
Exploring Digital Signatures Secrecy in Web-Platform:
Client-Side Cryptographic Operations.

Wellington Fernandes Silvano1, Gabriel Cabral1, Lucas Mayr1,
Frederico Schardong1,2, Ricardo Custódio1

1Laboratório de Segurança em Computação (LabSEC) – Departamento
de Informática e Estatística (INE) – Universidade Federal

de Santa Catarina – Brazil

2Instituto Federal do Rio Grande do Sul (IFRS) – Brazil

{wellington.fernandes,lucas.mayr}@posgrad.ufsc.br
frederico.schardong@rolante.ifrs.edu.br, ricardo.custodio@ufsc.br

Abstract. Online signature platforms confront critical security challenges, no-
tably exposing sensitive documents to third-party applications. This paper
presents a novel client-side cryptographic model that enhances document secrecy
and key management by performing cryptographic operations within the user’s
browser. By employing one-time certificates, our model eliminates document
uploads, reducing the risk of leakage and private key compromise. Aligned
with Claude Shannon’s information theory, our approach ensures robust secrecy
while remaining compatible with existing digital signatures. Our implementation
demonstrates practical performance, offers a significant advancement in secure
digital signatures, addressing vulnerabilities in traditional web-based platforms.

1. Introduction
The proliferation of online signature platforms in recent years has significantly enhanced
user experience by enabling efficient and convenient digital document signing. How-
ever, this convenience comes at the cost of increased security risks. Notably, handling
sensitive documents and managing private keys on these platforms pose significant vul-
nerabilities, particularly when examined through the lens of Claude Shannon’s secrecy
principles [Shannon 1949]. The common practice of uploading documents and granting
access to private keys, or even delegating signing authority as a proxy, exposes documents
to potential attacks and compromises data integrity and confidentiality.

Beyond the client’s concerns about confidential document exposure, platform
operators face substantial liabilities. Leaks can result in severe penalties under data
protection regulations such as the EU GDPR [European Union 2018] and Brazil’s
LGPD [Brasil 2018]. Furthermore, platforms must comply with a complex legal framework
encompassing: (i) guarantees of correspondence confidentiality; (ii) industrial property
rights [Brazil 1996]; (iii) professional secrecy obligations [OAB 2015, CFM 2010]; (iv)
espionage laws [United States 1917, United Kingdom 1989]; and (v) varying degrees of in-
formation classification under Freedom of Information (FOI) acts [United Kingdom 2000,
Brazil 2011]. These laws impose strict access controls, often categorized as top secret,
secret, or reserved, with specific terms varying by jurisdiction.

In his seminal 1949 work, Communication Theory of Secrecy Systems, Claude
Shannon established the foundations for both information theory and modern cryptography

Anais do SBSeg 2024: Artigos Completos

1



[Shannon 1949]. Shannon identified three general types of secrecy systems, which we
hereafter name Shannon-Secrecy Types (SST): SST-1 focus on hiding the existence of the
message; SST-2 where specialized equipment or special technique to retrieve the message;
and SST-3 those obscuring message content through ciphers and codes, assuming complete
adversary capabilities. Based on these principles, we propose a model to enhance secrecy
in digital signature web-platforms by executing critical cryptographic operations client-side
within the user’s browser.

Our model leverages One-Time Certificates to provide secure digital signatures
while optimizing user experience through streamlined key management and a simplified
signing process [Mayr et al. 2023, Mayr et al. 2024]. By executing all cryptographic oper-
ations within the client-side browser, we empower users with complete document control,
substantially reducing the risk of document and private key exposure. This approach
enhances security by mitigating vulnerabilities associated with sensitive document leakage
and compromised key management.

We present a comprehensive exploration and practical implementation of a web-
based document signing and verification system that exclusively operates on the client side.
By examining existing research on document integrity, authenticity, and non-repudiation
through digital signatures (Section 2), we propose a novel key management strategy com-
patible with legacy Public Key Infrastructures (PKIs) (Section 3). We also explore the
current landscape of signature web-platforms, identifying their limitations and security
challenges (Section 4). We introduce a tailored One-Time Certificate mechanism designed
for heightened secrecy (Section 5), addressing implementation challenges, security impli-
cations, and performance trade-offs (Sections 6 and 7). The document concludes the study
by summarizing the key contributions and outlining the challenges and future work for the
proposed client-side cryptographic model using One-Time Certificates (Section 8).

2. Related Work
This section provides an overview of existing research on safeguarding the integrity of
sensitive documents using digital signatures. We examine studies that explore alternative
key management strategies to traditional PKIs.

[Luan et al. 2015] highlight the complexities of managing confidential documents
in isolated environments where internet-based PKI systems are unfeasible. Their model
uses an offline server for signing and encrypting documents, requiring physical document
transfer via USB drives to ensure confidentiality. This approach highlights the unique
challenges of securing information without internet access and effectively mitigates risks
tied to online PKI systems.

[Choi et al. 2017] underscore the growing challenges of securing confidential doc-
uments in cloud environments. Their Doc-Trace framework addresses this issue by im-
plementing document tracing at the hypervisor level, a software layer below the virtual
machines’ operating systems. Steganographic marks embedded within documents enable
the detection of content modifications and the logging of access events. However, the
solution’s effectiveness is limited to identifying unauthorized alterations, as it cannot
prevent intentional data exfiltration by malicious insiders. Doc-Trace is thus valuable for
maintaining comprehensive audit trails but falls short as a standalone defense against delib-
erate data breaches. This highlights the ongoing need for multifaceted security approaches

Anais do SBSeg 2024: Artigos Completos

2



to safeguard sensitive information in cloud environments.

