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Abstract. From the perspective of real-world cyber attacks, executing ac-
tions with minimal failures and steps is crucial to reducing the likelihood
of exposure. Although research on autonomous cyber attacks predominantly
employs Reinforcement Learning (RL), this approach has gaps in scenarios
such as limited training data and low resilience in dynamic environments.
Therefore, the Kill Chain Catalyst (KCC) has been introduced: an RL algo-
rithm that employs decision tree logic, inspired by genetic alignment, priori-
tizing resilience in dynamic scenarios and limited experiences. Experiments
reveal significant improvements in reducing steps and failures, as well as in-
creased rewards when using KCC compared to other RL algorithms.

1. Introduction
With the advancement of technology, tasks once performed by humans are now
autonomously executed by machines embedded with artificial intelligence. Beyond
industrial robots and autonomous vehicles, studies in the field of cyber attacks aim to
automate red team operations (Al-Azzawi et al. 2024; Paudel and Amariucai 2023)
for enhancing the security of companies, training, competitions, and cyber warfare.

In the realm of cyber attacks, particularly in scenarios such as Capture the
Flag (CTF) tournaments, attackers lack prior knowledge of the target environment,
which unfolds during the campaign (Ortiz-Garces et al. 2023). According Che Mat
et al. (Che Mat et al. 2024), a strategic emphasis on stealthy becomes crucial, un-
derscoring a decisive sequencing decision-making process to link attack actions with
fewer steps and fails, minimizing the likelihood of attack be exposed. Therefore, in
light of the extensive damage wrought by cyber attacks in recent years, the explo-
ration of autonomous cyber attacks holds paramount importance.

The literature reveals, Reinforcement Learning (RL), as an ap-
proach widely employed in attack automation (Gangupantulu et al. 2021;
Pozdniakov et al. 2020; Chen et al. 2023; Zhou et al. 2021; Yang and Liu 2022;
Tran et al. 2021; Standen et al. 2021; Li et al. 2022). RL involves a trial-and-error
process wherein an agent gains knowledge from its environment through rewards or
penalties, progressively improving its performance over time.
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An attack involves crucial aspects to achieve their objectives, such as: re-
silience in dynamic environments, for example, a victim remediating a vulner-
ability during the attack and stealthy, in which, involves the minimization of
steps and fails during the incursion. Despite, RL emerging as the predominant
approach in autonomous cyber attack research. According Horta Neto et al.
(Horta Neto et al. 2024), limitations arise in some attack scenarios, including high
amount of fails during attack, the poor performance of RL agents with limited
training data and the issue of low resilience in dynamic environments.

The existing studies predominantly focus on maximizing rewards to evaluate
algorithms, overlooking the aspects of stealthiness and resilience. This work aims to
rectify this deficiency by developing an RL algorithm that not only minimizes failures
and steps, and works with limited data, but also is resilient in dynamic environments,
with a primary focus on the sequencing of attacks from the perspective of real-world
scenarios.

To attain this objective, the Kill Chain Catalyst (KCC) RL algorithm is
introduced. KCC employs decision tree logic to guide the agent in attacks, enhancing
resilience in dynamic environments and stealthiness through minimization of fails
and steps. Additionally, a catalyst inspired by genetic alignment, optimizes the
search for the most effective sequence chaining. The standout feature of KCC in
sequential decision-making problems for cyber attacks lies in its use of Random
Forest as the RL engine, in contrast to other algorithms that are neural network-
based.

Experiments were conducted to showcase the use of KCC, along with a com-
parison and explanation of their applicability in different situations. The experi-
ments were performed to analyze the learning curve in terms of steps, rewards, and
failures of KCC, PPO, DQN, TRPO, and A2C in the context of a CTF tournament
for static and dynamic scenarios with limited learning experiences. These experi-
ments demonstrate the superior performance of KCC, revealing differences of up to
340.92% for steps, 138.29% for rewards, and 4585.11% for failures when performing
attacks using KCC compared with algorithms such as A2C, PPO, TRPO, and DQN,
which struggled to generalize attack sequences.

