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Abstract. Previous research on DNS over HTTPS (DoH) tunnel detection has
focused on developing detection Machine Learning (ML) models, emphasizing
accuracy and explainability. However, these models have neglected the threat
of adversarial attacks, rendering them vulnerable and less robust. Our study re-
veals that most state-of-the-art DoH tunnel detection models are likely suscep-
tible to adversarial black-box attacks. We adopt a novel approach by adapting
the Zeroth Order Optimization (ZOO) attack to support DoH request features.
The most constrained adaptation generated adversarial examples for 5 out of 6
DoH public tunnel tools. Our methods have successfully evaded the four most
used state-of-the-art tunnel detection architectures. The technique relies on net-
work flows and does not depend on the DoH request format. Thus, researchers
can use it to create more robust DoH tunnel classifiers that target similar archi-
tectures in different security domains.

1. Introduction
DNS (Domain Name System) is a vital element of the Internet. It improves web user
experience and critical services by translating human-readable names into Internet Pro-
tocol (IP) addresses necessary for accessing websites and internal services. DNS queries
are traditionally transmitted in plain text, exposing user data to potential eavesdropping
and manipulation[Wang et al. 2021]. They are susceptible to interception and modifica-
tion, potentially leading to traditional DNS attacks such as DNS spoofing, DNS tunneling,
and privacy breaches. Therefore, the need to secure DNS communications against these
implications drove the inception of DoH (DNS over HTTPS) [Borgolte et al. 2019].

In 2018, the IETF (Internet Engineering Task Force) proposed the DoH, a new
specification of the DNS, to address the privacy and security issues associated with tra-
ditional DNS. This proposal, which provides confidentiality and authenticity by transmit-
ting DNS queries over a secure channel, represents a significant advancement toward a
more secure and private Internet infrastructure. However, despite its merits, DoH intro-
duces new challenges and concerns related to DNS tunnels over DoH. DoH tunneling
[Lyu et al. 2022] encapsulates DNS queries within HTTPS traffic, effectively carrying
the DNS traffic within the encrypted HTTPS channel. These characteristics of the DoH
protocol can be leveraged for malicious purposes, such as data exfiltration or command
and control (C&C) attacks. In a C&C attack, an attacker establishes a covert commu-
nication channel with compromised systems within a target network, allowing them to
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control these systems and potentially exfiltrate data remotely. As a result, cybersecurity
researchers are increasingly turning to ML techniques to detect and mitigate the risks
associated with DoH tunneling.

While the security community has developed sophisticated ML models for de-
tecting DNS over HTTPS (DoH) tunnels with high accuracy [Hynek 2023], these models
often lack robustness against adversarial ML attacks. Current research efforts primar-
ily focus on achieving high accuracy and improving explainability [Zebin et al. 2022] in
DoH tunnel detection models, emphasizing understanding feature importance rather than
enhancing adversarial resilience. Existing research on attacking ML models that rely
on network features has primarily focused on ML-based Network Intrusion Detection
Systems (NIDS) [Debicha et al. 2023], with limited exploration of realistic adversarial
examples [Catillo et al. 2024]. In the domain of DoH security, the emphasis has been
mainly on adversarial attacks that manipulate DNS request parameters—such as reduc-
ing entropy [Žiža K and Vuletić 2023] rather than leveraging advanced ML adversarial
techniques aimed at generating more sophisticated and generalized attacks.

In contrast to previous works on DoH security, this paper focuses on the evasion of
DoH tunnel classifiers by examining the vulnerabilities of current state-of-the-art models
through the application of ML adversarial attack techniques in realistic scenarios. Specif-
ically, we have adapted the Zeroth Order Optimization (ZOO) attack [Chen et al. 2017],
a black-box adversarial method, to incorporate features specific to DoH tunnel tools. This
adaptation enables the generation of realistic adversarial examples, which can be used
both to explore weaknesses in existing models and to inform the development of more
robust defensive strategies.

This paper presents significant contributions to the field of DoH tunnel detection
and other security domains, summarized as follows:

• We show that most state-of-the-art models for detecting DoH tunnels are poten-
tially vulnerable to machine-learning black-box adversarial attacks;

• We introduce an attack methodology that generates realistic adversarial examples.
This methodology can effectively instrument tunnel tools to attack DoH tunnel
classifiers;

• Researchers can utilize our methods to develop more robust DoH tunnel detection
models;

• Our method does not depend on the DoH request format, allowing researchers to
target similar architectures in different security domains.