[Shatnawi et al. 2017] address the critical challenge of maintaining integrity and
non-repudiation for sensitive offline documents, including medical records, legal reports,
and financial assets. Their framework embeds digital certificates directly within documents,
enabling detailed tracking of modifications, including author, device, and timestamp.
Integrated as a Microsoft Word plugin, this approach offers self-sufficiency in secure
environments. However, the reliance on embedded certificates may hinder compatibility
with traditional verification systems expecting externally accessible certificates. While
adhering to X.509 and RFC 5280 certificate standards [Boeyen et al. 2008], the solution
faces limitations in revocation verification and interoperability. These factors highlight the
need for a balanced approach to document security, considering both robust protection and
practical usability across diverse operational contexts, especially for frequently modified,
highly sensitive documents.

[Aciobănit,ei et al. 2024] address the critical need for secure and private remote
qualified electronic signatures (RQES) for confidential documents. Their proposed frame-
work leverages a Trust Service Provider (TSP) to digitally sign document hashes, pre-
serving content confidentiality. A browser plugin facilitates hash generation, user au-
thentication, and secure hash transmission to the TSP. The resulting digital signature and
TSP certificate are embedded within the document. To ensure long-term integrity and
validity, digital signatures, certificates, and user metadata are registered on the Ethereum
blockchain [Foundation 2024]. While this approach protects content privacy and aligns
with regulations like eIDAS [União Europeia 2014], it introduces challenges. The docu-
ment itself does not inherently identify the signer, requiring external consultation. Addi-
tionally, potential conflicts may arise between the certificate’s temporal validity and the
blockchain’s long-term data storage. Balancing security, privacy, and practical considera-
tions remains essential for effective online document management.

[Mayr et al. 2024] introduce a novel key management approach as an alternative
to traditional PKIs. Their core innovation is the One-Time Certificate, where signature
verification by a certificate is restricted to a single document through an embedded crypto-
graphic hash of the target document inside the certificate. This model generates a key pair
for each signed document, thus creating a new Certificate Signing Request (CSR) for each
new signature. After the certificate is issued and the document is signed, the private key of
the key pair is deleted. The document hash is incorporated into an X.509 extension before
submission to the Certificate Authority (CA) for issuance. Embedding the hash within
the certificate ensures its immutability and directly links the certificate to the specific
document. A key advantage of this approach is the removal of ongoing certificate and key
management burdens for end-users, reducing costs and technical complexities. Unlike
traditional methods requiring persistent certificate and key pair maintenance, One-Time
Certificates mandate the creation of a new key pair and certificate for each document,
enhancing security and simplifying the signing process.

3. Background

This section provides foundational knowledge of digital signatures to support reader
comprehension.

Anais do SBSeg 2024: Artigos Completos

3



3.1. Digital Signatures
Digital signatures are cryptographic mechanisms that assert the integrity and authenticity
of digital data. Functioning as electronic counterparts to handwritten signatures, they
safeguard against tampering and impersonation. By employing asymmetric cryptography,
digital signatures establish proof of origin, identity, and document status. The signing
process involves a private key held by the signer to generate a signature, which can then be
verified by anyone using its public key counterpart [Goldreich 2001].

The key generation algorithm produces an asymmetric key pair consisting of a
private key sk and a public key pk, formally expressed as Gen(1λ)→ (sk, pk), where λ is
the security parameter determining the computational complexity of the algorithms.

Typically, a message m is first run through a cryptographic hashing algorithm,
producing a fixed-length digest h. Then, the private key sk is used to compute a digital
signature σ using a digital signature scheme such that Sign(sk, h)→ σ.

Lastly, signature verification checks whether a given public key pk truly is the
counterpart to the private key sk used in the signature process using the message m and
signature σ as part of the comparison process, i.e., Verify(pk, m, σ) → {0, 1}; where a
result of 1 indicates a valid signature, and 0 indicates an invalid one.

3.2. Digital Certificate
Introduced by [Kohnfelder 1978], a digital certificate is essentially a binding of a key pair
to an entity. The process involves an individual applying to a CA which, upon verifying
identity, issues a digital certificate. As defined by [Myers et al. 1999], this certificate
adheres to the X.509 standard, functioning as a structured digital file. It contains metadata
about the certificate owner, including name, email, expiration date, address, and potentially
other extensions. Crucially, it incorporates the owner’s public key and a digital signature
attesting both key ownership and the certificate’s authenticity.

This signature, along with the certification path, may be traced back to a trusted
root CA, ensuring the certificate’s legitimacy. To obtain a digital certificate, an entity
must generate a CSR and submit it to a CA for issuance. Created after generating the
key pair, the CSR includes the public key and essential metadata needed for the certifi-
cate. Importantly, the CSR is authenticated using the entity’s private key to verify its
legitimacy. Two primary formats are commonly used to represent digital certificates:
PKCS#7 [Nystrom and Kaliski 2000] and PKCS#12 [Moriarty et al. 2014].

4. Digital Signature Web-platforms
Traditional digital signature applications, such as Adobe Acrobat [Adobe Inc. 2024], op-
erate locally on a user’s device, offering PDF editing, creation, and document signing
features. These applications require a valid digital certificate accessible on the device or
via external media, such as a smart card. For the certificate to be recognized as valid, the
certificate chain, including root and intermediate certificates, must be installed and trusted.
Users are responsible for managing their certificates and ensuring the certification chain is
properly configured. Additionally, they must follow procedures to mitigate risks, such as
certificate or device loss, including revoking compromised certificates with the issuer.