The article is structured to explore the topic comprehensively. It begins
with an Introduction outlining the research objectives. The Background section
covers essential concepts, used in this research. The Related Work section reviews
relevant literature and contextualizes the study. The Methodology section details
the KCU approach. The Experiments and Results and Discussion sections present
the experimental setup, analysis, and findings. Finally, the Conclusion synthesizes
the findings and suggests future research directions.

2. Background

The background section delves into various foundational concepts crucial to the
study, including sequence alignment from genetic alignment, reinforcement learning,
Random Forest, and Gini Impurity-Based Weighted Random Forest.
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2.1. Sequence Alignment
In the study of variations between genes, proteins, or organisms, sequence align-
ments serve as a valuable tool for predicting structural relationships, functions, and
evolutionary changes. These alignments involve the comparison of two or more DNA
or protein sequences, evaluating their similarity (Ibrahim et al. 2024).

The FASTA format, as outlined by Poinsignon (Poinsignon et al. 2023), pro-
vides an efficient and concise representation of biological sequences such as DNA,
RNA, and proteins. This format presents sequences as character strings, where each
character corresponds to a nucleotide or an amino acid. Due to its simplicity and
compatibility, FASTA has gained widespread adoption in bioinformatics, particu-
larly for tasks involving sequence alignment and comparison.

Proteins, composed of amino acids denoted by one-letter codes, play a crucial
role in genetic alignment. The sequence of amino acids within a protein dictates its
function and structure. To compare and align protein sequences, the Needleman-
Wunsch algorithm, highlighted by Gacheva (Gancheva and Stoev 2023), is com-
monly employed. According Ibrahim et al. (Ibrahim et al. 2024), this dynamic
programming technique seeks the optimal global alignment between two sequences
using a scoring system. The algorithm constructs a matrix to store alignment scores
and identifies the best alignment path through the matrix. The scoring system
incorporates match, mismatch, and gap penalties to effectively assess sequence sim-
ilarity.

The Table 1 illustrates an example of sequence alignment through the
Needleman-Wunsch algorithm. Each row corresponds to a distinct DNA sequence,
identified by an Id, displaying the original sequence and its aligned counterpart
generated during the alignment process. The aligned sequences are presented in a
monospaced font to facilitate the visualization of gaps and matching bases. The last
row showcases the consensus sequence, derived from aligning the given sequences.
This consensus sequence represents the most prevalent base at each position, offering
insights into shared characteristics among the aligned sequences.

Table 1. Example for sequence align by Needleman-Wunsch algorithm

Id Sequence Align
Seq1 AGTACGTA A-GTACGT-A
Seq2 ACTACGTA AC-TACGT-A
Seq3 ACGTATT ACGTA--TT-
Seq4 ACGTACGTT ACGTACGTT-
Seq5 ACGTACGTC ACGTACGT-C

Consensus - ACGTACGTTA

2.2. Reinforcement Learning
RL is a subfield of machine learning where an agent learns to make decisions by
interacting with an environment to maximize cumulative rewards. This learning
paradigm is characterized by the agent receiving feedback from the environment
in the form of rewards or punishments, which it uses to update its knowledge and
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improve future actions. Sutton and Barto (Sutton and Barto 2018) provided a com-
prehensive framework for understanding RL, introducing key concepts such as the
Markov Decision Process (MDP), value functions, and policy optimization. In their
seminal work, they describe how an RL agent iteratively refines its policy by bal-
ancing exploration of new actions and exploitation of known rewarding actions, ul-
timately aiming to find the optimal policy that maximizes the expected cumulative
reward over time.

RL algorithms, include: Deep Q-Network (DQN) (Mnih et al. 2015),
Proximal Policy Optimization (PPO) (Schulman et al. 2017), Trust Region
Policy Optimization (TRPO) (Schulman et al. 2015) and Actor-Critic (A2C)
(Mnih et al. 2016).

2.3. Random Forest

Random Forest, a prominent supervised machine learning algorithm, is recognized
for its versatility in addressing regression and classification tasks (Breiman 2001).
This algorithm operates through an ensemble of decision trees, each constructed
independently and drawn randomly from the training dataset. The intrinsic strength
of Random Forest lies in its ability to mitigate overfitting tendencies present in
individual trees, thereby enhancing generalization performance.