The remainder of this paper is structured as follows: Section 2 provides the neces-
sary background information. Section 3 reviews the related works in the field. In Section
4, we detail the methodology, focusing on adapting attack algorithms to support DoH re-
quests. The experimental results are discussed in Section 5. Finally, Section 6 presents
the conclusions and outlines directions for future work.

2. Background
To better understand the subsequent sections of this paper, it is essential to define some
key concepts and provide corresponding definitions. This section aims to cover the fol-
lowing ideas:
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2.1. DNS Over HTTPS (DoH)

DNS over HTTPS (DoH), defined in RFC 8484 [Hoffman and McManus 2018], is an In-
ternet protocol designed to enhance user privacy and security by encrypting DNS queries.
Traditional DNS operates in plain text, leaving it vulnerable to eavesdropping and manip-
ulation through attacks like man-in-the-middle. DoH mitigates these risks by transmitting
DNS queries over HTTPS and concealing them within regular web traffic.

When a user initiates a DNS request using DoH, their DNS client establishes a
secure HTTPS connection with a DoH-compatible resolver. The DNS query and its cor-
responding response are encapsulated within this encrypted channel, ensuring confiden-
tiality and data integrity. This process appears indistinguishable from other HTTPS traffic
on the network, as shown in Figure 1. The adoption of DoH has seen significant growth,
with major web browsers incorporating this technology.

Figure 1. DoH workflow

2.2. DoH tunnels

DNS tunneling is a technique that exploits the DNS protocol to encapsulate non-DNS traf-
fic, such as HTTP, SSH, or any private or malicious binary protocol, within DNS queries
and responses [Yassine et al. 2018]. This technique enables data transmission over the
Internet, diverging from the original design of the DNS protocol. It can serve legitimate
purposes, such as bypassing network restrictions when other forms of Internet access are
blocked. It also supports malicious intents, such as data exfiltration or command and con-
trol (C&C) communications in cyber attacks. Despite the advent of DoH, these tunneling
techniques still apply within the HTTPS protocol.

Figure 2 illustrates a typical DoH tunneling attack flow. First, a malicious user, the
attacker, registers a domain and embeds it in malicious software (malware) through ob-
fuscation or encryption. The malware then retrieves the exfiltrated data or the command-
and-control (C&C) responses from the target machine and splits it into segments. It adds
each segment to a DNS query. Periodically, the malware sends these DNS queries to the
DoH resolver server (step 1), which wraps them in HTTPS requests as a DoH payload.
The DoH resolver locates the malicious user’s registered domain name through recursive
DNS queries (step 2). When the authoritative malicious server receives the DNS query
containing the exfiltrated data, the malicious user analyzes the DNS query data to extract
the intended information (step 3). Finally, the attacker’s server can respond with a new
malware C&C message encrypted within the DNS response’s resource record.
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Figure 2. DNS tunnels - technical framework

2.3. ML Adversarial attacks & Adversarial Examples

Adversarial Machine Learning (ML) attacks aim to manipulate ML models by introducing
malicious inputs known as adversarial examples or adversarial samples. These examples
force the model to make incorrect predictions despite appearing benign to humans. A
common approach is taking a correctly classified input (e.g., a dog image) and adding a
subtle, human-imperceptible perturbation. While seemingly insignificant to human per-
ception, this perturbation can drastically alter the model’s output, leading to misclassifi-
cation (e.g., classifying the dog as a car).

This described attack is an evasion or test-time attack named for its occurrence
during the model’s inference stage without impacting its training process. The attacker
aims to ”evade” the model’s correct prediction by introducing a slight, calculated distur-
bance in the input. In a targeted attack, the attacker manipulates explicitly the input to be
misclassified as a predetermined incorrect class. Conversely, in an untargeted attack, the
attacker’s goal is merely to cause incorrect classification, regardless of the class.