In contrast to traditional desktop applications, numerous digital signature platforms
are accessible via web browsers. These cloud-based solutions offer the convenience of

Anais do SBSeg 2024: Artigos Completos

4



signing documents from any internet-connected device without requiring local software
installation. Web platforms simplify the signing process by eliminating the need for
users to manage certificates and private keys. However, this approach introduces new
security challenges as the platform provider stores and manages sensitive cryptographic
materials. While these platforms often employ medium-term certificates reused across
multiple users, the centralized management of keys and certificates necessitates robust
security measures to protect against unauthorized access and data breaches. Examples of
such platforms include [Cryptomathic 2023, Bit4id 2021, Ascertia 2018, NextSense 2023,
DigitalSign 2023, UFSC 2019, Brazil, Economy Ministry 2021].

In our study of signature web-platforms, we meticulously examined the often
implicit flowcharts underpinning their operations. Figure 1 presents a simplified overview
of the general digital signature process, assuming a registered user. The standard sequence
of events is as follows: a The user logs in to the platform; b The user uploads the
document intended for signing; c The user selects either platform-based or user-owned
certificate signing. For platform-based signing, a platform-generated X.509 certificate
and key pair, often managed by a Hardware Security Module (HSM). For user-owned
certificate signing, the user can upload a new X.509 certificate or utilize an existing one
stored on the platform; d1 The document’s hash is computed, following a process similar
to that outlined in [Aciobănit,ei et al. 2024]. This hash is then signed using a backend
library, and the resulting signature is embedded in the document alongside the platform’s
certificate; d2 Alternatively, if the user opts for their own certificate, the private key and
certificate are made accessible via the web platform; e The user’s certificate and private
key are transmitted to the backend signature library; f The document is retrieved; and g
The document is signed using the user’s private key.

User certificate?

C
lie

nt
-s

id
e Browser

Access Signature
web-platform

Login

User: key pair,
certificate

Document

Document
upload

Signed
document

Platform: key pair,
certificateW

eb
-p

la
tfo

rm

user
 data

certificate, private key

Prepare Signature

yesno

a

b c

d1 d2

e

f

g

Figure 1. Simplified flowchart of the digital signature process on signature web-
platforms.

Regardless of whether option d1 (platform-based signing) or d2 (user-owned

Anais do SBSeg 2024: Artigos Completos

5



certificate signing) is chosen, the document is inherently exposed to the platform, even
when using a secure communication channel. Furthermore, option d2 also exposes the
user’s private key to the platform. Conversely, while option d1 does not compromise
the user’s private key, it introduces the concept of a proxy signature, where the platform
effectively signs on behalf of the user. This type of signature is only valid when verified
by the platform itself, as the user’s identity is neither independently authenticated nor
explicitly associated with the signed document via a digital certificate.

The examined signature web-platforms lack transparency regarding document stor-
age methods. While some platforms may employ encryption, the encryption keys are likely
managed by the platform itself and stored within the database or archive infrastructure.

Consequently, the digital signature platforms raise significant concerns when ana-
lyzed through the lens of Shannon’s secrecy types. Firstly, a violation of SST-1 occurs as
the mere existence of a document is revealed to entities beyond the signatories. This vulner-
ability exposes the risk of targeted attacks on the platform’s infrastructure and its trusted
operators, providing adversaries with opportunities to exploit weaknesses through phishing
or social engineering. Furthermore, the absence of robust obfuscation mechanisms leads
to a violation of SST-2, which occurs when sensitive metadata, such as file names, times-
tamps, signatory details, or file size, are not adequately protected, allowing adversaries to
infer critical information about the document’s nature or context without direct access to
its content. Finally, the limited transparency regarding document storage suggests a high
probability that SST-3 is compromised, meaning adversaries could potentially access or
deduce the document’s content if they breach the platform’s infrastructure. Although many
platforms implement basic access control, they often fail to enforce robust key management
protocols, prioritizing user experience over security. One possible improvement is the
implementation of Identity-Based Encryption (IBE) [Boneh and Franklin 2001], which
simplifies key management. However, this approach introduces the risk that a compromised
master key could jeopardize the security of the entire system.

5. Proposed Model
This paper presents a novel model for enhancing document secrecy within on-
line signature platforms, inspired by the One-Time Digital Certificates (OTC) ap-
proach [Mayr et al. 2024]. We propose a significant enhancement to bolster security:
enabling users to generate cryptographic key pairs and CSRs directly within their web
browsers. This empowers users to independently request certificates from a CA that also
functions as the signature web-platforms, though this role can be delegated.

The proposed model is illustrated in Figure 2, in contrast to the traditional model
shown in Figure 1. This approach significantly increases client-side processing. The
web-platform provides a browser-based library encompassing all the necessary functions
for document signing. Once the user is authenticated, no sensitive data is transmitted to
the platform; cryptographic operations occur exclusively within the user’s browser.

