4. However, some machine learning models such as
decision trees are insensitive to data normalization, and most of the selected features are
already integers. Thus, for future research, the combination of models insensitive to fea-
ture scaling and the choice for integer-only features could be explored for lower inference
latency without involving a Floating-Point Unit (FPU) when turning flow information into
input features for the AI model of the on-device NIDS.

6. Conclusions

Standalone Network Intrusion Detection algorithms can become an important role for the
future IoT devices deployed at houses, offices, streets and other places where privacy is of
utmost importance. This work studied the deployment of machine learning models trained
for this specific task on an IoT end-device, and analyzed the impact of quantization and
vectorization on memory, accuracy and inference time, three important measures which
translates into device’s cost, throughput, energy consumption and response time.

From our results, Decision Trees were the best models for this task, presenting
higher accuracy when compared to Neural Networks and Logistic Regression, with high-
est accuracy and lowest inference times when compared to the same competitors, although
at the cost of more memory for the storage of its parameters. We also noticed that quanti-
zation seems to have reduced model overfitting and slightly increased accuracy but at the
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Figure 7. Confusion matrix.

cost of much higher inference time, since all models were very small and matrix multi-
plications accelerated by quantization did not have as much impact as floating point oper-
ations involved in quantizing the input and intermediate vectors. Finally, the availability
of SIMD instructions in the device reduced inference time for MLPs, which perform var-
ious matrix-vector multiplications, and can be very useful in reducing latency with such
models.

For recent future work, we plan to combine multiple datasets to improve model
reliability, implement more machine learning models, and deploy them on more IoT de-
vices with chips of different architectures, providing more insights to help accelerate the
adoption of Network Intrusion Detection in microcontroller-based connected devices for
a more secure and trustworthy Internet of Things.
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