Decision trees, integral to the Random Forest framework, are recursive binary
structures designed for optimal feature discrimination. The randomness introduced
during the construction of decision trees in Random Forest plays a pivotal role.
During training, each tree is grown using a bootstrap sample, ensuring diversity
among the trees. Moreover, at each split in the tree, a random subset of features is
considered, preventing the dominance of any single feature.

In the context of classification tasks, Random Forest employs measures such
as entropy or Gini impurity to determine the optimal feature for node splits. En-
tropy measures the information gain, while Gini impurity assesses the probability of
misclassification. The algorithm chooses the split that maximally reduces entropy
or Gini impurity, promoting effective feature discrimination (Farouk et al. 2024).

2.3.1. Gini Impurity-Based Weighted Random Forest

According Disha and Waheed (Disha and Waheed 2022), Random Forest is an en-
semble classifier constructed from multiple decision trees, incorporating various fea-
ture importance metrics. In this sense, Gini Impurity-Based Weighted Random
Forest (GIWRF) is an approach for feature selection. One such metric involves
deriving the importance score through the training of the classifier. Moreover, tra-
ditional machine learning classification algorithms assume that all classes in the
training set possess similar importance, constructing models without accounting for
potential imbalances in class distribution within the training data. In order to assess
the relevance of features in the context of imbalanced data, this feature selection
technique introduces a weight adjustment mechanism within the Random Forest
algorithm, contingent on the Gini impurity, i(τ). The Gini impurity gauges the
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efficacy of a split in dividing total samples of binary classes at a specific node, such
as Equation 1.

i(τ) = 1 − p2
p − p2

n, (1)

where pp represents the fraction of positive samples and pn denotes the fraction
of negative samples among the total number of samples (N ) at node τ . Moreover,
the Gini impurity reduction derives from any optimal split ∆if (τ, M) in which is
gathered together for all the nodes τ in the M number of weighted trees in the
forest, individually for all of the features (Equation 2).

Ig(f) = ∑
M wp,n

∑
τ ∆if (τ, M) (2)

where Ig is the Gini importance, which specifies the frequency of a particular feature
(f) being selected for the split. The significance of the feature’s overall discriminative
value for the binary classification task. Assigning the weight wp, n defines the
imbalanced class distribution in the learning algorithm. The weight adjustment for
positive class wp = nn

N , and for negative class wn = np
N . Considering, wp + wn = 1

and for imbalanced class data wp ̸= wn. The number of negative instances is
represented as nn and the positive instances are denoted as np, and N is the total
number of instances in the training dataset.

3. Related Work
The literature review conducted for this research underscores the prevalent use of
RL in automating cyber attacks (Chen et al. 2023; Li et al. 2022; Zhou et al. 2021;
Yang and Liu 2022; Tran et al. 2021; Standen et al. 2021). However, the identi-
fied studies predominantly rely on simulators (Zhou et al. 2021; Yang and Liu 2022;
Tran et al. 2021; Standen et al. 2021) or directly exploit vulnerabilities listed
in the Common Vulnerabilities and Exposures (CVE) database on real hosts
(Chen et al. 2023). In such scenarios, these attacks are typically categorized as
post-breach, as they bypass reconnaissance tactics aimed at gathering environmen-
tal information like usernames, access credentials, or passwords.

Consequently, in the literature review, except for Li et al. (Li et al. 2022),
the kill chains produced by RL agents primarily function as vulnerability exploiters,
executing attacks in simulators or conducting penetration tests on hosts. CTF com-
petitions necessitate employing reconnaissance tactics and techniques before launch-
ing an attack to accomplish objectives. Despite experiments involving penetration
testing on real hosts, RL agents participating in CTF scenarios were absent from
the reviewed experiments.

Table 2 presents the main researches related to the theme discussed in this
article counting with experiments involving automation of cyber attacks operations.
It is organized in 6 columns, where: Environment detonates the type of environment
used in the experiment, been among: simulation or real. Algorithm the reinforce-
ment learning algorithm, Analysis denotes the variables analyzed in experiments
and lastly, Ref. indicates the research in which the experiment was performed.
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The analysis methodologies employed in the research shown in Table 2, pri-
marily revolve around learning curves for steps and rewards. Failures in the kill chain
during attacks were not considered, although some simulators, such as NASim1, in-
corporate this variable in their simulations.