Initially, a the user logs into the signature web-platform. Subsequently, b the
platform transmits a signature library to the client’s browser. c A document selection
form is displayed within the web platform’s front end; upon selecting a document, the
form activates the signature library directly in the browser. d . The library generates a key
pair, creates a document hash, embeds it within a CSR extension, and signs the CSR using

Anais do SBSeg 2024: Artigos Completos

6



C
lie

nt
-s

id
e

Login

Signature library 

W
eb

-p
la

tfo
rm

Document

Document selection

user
 data

Prepare: key pair +
CSR

CA: generates one-
time certificate

Prepare Signature

one-time certificate

Signed documet

Browser

a

b

c d

e

f

g

Access Signature
web-platform

h

Figure 2. The proposed signature secrecy model for web-platforms.

the generated private key. e The CSR is sent to the CA (which, in this case, is the web
platform). f The CA issues a one-time certificate, accompanied by the trust certification
chain, and sends it to the client’s browser. g The signature library retrieves the document
and the one-time certificate with its trust chain, h proceeding to sign the document.

Our model requires user authentication only at step a , with optional additional
verification at step e based on specific requirements. The identity provider might enforce
multi-factor authentication to robustly establish user identity [Jacomme and Kremer 2021,
Prabakaran and Ramachandran 2022, Perottoni et al. 2023]. Furthermore, the CA must
employ robust key storage and certificate issuance mechanisms, such as HSMs, specifically
designed for PKI environments [Barker and Barker 2018].

The digital document intended for signing remains within the execution environ-
ment alongside the generated key pair, with only the public key transmitted within the
CSR. This ensures that the document never leaves the client environment, preserving its
secrecy and ensuring SST-1, as neither the web platform nor any external entity possesses
knowledge of the document being signed. Additionally, as the document never leaves
the client environment, no sensitive metadata—such as file names, timestamps, or file
size—is exposed, ensuring that adversaries cannot infer critical information about the
document’s nature or context, thereby preserving SST-2. Furthermore, since neither the
document’s content nor any portion of it is transmitted to the platform, cryptographic
isolation is achieved. This aligns with Shannon’s concept of a "true" secrecy system,
ensuring compliance with SST-3. Even if an adversary gains access to the platform or
intercepts signals, they are unable to deduce the document’s content due to the use of robust
cryptographic protocols confined entirely to the client environment. The independence
from the platform’s infrastructure removes a potential point of failure, further reinforcing
that no information useful for deducing the document’s content is ever exposed.

Anais do SBSeg 2024: Artigos Completos

7



6. Model Implementation
We focus on signing PDF documents to validate the proposed model, adhering to
ISO-32000 and PAdES standards [ISO 2020, ETSI 2024]. Leveraging a combina-
tion of JavaScript [Eich 1995] and Next.js [Vercel Inc. 2016] for frontend develop-
ment, we execute cryptographic functions using the native JavaScript Crypto li-
brary [(SJCL) 2010], pkijs [GlobalSign and Ventures 2014], asn1js [Ventures 2013], and
Node-Forge [Digital Bazaar 2010], specializing in key generation, CSR creation, and PDF
signing. Addressing the challenge of incremental PDF updates required for signature
validation, we develop processes to manipulate PDF structures directly within the browser.

This application allows users to choose and sign documents. Upon document
selection, the JavaScript code computes the document’s cryptographic hash, generates a
CSR, and interacts with a CA microservice via HTTPS to obtain a one-time certificate.
The signing process employs the RSASSA-PKCS1-V1.5 [Moriarty et al. 2016] and SHA-
384 [Hansen and Eastlake 3rd 2011] algorithms for robust security, culminating in the
signed document [Jonsson and Kaliski 2003].

6.1. Application Flow
Upon accessing the prototype, users are presented with the application’s home screen.
Clicking the authentication button redirects users to an external identity provider. Suc-
cessful authentication returns users to the signature screen, where they can browse for
documents on their computer. Clicking the sign button initiates the execution of the PDF
signature pseudo-algorithm outlined in Algorithm 1.

Subsequently, a CSR containing the document’s cryptographic hash is generated.
A request, bundled with the CSR and the authentication token acquired during the au-
thentication phase, is transmitted to the server. The server relays this request to the CA
microservice. Upon validating the authentication token, the CA issues a one-time certifi-
cate. The server receives this certificate and returns it to the originating browser code. The
signed document is then returned to the user as the signing process concludes.

Algorithm 1: Signing PDF documents in the client’s browser using One-
Time Certificate

1: function SIGN(BytesPDF , userIdentity)
2: BytesPDF ← PrepareDocumentForSignature(BytesPDF)
3: Hash← CalculateHashOfBytesToBeSigned(BytesPDF)
4: KeyPair ← GenerateKeyPair()
5: CSR← CreateCSR(KeyPair, Hash, userIdentity)
6: PKCS7← SendCSRToCA(CSR)
7: PKCS12← CreatePKCS12(KeyPair.private, PKCS7)
8: SignedBytes← SignPDF(BytesPDF, PKCS12)
9: return SignedBytes

10: end function

Each step of the pseudocode outlined in Algorithm 1, is described below:

PrepareDocumentForSignature: This function prepares the PDF docu-
ment to accommodate the digital signature by adding the necessary placeholder without
altering any pre-existing content that may already be signed.

Anais do SBSeg 2024: Artigos Completos

8



CalculateHashOfBytesToBeSigned: This function computes the crypto-
graphic hash of the PDF document.

GenerateKeyPair: This function generates a public-private key pair for the
signing process.

CreateCSR: This function creates a CSR containing the public key, user identity,
and document hash (in an extension). The CSR is signed with the private key.

SendCSRToCA: This function sends the CSR to the CA and receives a PKCS#7
containing the certificate chain.