Equation (1) indicates a mathematical definition for an ML Adversarial Attack. It
can be stated that for a K-way multiclass classification problem, we define the model as
Fmodel : R

d → 1, ..., K that maps an input x to a predicted class label y.

y = Fmodel(x) (1)

Adding a small perturbation δ to the input x, we get a new input xadv,

xadv = x+ δ (2)

This perturbation ensures that the new predicted class label y′ differs from the
original, as given by Equation (3).

y′ = Fmodel(xadv) , such that y′ ̸= y (3)

The perturbation xadv = x + δ is named adversarial example. In essence, ad-
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versarial examples highlight the need for robustness in ML models. In the scope of this
research, adversarial examples are defined as requests or network flows (i.e., features) de-
rived from adversarial attacks aimed at evading DoH tunnel detection models. Examples
of such features are in Table 1.

2.3.1. White Box Attacks

A white-box attack assumes complete knowledge of the target model, including its ar-
chitecture and parameters. Model developers more commonly use this type of attack to
perform in-house robustness tests. Modern white-box attacks are formulated as optimiza-
tion problems. For example, the adversarial ML community frequently uses the method
described in [Carlini and Wagner 2017] because of its high effectiveness, flexibility, ro-
bustness, and fine-tuning. This method can serve as a general definition of a contemporary
white-box machine learning (ML) attack, as represented by Equation (4):

J(x, xadv, yt) = α ·Distortion(x, xadv) + β · loss(f(xadv), yt) (4)

Here, J(x, xadv, yt) denotes the objective function to be minimized, where x is the
original input and xadv is the perturbed input. The term Distortion(x, xadv) measures
the perturbation, typically using the L2 or L∞ norm. The loss(f(xadv), yt) represents
the misclassification loss of the target model f on the perturbed input with respect to the
target class yt. The parameters α and β are weights that balance the contributions of the
two objectives.

2.3.2. Black Box Attacks

A black-box attack assumes that an attacker can only observe the model prediction of a
data input (i.e., inference) and knows no other information. The target model is a black-
box function. This work will rely on black box attacks, specifically, the Zeroth Order
Optimization (ZOO) attack [Chen et al. 2017], based on [Carlini and Wagner 2017]. The
goal of the ZOO attack is to minimize the following objective function:

J(x, xadv, yt) = α.Distortion(x, xadv) + c.f(xadv, yt) (5)

Although this research focuses only on benign and malicious DoH requests, we
will rely on targeted attacks because untargeted attacks in our primary experiments had a
low success rate. Therefore, we can formalize Equation (5) as follows:

J(x, xadv, y, c) = ∥x− xadv∥22 + c ·max

(
0,max

i ̸=y
(fi(xadv))− fy(xadv) + κ

)
(6)

In the minimization process, we calculate the constant c using binary search to
find an optimal trade-off between minimizing distortion and maximizing attack success.
The algorithm uses the Adam or Newton optimizer to calculate the steps for updating
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the noise δ by estimating gradients through finite differences and iteratively improving
the adversarial example xadv. In practice, the Adam optimizer usually works better with
fine-tuned parameters, but Newton is more stable when close to the optimal solution. For
this work, we rely on the Adam optimizer for the proposed ZOO adaptions, presented in
Section 4.

2.3.3. Unrealistic vs. Realistic Adversarial Examples

In adversarial attacks against ML models, realistic adversarial examples refer to perturba-
tions applied to input data that preserve the plausibility and integrity of the problem space.
These perturbations are consistent with real-world data and could plausibly occur within
the targeted domain. For instance, in network intrusion detection systems (NIDS), a re-
alistic adversarial example [Catillo et al. 2024] involves modifications to network traffic
that continue to resemble legitimate traffic. Such perturbations might include adjustments
to packet timings or sizes that do not interfere with the underlying communication proto-
col but are still capable of misleading the detection model.

Conversely, unrealistic adversarial examples are those perturbations that, although
effective in deceiving ML models within the feature space, do not correspond to any plau-
sible or physically possible scenario in the real world. These perturbations can produce
alterations that result in impossible or nonsensical features, such as a network packet with
a fractional number of packets, a mathematically inconsistent ratio of packet sizes, or
even a negative packet time, which cannot exist in actual network traffic. Unrealistic ad-
versarial examples often emerge from traditional feature-space attacks that overlook the
constraints of the problem space, thereby generating inputs that could not be produced by
any legitimate network agent, such as a network script, tool, or malicious user.