Considering all simulation environments shown in the Table 2, they are based
on simulators and in hosts. None of the experiments in Table 2 employed tech-
niques for reconnaissance, simulated dynamic environments, changing something in
the state to analyze the implications, or analyzing fails during the attacks. These
types of approaches are important for better understanding the behavior and vul-
nerabilities of security systems in realistic scenarios. Without these elements, the
experiments conducted may have limitations in their ability to faithfully reproduce
the conditions encountered in real environments.

Table 2. Related works with experiments.

Environment Algorithm Analysis Ref.
Real A3C/DPPO/GAIL Steps, Reward, Loss (Chen et al. 2023)
Real DQN Steps, Rewards (Li et al. 2022)
Real Random Forest Rewards (Holm 2022)
Simulation NDSPI-DQN dec. Steps, Rewards (Zhou et al. 2021)
Simulation CLAP(PPO+RND) Steps, Rewards (Yang and Liu 2022)
Simulation HA-DQN Steps, Rewards (Tran et al. 2021)
Simulation DQN + LSTM Steps, Rewards (Standen et al. 2021)

4. Methodology
The section on Methodology introduces 3 significant components: The Kill Chain
Unscrambler, Kill Chain Catalyst and the Exoskeleton2, designed to address limita-
tions in conventional RL algorithms when applied to sequencing tasks in stochastic
environments, particularly within CTF scenarios.

4.1. Kill Chain Unscrambler

The Kill Chain Unscrambler KCU is specifically designed to overcome challenges
in identifying attack sequences in attacks, where the target scenario is unknown,
as opposed to those performed against simulated or emulated ones. In contrast
with other algorithms guided by reward maximization, KCU focuses on achieving
an optimal sequence in a few steps while minimizing failures.

Unlike traditional RL algorithms like PPO, A2C, TRPO and DQN, KCU
takes a slightly unorthodox approach by utilizing recurrent fits in Decision Tree
logic instead of neural networks refit as its engine. Therefore KCU algorithm for
RL is implemented through the Decision Tree Policy.

The Decision Tree Policy implements the Tree classifier using Random For-
est, handling the fitting and prediction processes. This module aims to capture and
learn best patterns in term of steps size, undergoing a KCU transformation process

1https://github.com/Jjschwartz/NetworkAttackSimulator
2https://gitlab.com/antonio50/exoskeleton
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from observed data to make predictions without relying on neural networks. The fit
method in the Tree classifier class in which is using Random Forest for training the
model.

The KCU class, extending the BaseAlgorithm from Stable Baselines 3 3, or-
chestrates the overall functionality of the KCU algorithm. It can be configured to
use DecisionTreePolicy class as the underlying policy. During training, it collects
rollouts, filters the best sequences, and then trains the selected policy accordingly.

Complementary to KCU, the KCC is a catalytic inspired by bio-informatics,
genetic alignment processes, and the use of enzymes to accelerate the decomposi-
tion of proteins. Drawing parallels from the biological realm, KCC is integrated
into the KCU. Its primary objective is to expedite the convergence of the learning
curve within KCU, seeking sequences with a reduced number of steps, and crucially,
minimizing fails in the chaining of attack techniques to achieve more stealthy and
realistic attack sequences.

In this process, genetic alignment plays a pivotal role in aligning the kill
chains, which act as proteins. The consensus of these sequences aligned by
Needleman-Wunsch algorithm generates weights for each technique. This weight
vector assigns importance to each item in the sequence within a training sample,
functioning akin to an enzymatic process to accelerate the search for optimal kill
chain sequences.

4.2. KCU Agent

The Figure 1 illustrates the operational workflow of the KCU agent, specifically
designed for executing Reinforcement Learning tasks in stochastic environments
with sequencing requirements. This agent operates by ingesting input scenarios,
which can originate from either simulators or real computing systems settings.