CreatePKCS#12: This function converts the PKCS#7 into a PKCS#12 format
using the private key.

SignPDF: This function signs the PDF document using the provided certificate,
the BytesPDF, and the private key from the PKCS#12. Returns the signed PDF.

7. Results and Discussion
To assess the validity of the implementation, it is crucial to ensure that the signature created
is interoperable, meaning it is recognized as a valid advanced signature by well-known
verifiers. Additionally, since a significant portion of the code execution occurs within the
client’s browser, the execution times are also important for evaluating potential uses. We
also discuss the advantages and disadvantages of the proposed model.

7.1. Signature Interoperability
This section assesses the compatibility of the generated digital signatures with industry-
standard verification systems. The goal is to demonstrate adherence to current digital
signature standards and ensure broad recognition across various platforms and applications.
To demonstrate interoperability, we employed pdfsig, a command-line verification tool on
Ubuntu [Poppler Utils 2024]. Successful validation using pdfsig confirmed compatibility
with legacy verification systems, as illustrated in Figure 3.

pdfsig example_assinado.pdf
Digital Signature Info of: example_assinado.pdf
Signature #1:
- Signer Certificate Common Name: Alice Silva
- Signer full Distinguished Name: E = alice.silva@secrecy.com, CN =

Alice Silva, C = BR
- Signing Time: Feb 09 2024 16:25:07
- Signing Hash Algorithm: SHA-384
- Signature Type: adbe.pkcs7.detached
- Signed Ranges: [0-23448], [43450-44167]
- Total document signed
- Signature Validation: Signature is Valid.

Figure 3. pdfsig tool usage example to verify PDF digital signatures.

The signature, issued to a fictitious user, Alice Silva, included metadata like the
signer’s email (provided by the identity provider). Verification revealed signature times-
tamp, hash function, and full document coverage, demonstrating backward compatibility

Anais do SBSeg 2024: Artigos Completos

9



with traditional verification tools. The Adobe software also validated the signatures, further
confirming interoperability and compliance. We successfully tested and verified multiple
signatures using the same methods.

7.2. Client-Side Execution Times
This section analyzes the signature algorithm’s performance within the client-side browser
environment. We examine the impact of document size on signature execution time and
its implications for user experience and system efficiency. To evaluate performance, we
measure the total time required for five consecutive signatures on documents of varying
sizes: 1.12 MB, 32.16 MB, and 60 MB. After each signature, the document was transferred
to the next user (Figure 4). The evaluation was conducted on a Dell XPS system running
Linux Ubuntu 22.04, equipped with 16GB of RAM and powered by an 11th Gen Intel(R)
Core(TM) i7-1185G7 @ 3.00GHz CPU, using Google Chrome browser.

0 1 2 3 4

Signature Number
0

10

20

30

Ti
m

e 
(s

)

a)

0 1 2 3 4

Signature Number

b)

0 1 2 3 4

Signature Number

c)

Preparation Hash Key Gen CSR Gen WebApp Response Signature

Figure 4. Total signature time for multiple signatures. Document sizes: a) 1.12 MB,
b) 32.16 MB, c) 60 MB.

Analysis indicates that the total execution time is primarily influenced by file size
rather than the number of subsequent signatures. As shown in Figure 4, average total
execution times are approximately 5.3 seconds for 1.12 MB files, 19.3 seconds for 32.16
MB files, and 28.9 seconds for 60 MB files. The document preparation, hashing, and
signing operations scale proportionally with file size. In contrast, key pair generation
exhibits variability due to the inherent randomness in the process, with an average time
of 836 ms (min: 139 ms, max: 2643 ms, std dev: 578 ms). The time required for
CSR generation remains consistently low, averaging 23 ms, with negligible impact.The
platform’s certificate issuance time is stable at approximately 3 seconds.

Figure 5 illustrates the percentage contribution of each process to the total signature
time. While key generation and microservice interaction become less influential with larger
file sizes, the impact of signing, hashing, and preparation, increases proportionally to
document size. Currently, the algorithm reads the PDF twice: once to locate the signature
placement and again to apply the signature. This redundancy increases preparation and
signature times. Future optimizations will streamline this process, reducing signature time
to a negligible portion of the total.

7.3. General Analysis
A comparative table has been created to evaluate the key features of the proposed model
in relation to traditional web-based signature platforms. Table 1 provides an analysis of

Anais do SBSeg 2024: Artigos Completos

10



0.
02

33
0.

04
42

0.
06

5
0.

08
59

0.
10

68
1.

12
1.

14
1.

16
1.

18 1.
2

5.
82

5.
84

5.
86

5.
88 5.

9
10

.6
10

.6
2

10
.6

4
10

.6
6

10
.6

8
19

.9
6

19
.9

8
20

.0
20

.0
2

20
.0

4
32

.1
6

32
.1

8
32

.2
32

.2
2

32
.2

4
39

.7
2

39
.7

4
39

.7
6

39
.7

8
39

.8
60

.0
60

.0
2

60
.0

4
60

.0
6

60
.0

8

PDF Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 (%

)

Stages
Preparation
Hash
Key gen
CSR Gen
WebApp Response
Signature

Figure 5. Percentage of Total Time by Process and Document Size.

seven critical aspects, including document secrecy, private key secrecy, key management
complexity, certificate handling, support for multiple signatures, and performance across
both large and small documents.