2.4. DoH datasets

The CIRA-CIC-DoHBrw-20201[MontazeriShatoori et al. 2020] dataset stands out as the
most commonly used dataset for training DoH tunnel classifiers. It considers benign
and malicious DoH traffic and non-DoH traffic. The benign DoH traffic comprises DNS
resolutions in the top 10,000 websites from the Alexa rankings. On the other hand, mali-
cious DoH traffic comprised tunnels generated by publicly available DNS tunneling tools:
dns2tcp, DNSCat2, and Iodine. The researchers used the DoHLyzer2 tool to extract and
analyze the captured DoH traffic for feature extraction. Table 1 lists the 28 possible fea-
tures from the traffic.

The DoH-Tunnel-Traffic-HKD3 [Mitsuhashi et al. 2022] dataset incorporates
emerging and missing DNS tunnel tools, dnstt, TCP over DNS, and tuns, that previous
works overlooked. In 2024, [Niktabe et al. 2024] addressed the imbalance problem of the
CIRA-CIC-DoHBrw-2020 dataset to create the BCCC-CIRA-CIC-DoHBrw-20204.

Since we aim to include as many public DoH tunnel tools as possible in our

1https://www.unb.ca/cic/datasets/dohbrw-2020.html
2https://github.com/ahlashkari/DoHLyzer
3https://github.com/doh-traffic-dataset/DoH-Tunnel-Traffic-HKD/
4https://www.yorku.ca/research/bccc/ucs-technical/

cybersecurity-datasets-cds/
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Table 1. Extracted Features from Captured Traffic

Param Feature Param Feature
F1 Number of flow bytes sent F15 Mode Packet Time
F2 Rate of flow bytes sent F16 Variance of Packet Time
F3 Number of flow bytes received F17 Standard Deviation of Packet Time
F4 Rate of flow bytes received F18 Coefficient of Variation of Packet Time
F5 Mean Packet Length F19 Skew from median Packet Time
F6 Median Packet Length F20 Skew from mode Packet Time
F7 Mode Packet Length F21 Mean Request/response time difference
F8 Variance of Packet Length F22 Median Req/resp time difference
F9 Std. Deviation of Packet Length F23 Mode Req/resp time difference
F10 Coef. of Variation of Packet Length F24 Variance of Req/resp time difference
F11 Skew from median Packet Length F25 Std. Deviation of Req/resp time difference
F12 Skew from mode Packet Length F26 Coef. of Variation of Req/resp time difference
F13 Mean Packet Time F27 Skew from median Req/resp time difference
F14 Median Packet Time F28 Skew from mode Req/resp time difference

research, we will merge both the DoH-Tunnel-Traffic-HKD and BCCC-CIRA-CIC-
DoHBrw-2020 datasets into a single aggregated dataset for all the experiments, described
in Section 5.

2.5. Target models methods
To test the ZOO adaptations and the quality of the produced adversarial examples in our
experiments, instead of considering the actual DoH tunnel models in our experiments,
we will rely on the four most used model architectures from the [Hynek 2023] thesis,
described in Table 2. For instance, we considered the gradient-boosting ML algorithm in
the first target model (TM1). The primary reasons for this approach are as follows:

• Consistency in Feature Space: The baseline and the actual models use the same
feature space derived from network flows, ensuring that perturbations impact the
models similarly;

• Absence of Defense Mechanisms: The models under consideration do not in-
corporate adversarial defenses, simplifying the transfer of attack efficacy from
baseline to actual models;

• Transferability of Attacks: The attacks with the same architecture
tend to be transferable because similar architectures share vulnerabilities
[Papernot et al. 2016];

• Lack of details of the actual DoH tunnel detection models: The authors must
provide more information for the complete reproducibility of the experiments for
the target models. Most of the considered models do not offer all the necessary
material to reproduce the model.

Adhering to these assumptions allows us to systematically demonstrate the appli-
cability of our adversarial techniques across different model implementations.