Figure 1. The Kill Chain Unscrambler with Catalyst process

3https://stable-baselines3.readthedocs.io
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From these scenarios, the KCU agent receives (θt) denoting States (−→S t) and
Rewards (−→R t) corresponding to the executed Actions (−→A t), represented as Equation
3. Considering the Equation 4, the agent then creates a mask (−→Jt) based on the
indices (j) of the reward vector (−→Rt) that are greater than 0, indicating positive
effects without penalties or failures. Beside Reward (−→R t), this mask is applied to
both the States (−→St) and Actions (−→At) vectors according Equations 5, 6 and 7.

θt = −→
S t,

−→
R t,

−→
A t (3)

−→
Jt = j−→Rt>0

(4)

−→
Rt = −→

R tj(j ∈ −→
J t) (5) −→

St = −→
S tj(j ∈ −→

J t) (6) −→
At = −→

A tj(j ∈ −→
J t) (7)

Then, according Equation 8, a shift of -1 is applied to the indexes of Actions
(−→At) vector.

−→
At = −→At(j-1) (8)

Next, the Actions (−→At) vector undergoes a Catalysis process, where, in con-
junction with the Best KC QUEUE (−→

QA), it undergoes sequence alignment using
the Needleman-Wunsch (NW ) (Gancheva and Stoev 2023) algorithm as shown in
Equation 9.

KCC = mode(NW (−→At,
−→
QA)) (9)

Upon alignment, a consensus is reached through mode calculation, generating a
consensus vector. The catalysis process concludes with the computation of the
average consensus vector, which serves as the weight vector (−→Wt) according Equation
10.

−→
Wt =

−−−→
KCCtj∑ −−−→
KCCtj

(10)

At this stage, Rewards (−→Rt), States (−→St), and Weights (−→Wt) enter the rollout
process. Rollout involves determining actions based on the reinforcement learning
training policy, employing a decision tree policy based on GIWRF (Equation 2).
This policy formation uses the weight vector for each sample. If the resulting ac-
tion sequence after rollout is shorter than the longest action vector in the Best KC
QUEUE (−→

QA), it is inserted into the queue, which is then sorted in descending order
based on the number of steps (Equation 11).

−→
QA = −→

QA ∪ −→
A, if(len(−→A t) < maxlen(−→

QA) (11)
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The randomized or predicted action is sent to the scenario, initiating a
feedback loop until all epochs are processed producing the Decision Tree Policy:
πθ(St|At, Wt).

The KCU Agent has different operational modes that can be activated
through hyperparameters based on the objectives to be achieved. These modes
include: KCU only, KCC, and Dynamic. In the KCU only mode, the algorithm
follows the procedures described earlier to find attack sequences without the use of
the catalyst. Additionally, the KCC mode activates the Catalyst to optimize the se-
quence discovery process using weights derived from the arithmetic mean consensus
generated by Needleman-Wunsch alignment. Finally, the Dynamic mode monitors
the agent’s training, and if last step is equal the maximum steps per epoch and if
last step exceeds the standard deviation from moving average of steps for the last 10
episodes, the buffer (QUEUE Best KC) is reset to zero, and the epsilon (e-greedy)
value is reset to the initial state. This process encourages the agent to discover new
attack strategies.

4.3. Environment

In the context of the objective, a server has been configured with the characteristics
of a CTF challenge to establish the Dummy scenario for attack practice, using
images from vunlhub4. This server operates within a container, running on the
Ubuntu Linux operating system. It contains two text files, each housing secret keys
symbolizing flags in the CTF scenario, the ultimate objectives. One of these files
resides in the home directory of the basic user, while the other is located in the root
directory, necessitating privileged access for content retrieval. Ensuring a secure
testing environment, the server has all applicable security patches applied and is
devoid of any known vulnerabilities.

Regarding the integration with reinforcement learning, an interface named
Exoskeleton2 has been devised to facilitate autonomous attack processes. This inter-
face operates at a low level of abstraction, enabling reinforcement learning algorithms
to interact seamlessly with the target server. Within the Exoskeleton2, the agent
is equipped with eight MITRE ATT&CK 5 techniques that can be executed against
the server. These techniques leverage known attack tools and generate responses
based on the success or failure of potential actions within the scenario.