Table 1. Comparison between traditional signature web-platforms with our model

Feature Traditional Web Platforms Our model

Document Secrecy Conditional Unconditional
Private Key Secrecy Conditional Unconditional
Private Key Management Complex Simplified
Certificate Handling Resource-Intensive Streamlined
Multiple Signers Link-Based Out-of-Band
Signature Performance Server Power Dependency Client Machine Dependency
Large documents performance Slower Faster
Small documents performance Faster Slower

7.3.1. Document Secrecy

Traditional signature web-platforms provide conditional document secrecy, as they depend
on access control mechanisms that are susceptible to attacks, especially those targeting
the platform’s infrastructure or trusted operators. The need to upload documents to these
platforms exposes sensitive data to all violations of Shannon’s secrecy principles (see
Section 4).In contrast, our platform ensures unconditional document secrecy by eliminating
the need to upload documents to a server. This removes the risk of secrecy violations,
eliminating the platform as a potential point of failure 5. Although user-side vulnerabilities,
such as browser exploits, remain a possible threat, the overall risk is reduced by restricting
document handling to the client environment.

Anais do SBSeg 2024: Artigos Completos

11



7.3.2. Private Key Secrecy

Platforms that utilize x.509 user certificates (as described in Section 4, step d2 ) encounter
challenges in maintaining the confidentiality of private keys, which are under the user’s
control rather than the platform’s. This presents inherent risks, as the platform may
inadvertently expose or mishandle private keys, leading to potential breaches of secrecy.
In contrast, our proposal ensures unconditional private key secrecy by employing one-time
signatures and generating CSR entirely on the client side. The only data transmitted to the
signature web-platform is the cryptographic hash of the signed document. The certificates
are used only once, there is no risk associated with long-term key storage (see Section 5).

7.3.3. Private Key Management

Ensuring that private keys are kept safe and secure is of the highest concern when dealing
with digital signatures, especially considering that end users might not be as versed in
security protocols as desired.Therefore, to lessen the burden of key management on their
user base and as an attempt to increase overall security, some web signature platforms allow
users to store their private keys in their platforms. These private key management delegation
systems clearly violate Shannon’s secrecy principles by exposing sensitive cryptographic
material. In contrast, our model eliminates the need for continuous key management by
leveraging one-time certificates with client-generated CSRs. In addition, the certificate is
restricted to a single document and does not require further management as it will not be
reused. Consequently, our approach eliminates the complexities traditionally associated
with managing private keys while ensuring high security through robust authentication.

7.3.4. Multiple Signers

Traditional web signature platforms offer a convenient user experience, especially for
documents requiring multiple signatures. Users upload the document, and signers receive a
link or email to authenticate and sign, with the platform automating document distribution
and signature collection. In contrast, the proposed model, while more secure, adds
complexity. Each signer must transmit the document securely (e.g., via encrypted email or
USB drive) and pass it to the next. A document management system can help streamline
this process, but it introduces additional steps and potential delays compared to web
signature platforms.

We remark that this constraint is present only in formats that do not allow parallel
signatures, such as PDF, where each subsequent signature must sign its predecessor.
Formats that do allow these types of signatures, such as XML, allow the original message to
be sent to every signer simultaneously. After the signatures have been collected, they can be
appended to the signed document with no issues in regard to signature ordering [ISO 2020].

7.3.5. Signature Performance and Document Size

Traditional platforms typically leverage powerful servers to expedite signing processes,
often outperforming our approach for standard document sizes. However, network upload

Anais do SBSeg 2024: Artigos Completos

12



times can become a bottleneck for exceptionally large files. In such cases, our method
presents a potential advantage. For example, a preliminary analysis of Wikileaks data
indicates that most classified documents are under 5MB, which our system can sign in
approximately 7 seconds. Generally, signing times are comparable between the two.

8. Conclusion

This study introduces a novel client-side cryptographic model for digital signature plat-
forms, leveraging one-time certificates to establish a secure environment for signing
sensitive documents. By confining all cryptographic operations to the user’s browser, our
model safeguards document secrecy and eliminates the need for key pair management on
the client side. Our findings demonstrate this approach’s feasibility and substantial security
advantages compared to traditional models. The key contributions include:

Enhanced Document Secrecy: protecting sensitive information by preventing document
upload to external platforms;

Improved Private Key Management: eliminating the risk of private key exposure by
managing key generation and usage locally;

User Experience: maintaining usability through seamless browser integration and simpli-
fied certificate management.

Adopting our model can significantly benefit digital signature platforms by mitigat-
ing liability and ensuring compliance with secrecy regulations. By offering heightened
security, platforms can gain a competitive edge and foster user trust. Our approach aligns
with legal secrecy and data protection mandates, safeguarding against potential penalties.
Thus, our client-side cryptographic model offers a substantial improvement in digital
signature technology, delivering enhanced secrecy while maintaining user convenience,
particularly in key management and sign processes. Future research will aim to strengthen
the model further, improving its robustness and adaptability to evolving security challenges.

Challenges and Future Work

While our model offers substantial security improvements, challenges arise in scenarios
involving multiple signers and documents. Future research will prioritize optimizing
usability, particularly for documents requiring sequential signatures or batch signing.
This includes investigating efficient methods for handling multiple documents within
a single signing session, exploring secure out-of-band communication methods, and
enhancing browser-based signing capabilities for improved performance. Additionally, a
comprehensive analysis of web browser security is crucial to ensure the overall resilience
of our client-side cryptographic approach.