3. Related Work
Detecting DNS over HTTPS (DoH) tunnels is critical in cybersecurity. The DoH protocol
addresses many vulnerabilities inherent to traditional DNS, such as eavesdropping and
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Table 2. Target Models

Target Model Author Method Dataset
TM1 [Singh and Roy 2020] GB D
TM2 [Alenezi and Ludwig 2021] XGB D
TM3 [Zebin et al. 2022] BS D
TM4 [Zhan et al. 2022] RF C

Model methods: GB - Gradient Boosting, XGB - Extreme Gradient Boost-
ing, BS - Balanced Stacked, RF - Random Forest. Datasets: D - CIRA-CIC-
DoHBrw-2020, C - Custom.

tampering. However, identifying malicious uses of this protocol remains a significant
challenge, as attackers exploit DNS to scan networks, track end users, and exfiltrate data
through command and control techniques [Toulas 2024]. The scientific community has
actively developed machine learning (ML) models to enhance the accuracy and efficiency
of DoH tunnel detection, especially in distinguishing benign DNS traffic encapsulated
within HTTPS.

A comprehensive survey, [Wang et al. 2021], discusses DNS tunnel detection
techniques developed between 2006 and 2020, covering rule-based and ML model-based
methods. This work served as a baseline for further ML model-based works in DNS
tunnel detection and provided the background foundation for developing our work. As
adversarial attacks were still in development when these studies were presented, they did
not consider adversarial examples in their design. Consequently, all the DoH tunnel clas-
sifiers studied by Wang are vulnerable to adversarial attacks, such as evasion attacks.

Hynek’s PhD thesis [Hynek 2023] examines the security implications of encrypted
DNS, demonstrating that ML can detect DoH traffic with very high accuracy. His work
highlights recent studies in ML-based DoH tunnel detection. For this research, we use
these studies to build the target models’ architecture, selecting the four most commonly
used ML architectures, as explained in Section 2.5. Although all the DoH classifiers
presented high accuracy, they did not consider adversarial examples during the model
lifecycle, making them vulnerable to ML attacks.

[Goodfellow et al. 2015] introduced the concept of adversarial examples, demon-
strating how small perturbations to input data can significantly evade deep learning mod-
els. Their work underscores the importance of understanding adversarial vulnerabili-
ties across various model types, including traditional ML algorithms. Building on this,
[Papernot et al. 2016] explored the transferability of adversarial examples, showing that
attacks on one model can often be successfully applied to others. [Szegedy et al. 2014]
further examined the unique properties of neural networks in the context of adversarial ex-
amples, offering foundational insights into how these attacks exploit model weaknesses.
While adversarial ML has been considered in the context of ML-based Network Intrusion
Detection Systems (NIDS) [Debicha et al. 2023], similar techniques have not yet been
extensively applied to DoH tunnel detection models.

The study by [Sánchez Sánchez et al. 2024] offers substantial insights into the
challenges and potential solutions associated with vulnerabilities in ML models. Their
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research, which primarily addresses the robustness of IoT device identification systems
against ML evasion attacks, parallels our work in several aspects. Notably, their exami-
nation of the [Carlini and Wagner 2017] attack using the L2 norm revealed a high success
rate in evading identification models, underscoring the effectiveness of this method in
compromising security classifiers. However, given that the Carlini and Wagner attack is
inherently a white-box attack, it does not align with our goal of reproducing real-world
scenarios, where attackers typically lack access to model internals. Consequently, our
methodology employs the Zeroth Order Optimization (ZOO) attack. ZOO builds on the
foundational principles of the C&W attack, particularly in its objective function and strat-
egy for generating adversarial examples. The ZOO attack is designed explicitly for black-
box settings, as Section 2.3.2 explains.

The pioneering study by [Žiža K and Vuletić 2023] investigated the impact of
modifying DNS exfiltration tool parameters on detection accuracy. The authors success-
fully deceived classifiers by generating DoH tunnel exfiltration requests with reduced
character entropy. However, this approach has several limitations. It primarily targets
traditional DNS tunnels, which operate over an unencrypted channel, rather than DoH,
which utilizes an encrypted channel. Additionally, the method does not leverage network
features crucial for identifying DoH tunnels in ML models, limiting its applicability to
more advanced DoH detection scenarios.