4.3.1. Action Space

Table 3 presents a set of MITRE ATT&CK 5 techniques implemented in the Ex-
oskeleton2 interface. Each row details a specific tactic and technique combination,
providing information such as tactic and technique IDs, names, and associated tools.
These techniques serve as the action space for autonomous attack simulations, al-
lowing for the evaluation of reinforcement learning algorithms in a controlled and
realistic environment. The complete references and detailed descriptions of these
techniques can be accessed on the MITRE ATT&CK 5.

4https://github.com/vulhub/vulhub/tree/master/libssh/CVE-2018-10933
5https://attack.mitre.org/matrices/enterprise/
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Table 3. Exoskeleton’s action space

Tactic id Tactic name Technique id Technique name Cmd or Tool
TA0043 Reconnaissance T1595.001 Active Scanning: Scanning IP Blocks nmap
TA0043 Reconnaissance T1595.003 Active Scanning: Wordlist Scanning dirb
TA0043 Reconnaissance T1589.002 Gather Victim Identity Information: Email script parser
TA0001 Initial Access T1078.003 Valid Accounts: Local Accounts hydra
TA0001 Initial Access T1190 Exploit Public-Facing Application libssh exploit
TA0006 Credential Access T1110.001 Brute Force: Password Guessing ssh
TA0007 Discovery T1083 File and Directory Discovery bash
TA0004 Privilege Escalation T1548.001 Abuse Elevation Ctrl Mechanism: Setuid & Setgid find
TA0009 Collection T1005 Data from Local System cat

Building upon the outlined techniques, the shortest kill chain available for
exploiting the Dummy scenario in the Exoskeleton2 is depicted in Figure 2. Kill
chain A (KC A) represents a scenario with security patches updated, characterized
by a minimal number of steps and failures. It includes reconnaissance activities
like scanning IP blocks and word list scanning, along with gathering victim iden-
tity information, involving the acquisition of email addresses. Further techniques
encompass credential access through brute force attacks, such as password guessing
for SSH, and initial access through valid local accounts for SSH. Tactic discovery
manifests through file and directory discovery in SSH, leading to the exploitation of
privilege escalation via the Setuid and Setgid elevation control mechanisms in SSH.
Ultimately, the data collection from the local system culminates in achieving the ob-
jective of capturing the flag. In contrast, Kill chain B (KC B), illustrated in Figure 2,
serves as an alternative kill chain when the target machine is not patched. This sce-
nario exploits a vulnerability in libssh, enabling the attacker to bypass authentication
control and gain a session with root privileges, as explained in CVE-2018-10933 6.

Figure 2. Kill chains available in Exoskeleton’s Dummy Scenario.

Exoskeleton2 transforms real computing systems into a Gymnasium-
compatible7 scenario format, a platform tailored for testing reinforcement learning
algorithms.

Integral to the reinforcement learning process, the Exoskeleton2 adopts a
reward model. Successful actions resulting in state modifications are rewarded with

6https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10933
7https://github.com/Farama-Foundation/Gymnasium
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a +1, actions that execute without altering the state receive a reward of 0 (e.g.,
repeated commands), and failures to execute, whether due to connection issues or
service failures, result in a penalty of -1. Therefore, achieving both flags within the
scenario leads to a substantial reward of 100. This intricate reward system provides
the reinforcement learning agent with a clear incentive structure as it navigates the
challenges presented by the CTF environment.

4.3.2. State Space

The Exoskeleton2 conceptualizes the state space by encapsulating the outcomes de-
rived from the agent’s executed actions in their raw format, such as the output of
an nmap command as it manifests in stdout. The state fields, representing various
facets of the system, are enumerated in the Table 4. Table 4 organizes the fields
into two columns: the first delineates the field, and the second furnishes a succinct
description.

Table 4. Exoskeleton’s state space

Field Description Field Description
src ip address IP address of the attacker machine session used ID of the used session
dst ip address IP address of the target system session List of available sessions
action executed Action executed to attain this state step Step received for executing the action
results Results of the action done Indication of the objective achieved
tactic Tactic of the executed action recon IPs and services gathered by nmap
technique Technique of the executed action credentials IPs and services gathered by hydra
failed Indication if the action failed discovery Discovery data: login, password, vulns
reward Reward from the executed action collection List of collected data, flags, etc.