Acknowledgment

The author would like to thank the Rede Nacional de Ensino e Pesquisa (RNP), the
Operador Nacional do Registro Civil de Pessoas Naturais (ON-RCPN), and Conselho
Nacional de Desenvolvimento Científico (CNPq). This study was financed in part by
the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) –
Finance Code 001.

Anais do SBSeg 2024: Artigos Completos

13



References
[Aciobănit,ei et al. 2024] Aciobănit,ei, I., Arseni, S.-C., Bureacă, E., and Togan, M. (2024).

A comprehensive and privacy-aware approach for remote qualified electronic signatures.
Electronics, 13(4).

[Adobe Inc. 2024] Adobe Inc. (2024). Adobe acrobat. https://acrobat.adobe.
com/us/en/. Accessed: 2024-08-19.

[Ascertia 2018] Ascertia (2018). Signinghub: Architecture and Deployment Guide. Ac-
cessed: 2024-06-08.

[Barker and Barker 2018] Barker, E. and Barker, W. (2018). Recommendation for key man-
agement. Part 2: Best Practices for Key Management Organization. Technical report,
National Institute of Standards and Technology.

[Bit4id 2021] Bit4id (2021). Signcloud. Remote digital signature and key management.
Accessed: 2024-06-08.

[Boeyen et al. 2008] Boeyen, S., Santesson, S., Polk, T., Housley, R., Farrell, S., and Cooper,
D. (2008). Internet X.509 Public Key Infrastructure Certificate and Certificate Revoca-
tion List (CRL) Profile. RFC 5280.

[Boneh and Franklin 2001] Boneh, D. and Franklin, M. (2001). Identity-based encryption
from the weil pairing. In Annual international cryptology conference, pages 213–229.
Springer.

[Brasil 2018] Brasil (2018). Lei Geral de Proteção de Dados Pessoais (General Data Protec-
tion Law. Lei n° 13.709, de 14 de agosto de 2018. Diário Oficial da União, 157(1):59–
64.

[Brazil 1996] Brazil (1996). Lei de Propriedade Industrial (Industrial Property Law). Lei
n° 9.279, de 14 de maio de 1996.

[Brazil 2011] Brazil (2011). Lei de Acesso à Informação (Freedom of Information Law). Lei
n° 12,527, de 18 de novembro de 2011.

[Brazil, Economy Ministry 2021] Brazil, Economy Ministry (2021). Portaria SEDGG/ME
n° 2.154, de 23 de fevereiro de 2021. Institui normas de gestão de integridade, riscos
e controles internos no âmbito da Administração Pública Federal direta, autárquica e
fundacional.

[CFM 2010] CFM (2010). Código de Ética Médica. Resolução CFM n° 1.931/2009.

[Choi et al. 2017] Choi, S.-H., Yun, J., and Park, K.-W. (2017). Doc-trace: Tracing secret
documents in cloud computing via steganographic marking. IEICE TRANSACTIONS
on Information and Systems, 100(10):2373–2376.

[Cryptomathic 2023] Cryptomathic (2023). Signer. Freedom to digitally sign documents
remotely. Accessed: 2024-06-11.

[Digital Bazaar 2010] Digital Bazaar, I. (2010). Node-forge: A native implementation of TLS
in JavaScript and Tools to Write Crypto-Based and Network-Heavy web apps. https:
//github.com/digitalbazaar/forge. JavaScript library for cryptographic
and network tools.

[DigitalSign 2023] DigitalSign (2023). Signingdesk solution. Accessed: 2024-06-08.

Anais do SBSeg 2024: Artigos Completos

14

https://acrobat.adobe.com/us/en/
https://acrobat.adobe.com/us/en/
https://github.com/digitalbazaar/forge
https://github.com/digitalbazaar/forge


[Eich 1995] Eich, B. (1995). Javascript. https://developer.mozilla.org/
en-US/docs/Web/JavaScript. Programming language for web development.

[ETSI 2024] ETSI (2024). Electronic Signatures and Infrastructures (ESI): PAdES digital
signatures; part 1: Building blocks and PAdES baseline signatures. Accessed: 2024-08-
16.

[European Union 2018] European Union (2018). General data protection regulation, regula-
tion (eu) 2016/679.

[Foundation 2024] Foundation, E. (2024). Ethereum. https://ethereum.org/en/.
Accessed: 2024-08-16.

[GlobalSign and Ventures 2014] GlobalSign and Ventures, P. (2014). Pkijs: A public key
infrastructure library for javascript. https://pkijs.org/. JavaScript library for
working with X.509 certificates and cryptographic standards.

[Goldreich 2001] Goldreich, O. (2001). Foundations of cryptography: volume 2, basic
applications, volume 2. Cambridge university press.

[Hansen and Eastlake 3rd 2011] Hansen, T. and Eastlake 3rd, D. E. (2011). US Secure Hash
Algorithms (SHA and SHA-based HMAC and HKDF). RFC 6234.

[ISO 2020] ISO (2020). ISO 32000-2: Portable document format (PDF) — part 2. Interna-
tional Standardization Organization.

[Jacomme and Kremer 2021] Jacomme, C. and Kremer, S. (2021). An extensive formal
analysis of multi-factor authentication protocols. ACM Transactions on Privacy and
Security (TOPS), 24(2):1–34.

[Jonsson and Kaliski 2003] Jonsson, J. and Kaliski, B. (2003). Public-key cryptography
standards (PKCS) #1: RSA cryptography specifications version 2.1. RFC 3447, Internet
Engineering Task Force (IETF).