Our primary goal is to highlight the risk that state-of-the-art DoH tunnel classifiers
are likely susceptible to adversarial attacks. The second goal is to address the discussed
limitations of poor application of ML adversarial methods by adapting ML adversarial
techniques to support security domain problems, especially DoH tunnel classifiers. Our
research adapts the Zeroth Order Optimization (ZOO) attack, a black-box adversarial
attack, to include DoH requests from DoH tunnel tools as input for the adapted algorithm.
This approach generates realistic adversarial examples, which means that researchers can:

1. Use these examples to produce more robust models;
2. Enable DoH tunnel tools to evade DoH tunnel classifiers more effectively;
3. Apply our methodology to other security domains for testing against adversarial

examples during the model lifecycle.

4. Methodology
This section details our research methodology. It involves adapting the Zeroth Order Op-
timization (ZOO) attack to support DoH request features. We propose three adaptations
to increase the constraints in the ZOO attack to support more realistic scenarios, such
as perturbing specific DoH tunnel tools’ feature limits while keeping others unmodified.
Figure 3 illustrates the details of our methodology. In the following subsections, we will
describe our method.

4.1. ZOO-DoH

ZOO-DoH represents the first version of the ZOO Attack adaptation. Unlike the original
ZOO algorithm, which uses images as input, this adapted version uses features extracted
from network flows by the DoHLyzer tool, as described in Table 1. We also made in-
ternal modifications to remove the image optimizations designed to attack Deep Neural
Networks (DNNs). Therefore, the input to the objective function remains as shown in
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Figure 3. Methodology - ZOO Adaptations to support DoH features

Equation (6). We adopt the authors’ original proposal to minimize the objective function,
as explained in Section 2.3.2.

Given that this adaptation of the ZOO attack does not impose value boundaries on
the features associated with DoH tunnel detection tools, we anticipate a high success rate
in generating adversarial examples. However, this lack of constraints will likely result in
unrealistic feature values, such as negative or excessively large time and packet size mea-
surements, thereby compromising the practical applicability of the generated adversarial
examples.

4.2. Constrained ZOO-DoH
In the second adaptation of the ZOO algorithm, Constrained ZOO-DoH, different from
the previous adaptation, we account for the range of extracted features from DoH tunnel
tools from the merged dataset. The values range constrains the algorithm to clip the values
between these feature limits during the minimization process. This is necessary because
the ZOO algorithm would apply broader limits without constraining feature value limits
during the attack.

We calculate the feature limits (min, max) of DoH tunnel tools by extracting the
quantiles of the values. To eliminate potential outliers, we choose 10% quantiles for the
minimum values and 90% for the maximum values. Consequently, the objective function
now relies on a new parameter, xlimits, containing the feature range list mentioned earlier,
as shown in Equation (7).

J(x, xadv, y, c, xlimits) = ∥x−xadv∥22+c ·max

(
0,max

i ̸=y
(fi(xadv))− fy(xadv) + κ

)
(7)

where xadv is subject to xlimits.
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We anticipate this ZOO adaptation will achieve a moderate success rate while
generating more realistic adversarial examples than the previous version. However, the
resulting adversarial examples may only partially capture real-world scenarios, as certain
features, such as packet size-based features, are targeted for manipulation while others,
like time-based features, must remain unchanged. This limitation highlights the need for
further refinement, which we will address in the subsequent adaptation.

4.3. Targeted ZOO-DoH

The last adaptation of the ZOO attack constrains the algorithm even more during the min-
imization process. In this version, Target ZOO-DoH, we modify the previous version by
adding a list to set up specific attack features while leaving others unmodified. We adopt
this approach because previous ZOO-DoH adaptations can generate adversarial examples
that do not accurately reflect real-world scenarios, such as modifying DoH features that
DNS tunnel tools cannot utilize. The Equation (8) shows the resulting objective function,
considering the list of features to attack xfeature list.

J(x, xadv, y, c, xlimits, xfeature list) = ∥x− xadv∥22

+ c ·max

(
0,max

i ̸=y
(fi(xadv))− fy(xadv) + κ

)
(8)

where xadv is subject to xlimits only for xfeature list.