The invariant model proposed by Janisch et al. (Janisch et al. 2023), which
processes each host feature vector individually with a shared embedding function,
served as the basis for the modeling of Exoskeleton2. According Janisch et al.
(Janisch et al. 2023), the invariant architecture can process an unlimited number
of hosts and is better equipped for generalization due to weight sharing, while using
a fraction of the parameters. Therefore, the Exoskeleton2 transforms the State into
a vector of integers representing Observables. The modeling of States and Observ-
ables allows infinite scalability for States. This modeling become Actions techniques
independent of the variables in the scenario. The independence generated by this
modeling is an important factor in distinguishing Exoskeleton2 from simulators em-
ployed in related work.

5. Experiments
The experiment involving KCC will be assessed alongside four algorithms: the tradi-
tional value-based Deep Q-Network (DQN), policy-based Proximal Policy Optimiza-
tion (PPO), Trust Region Policy Optimization (TRPO), and the hybrid Advantage
Actor-Critic (A2C) RL algorithms. While these algorithms use neural networks as
their policy, KCC employs decision tree logic. The assessment will focus on key
metrics such as the learning curve, total rewards, total steps, and total failures.

To analyze the performance of KCC in attack operations, considering the
learning curve for limited attack experiences and ability to handle dynamic scenar-
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ios, the experiment is structured into two independent essays. The first essay aims
to compare the learning curve of the KCC, with four other RL algorithms: PPO,
TRPO, A2C, and DQN. The last essay demonstrates the resilience of the KCC to
dynamic scenarios with the dynamic scenario flag activated, alongside the same four
RL algorithms aforementioned. In this final essay, vulnerabilities are rectified mid-
way through each algorithm’s learning cycle, prompting the converged algorithms
to explore new attack paths.

The experiment involves conducting attacks using reinforcement learning
agents with different algorithms in a CTF competition. In this competition, the
agent has a limited maximum steps per epoch and total epochs to learn, set at 50
for both. The selected environment for this competition is the Dummy scenario
of the Exoskeleton interface. In the last trial, the Dummy scenario introduces an
additional vulnerability, CVE-2018-10933 6, which, as explained, will be addressed
during the learning cycle.

The analysis of the agents’ performance in unfamiliar scenarios focuses on
the number of steps required to achieve the goal, the quantity of received rewards,
and the occurrences of failures. For all essays, the parameters outlined in Table 5
were considered. Parameters not explicitly provided will follow the default values of
the Stable Baselines 3 framework.

Table 5. Essays’ parameters

Agent Parameter Essay 1 Essay 2
KCC, PPO, TRPO, A2C, DQN epochs 50 50
KCC, PPO, TRPO, A2C, DQN max steps per epoch 50 50
KCC, PPO, TRPO, A2C, DQN timesteps 2500 2500
KCC epsilon (e-greedy) 0.25 0.25
KCC decay rate (e-greedy decay rate) 0.01 0.05
KCC kcc (catalyst) True True
KCC seed (random seed) 1 1
KCC buffer (size of the best KCs QUEUE) 20 20
KCC n estimators 50 50
KCC min samples leaf 1 1
KCC dynamic scenario False True

6. Results and Discussion
For the first essay, KCC was compared with traditional RL algorithms in the CTF
scenario. As previously mentioned, in real attack situations, all algorithms were
subjected to a scenario with limited steps and epochs for learning. Table 6 presents
the cumulative values and percentage differences of each algorithm, comparing them
with the results achieved by KCC. KCC, utilizing decision tree logic in contrast to
the neural networks used by the other algorithms, demonstrated superior overall
performance in this type of problem. KCC accumulated 567 steps by the end of the
learning cycle, compared to the others, which remained around 2500 steps. However,
when analyzing cumulative failures and rewards, distinctions among the algorithms
become evident. KCC stands out as the best, followed by A2C, PPO, TRPO, and
DQN for rewards, and PPO, TRPO, A2C, and DQN for failures.
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Table 6. Cumulative Values and Percentage Differences Relative to KCC