[Kohnfelder 1978] Kohnfelder, L. M. (1978). Towards a practical public-key cryptosystem.
PhD thesis, Massachusetts Institute of Technology.

[Luan et al. 2015] Luan, H., Wang, C., Zhou, Z., and Yang, Z. (2015). Cross-access method
for team confidential document based on offline key management. International Journal
of Security and Its Applications, 9(1):97–108.

[Mayr et al. 2023] Mayr, L., Palma, L., Zambonin, G., Silvano, W., and Custódio, R. (2023).
Monitoring key pair usage through distributed ledgers and one-time signatures. Infor-
mation, 14(10):523.

[Mayr et al. 2024] Mayr, L., Zambonin, G., Schardong, F., and Custódio, R. (2024). One-
time certificates for reliable and secure document signing. arXiv preprint.

[Moriarty et al. 2016] Moriarty, K., Kaliski, B., Jonsson, J., and Rusch, A. (2016). PKCS #1:
RSA Cryptography Specifications Version 2.2. RFC 8017.

[Moriarty et al. 2014] Moriarty, K., Nystrom, M., Parkinson, S., Rusch, A., and Scott, M.
(2014). PKCS#12: Personal information exchange syntax v1.1. PKCS Standard 12,
RSA Laboratories.

[Myers et al. 1999] Myers, M., Adams, C., Solo, D., and Kemp, D. (1999). Internet x.509
certificate request message format. RFC 2511, Internet Engineering Task Force (IETF).

Anais do SBSeg 2024: Artigos Completos

15

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://ethereum.org/en/
https://pkijs.org/


[NextSense 2023] NextSense (2023). Signing suite. Accessed: 2024-06-08.

[Nystrom and Kaliski 2000] Nystrom, M. and Kaliski, B. (2000). PKCS#10: Certification
request syntax specification version 1.7. PKCS Standard 10, RSA Laboratories.

[OAB 2015] OAB (2015). Código de Ética e disciplina da OAB, provimento no. 117/2000.

[Perottoni et al. 2023] Perottoni, E. D., Costa, B. P., Müller, F. L., dos Santos Camargo, V.,
Schardong, F., Silvano, W., Mayr, L., Custódio, R. F., Rocha, L., Lyra, C., et al. (2023).
Menos certificação digital e mais identidade eletrônica: Icpedu e cafe em um assinador
digital inclusivo. In Anais Estendidos do XXIII Simpósio Brasileiro em Segurança da
Informação e de Sistemas Computacionais, pages 93–96. SBC.

[Poppler Utils 2024] Poppler Utils (2024). pdfsig: Verify digital signatures in PDF
documents. https://manpages.ubuntu.com/manpages/jammy/man1/
pdfsig.1.html. Accessed: 2024-08-19.

[Prabakaran and Ramachandran 2022] Prabakaran, D. and Ramachandran, S. (2022). Multi-
factor authentication for secured financial transactions in cloud environment. CMC-
Computers, Materials & Continua, 70(1):1781–1798.

[Shannon 1949] Shannon, C. E. (1949). Communication theory of secrecy systems. The Bell
system technical journal, 28(4):656–715.

[Shatnawi et al. 2017] Shatnawi, A., Munson, E. V., and Thao, C. (2017). Maintaining
integrity and non-repudiation in secure offline documents. In Proceedings of the 2017
ACM Symposium on Document Engineering, pages 59–62.

[(SJCL) 2010] (SJCL), S. J. C. L. (2010). Sjcl: Stanford javascript crypto library. https://
bitwiseshiftleft.github.io/sjcl/. A JavaScript library for cryptography
developed at Stanford University.

[UFSC 2019] UFSC (2019). Portaria normativa nº 276/2019/gr, de 18 de setembro de
2019. https://arquivos.ufsc.br/f/e28396694cc642a88d2e/?dl=1.
Institui e disciplina o uso de Certificação Digital na Universidade Federal de Santa
Catarina.

[United Kingdom 1989] United Kingdom (1989). Official Secrets Act 1989.

[United Kingdom 2000] United Kingdom (2000). Freedom of Information Act 2000.

[United States 1917] United States (1917). Espionage Act of 1917.

[União Europeia 2014] União Europeia (2014). Regulamento (UE) n° 910/2014 do Par-
lamento Europeu e do Conselho. https://eur-lex.europa.eu/eli/reg/
2014/910/oj.

[Ventures 2013] Ventures, P. (2013). Asn1js: A pure javascript library for parsing and seri-
alizing asn.1 data. https://github.com/PeculiarVentures/ASN1.js/.
JavaScript library for working with Abstract Syntax Notation One (ASN.1) data.

[Vercel Inc. 2016] Vercel Inc. (2016). Next.js: The react framework for production. https:
//nextjs.org/. A React framework for building web applications.

Anais do SBSeg 2024: Artigos Completos

16

https://manpages.ubuntu.com/manpages/jammy/man1/pdfsig.1.html
https://manpages.ubuntu.com/manpages/jammy/man1/pdfsig.1.html
https://bitwiseshiftleft.github.io/sjcl/
https://bitwiseshiftleft.github.io/sjcl/
https://arquivos.ufsc.br/f/e28396694cc642a88d2e/?dl=1
https://eur-lex.europa.eu/eli/reg/2014/910/oj
https://eur-lex.europa.eu/eli/reg/2014/910/oj
https://github.com/PeculiarVentures/ASN1.js/
https://nextjs.org/
https://nextjs.org/