We expect this ZOO adaptation will achieve a low success rate but generate more
realistic adversarial examples than the previous adaptation. Although we expect only a
limited number of adversarial examples to compromise the tunnel classifier successfully,
this outcome is sufficient to guide the enhancement of real tunnel tools, enabling them to
produce optimized feature values that can evade detection. This approach assumes that
the user or tunneling tool can modify a subset of model features (i.e., the xfeature list).
The most practical features to target are those that the user or tunnel application, such as
time-dependent or packet size-based features, can easily modify. The application of these
adversarial examples in DoH tunnel tools is discussed in detail in Section 5.

5. Experiments and Results

This section details the experiments and discusses the results from simulated attacks for
the three ZOO algorithm adaptations.

5.1. Experiment Details

We tested the three proposed adaptations of the ZOO algorithm against the merged
dataset, as explained in Section 4. We defined three experiments: E1, E2, and E3, which
correspond to ZOO-DoH, Constrained ZOO-DoH, Target ZOO-DoH, respectively. The
inputs for our experiments consist of extracted features from the following DNS tunnel
tools: dns2tcp, dnscat2, Iodine, dnstt, TCP over DNS, and tuns, available in the merged
dataset. Additionally, we used the same dataset to train all the classifiers, specifically the
DoH tunnel detection models.
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We employed the sci-kit-learn5 toolkit with default parameters6 to build the target
model methods. We utilized the XGBoost7 library framework for building the Extreme
Gradient Boosting (XGB) model. Table 3 details the trained classifiers and their respective
metrics. We use the Adversarial Robustness Toolbox (ART)8 to implement the ZOO
adaptations. ART is a Python library for Machine Learning Security hosted by the Linux
Foundation AI & Data Foundation.

The experiments are defined as follows:

Table 3. Experiments - DoH tunnel classifiers details

Target Model Method F1 Score - Benign/Malicious Accuracy (%)
TM1 GB 0.9990/ 0.9990 99.90
TM2 XGB 0.9993/0.9993 99.93
TM3 BS 0.9170/0.9213 91.92
TM4 RF 0.9963/0.9964 99.64

E1 : In this experiment, we run ZOO-DoH with the merged dataset against all target
model methods;

E2 : In the second experiment, we run the Constrained ZOO-DoH adaptation attack
with the merged dataset, including the DoH feature range (min-max) list, as ex-
plained in the Methodology Section;

E3 : We executed the Target ZOO-DoH adaptation using the same input data as in
Experiment E2 while including the subset F13-F24 from the feature list, resulting
in a total of 12 features. This subset specifically includes time-dependent features,
which were selected based on our pre-experiments, where we demonstrated their
reproducibility in real-world scenarios using the dnstt tunnel tool and a TCP proxy,
as illustrated in Figure 3.

For all the experiments to succeed, they must meet the following two conditions:

C1 : The adapted algorithm must minimize the respective objective function, thereby
generating adversarial examples;

C2 : The last ZOO adaptation, Target ZOO-DoH adaptation, must generate at least
one adversarial example for each considered DoH tunnel tool.

Upon satisfying these conditions, we validate that the adaptations work for all the
model architectures considered and that real DoH tunnel tools can use the generated ad-
versarial examples to evade DoH tunnel classifiers, thereby underscoring the significance
and impact of our research.

The experiments conducted in this study have certain limitations. The results
are influenced by the constraints of the datasets, including specific network conditions
(e.g., latency, jitter), the use of particular tunnel tools, and the response times of specific
DoH servers. Furthermore, replicating these experiments in real-world scenarios presents
additional challenges since the datasets were derived from controlled environments.

5https://scikit-learn.org.
6The used parameters are available in the git repository, indicated in the section 6.
7https://xgboost.readthedocs.io.
8https://adversarial-robustness-toolbox.readthedocs.io
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5.2. Discussion

The results of the experiments are presented in Figure 4 and 5. The first figure shows
the mean attack success rate for all target model methods organized by DoH tunnel tools.
The second illustrates the same information but with more details for each target model
method.

The attack was successful across all target model methods in experiment E1. As
anticipated, the ZOO-DoH adaptation, lacking constraints, classified all generated adver-
sarial examples (i.e., the modified malicious DoH tunnel tool requests) as benign (i.e.,
regular DoH requests). Since the algorithm could perturb any feature, it successfully
converged across all classifiers. However, despite this success, the generated adversarial
examples are unsuitable for real-world scenarios, as discussed in section 3. Upon unnor-
malizing the adversarial features, we encountered unrealistic values, such as negative time
intervals and excessively large packet sizes. Consequently, we consider this experiment
as a validation that our initial adaptation functioned correctly while also underscoring
the necessity for an algorithm that imposes constraints to prevent the generation of such
unrealistic values.

In Experiment E2, we incorporated the feature limitations of DoH tunnel tools
into the Constrained ZOO-DoH algorithm. As illustrated in Figure 5, the attack’s success
rate was lower than in Experiment E1, which aligns with our expectations. The adaptation
of the ZOO algorithm could not achieve convergence when applied to the TCP over DNS
tool. The underlying reasons for this lack of convergence will be explored next, mainly
as similar outcomes were observed in Experiment E3. Furthermore, the attack perturbed
features that are not easily replicable within DoH tunnel tools, specifically features F7-F9
and F27-F28. This poses significant challenges in replicating the attack under real-world
conditions, as these perturbed features are difficult to reproduce in practical DoH tunnel
implementations.

In the final experiment, E3, the Target ZOO-DoH algorithm successfully gener-
ated adversarial examples across all target model architectures, thereby validating the
most constrained adaptation of the ZOO approach. Despite being limited to perturbing
only specific features relevant to DoH tunnel tools (F13-F24), the algorithm demonstrated
a high success rate for the tuns DoH tunnel tool in target model architectures 1, 2, and
4. However, the Target ZOO adaptation was unsuccessful for target model architecture 3,
the Balanced Stacked (BS) model. Although the BS model architecture appeared to be
the most robust based on structural considerations alone, it is crucial to emphasize that
this robustness cannot be generalized to all adversarial attacks. The observed results are
specific to the constraints of our experiments, including the particular dataset employed.

Both experiments E2 and E3 demonstrated that the respective ZOO adaptations
could not generate adversarial examples for the DNS over TCP tunnel tool. Upon analyz-
ing the distribution of each dataset, no significant differences were identified among the
DoH tunnel tools. Consequently, we cannot attribute the unsuccessful attacks on this tool
to variations in data distribution. This suggests that the failure of the ZOO algorithm to
converge was likely due to the specific constraints imposed during these experiments.

Additionally, we successfully reproduced the adversarial examples generated in
Experiment E3 using the dnstt tunnel tool. This was achieved by employing a TCP proxy
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to modify the targeted features, as shown in Figure 3. This successful replication validates
our methodology and confirms the practical applicability of our theoretical assumptions.

Figure 4. ZOO Attack Results

Figure 5. ZOO Attack Detailed Results by Tunnel Tools

6. Conclusion and Future Work
This work proposes three Zeroth Order Optimization (ZOO) Attack adaptations to support
DoH tunnel detection requests. Our methodology leverages real-world data from tunnel
detection tools to train classifiers and generate adversarial examples. Our results demon-
strate that all three ZOO-DoH adaptations successfully evaded all target model methods.
Given the assumptions in Section 2.5, we conclude that all state-of-the-art models are
likely susceptible to adversarial black-box attacks.

Furthermore, researchers can use the ZOO adaptations to solve other robustness
issues in any security domain. The only requirement is that the researcher knows the
range of their tools and which features the attack algorithm can modify. In general, the
research community can use our methodology to design more robust models, highlighting
the practical implications of our research.

Anais do SBSeg 2024: Artigos Completos

14



In future work, we plan to enhance our methodology to facilitate the reproduc-
tion of adversarial examples in real-world tools. Additionally, we intend to extend the
applicability of the proposed methods to other security domains, such as ML-based in-
trusion detection systems (NIDS) [Debicha et al. 2023], and to refine the attack strategy
by incorporating feature relevance into the model decision process. We aim to release
the corresponding datasets, enabling the security community to train and develop more
robust models. Furthermore, we plan to explore and adapt additional adversarial attack
algorithms as part of our ongoing research efforts.

The source code to reproduce this work and additional experimental setup
and parameter details are available via the repository at https://github.com/
e-valente/doh-deception.
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