Serie Steps Diff Steps Rewards Diff Rewards Fails Diff Fails
KCC 567 0.00% 5252 0.00% 47 0.00%
PPO 2492 339.51% -162.0 103.08% 496 955.32%

TRPO 2500 340.92% -567.0 110.80% 640 1261.70%
A2C 2383 320.28% 184.0 96.50% 1241 2540.43%
DQN 2483 337.92% -2011.0 138.29% 2202 4585.11%

As shown in Figures 3.a, 3.b and 3.c only KCC generalized, achieving an
8-step kill chain. This serves as evidence that these algorithms are learning and
require more experiences to converge. This essay makes clear the challenges faced
by RL algorithms based on neural networks when dealing with limited data for
training, a factor present in sequencing of real attack situations.

(a) Last Step x Episode (b) Reward x Episode (c) Fails x Episode

Figure 3. Limited experiences for KCC, A2C, PPO, TRPO and DQN

The second essay, which commenced with the exploitation potential of CVE-
2018-10933 within the Dummy Scenario, presents distinctive observations. This
vulnerability facilitated the extraction of KC B, as delineated in Figure 2. However,
during the ongoing learning cycle at step 25, a remediation ensued, restricting ac-
cess solely to KC A, also depicted in Figure 2. This deliberate protocol aimed at
scrutinizing agent behavior concerning resilience in dynamic scenarios.

Figure 4 encapsulates the comprehensive evaluation of agents subjected
to dynamic scenarios. The red vertical demarcation (dynamic line) signifies the
vulnerability-fixing juncture . The KCC agent, configured for dynamic scenarios,
manifests discernible alterations in strategy upon vulnerability resolution. There-

(a) Last Step x Episode (b) Reward x Episode (c) Fails x Episode

Figure 4. Comparing KCC, A2C, PPO, TRPO and DQN in a dynamic scenario
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fore, KCC dynamically adapts its approach, recalculating strategies post-resolution,
and resumes convergence after a dozen steps.

In contrast, other algorithms exhibit inconspicuous behavioral shifts post-
vulnerability correction. This arises due to their proclivity for challenges within
low-experience scenarios; not having converged to a kill chain at the time of the fix,
they persist in seeking convergence pathways. Conversely, KCC, with the dynamic
scenario’s flag active, monitors learning evolution. Upon detecting any anomalies,
it promptly recalibrates its exploitation strategy. Consequently, resilience factors
remain indiscernible for other algorithms, as their quest for convergence is uninter-
rupted by the vulnerability fix.

Finally, the KCU, supported by the KCC, represents a significant step for-
ward in autonomous cyber attack strategies. Its ability to outperform traditional
RL algorithms in dynamic scenarios underscores the potential of genetic alignment
techniques in cyber security. Future research should aim to refine these methods,
explore broader applications, and address practical deployment challenges to fully
realize the benefits of this approach.

7. Conclusions

This conclusion synthesizes the main findings and contributions of the research,
highlighting the development and evaluation of the KCC algorithm, driven by an
RL agent in attacks on dynamic scenarios. The KCC, utilizing decision tree logic and
a catalyst inspired by genetic alignment, proved effective in overcoming limitations
found in traditional neural network-based algorithms such as PPO, TRPO, A2C,
and DQN, particularly in environments with limited learning experiences.

Experiments conducted within the context of a CTF tournament demon-
strated the superiority of KCC in generalizing and optimizing attack sequences,
minimizing the steps and failures required to achieve objectives. The results showed
differences of up to 340.92% for steps, 138.29% for rewards, and 4585.11% for fail-
ures when performing attacks using KCC compared with other traditional RL algo-
rithms. Moreover, KCC ’s ability to quickly adapt to environmental changes, such as
the remediation of vulnerabilities, highlighted its resilience and efficacy in dynamic
scenarios, a feature not observed in other tested algorithms.

These results underscore the significance of decision tree-based approaches
and the potential of the catalyst to enhance the performance of RL in cyber attacks.
The research indicates that future studies should focus on refining the exploration
phase of the algorithm, particularly given its stochastic nature, as this is crucial for
the type of study conducted. Such refinement could not only optimize the achieve-
ment of performance benchmarks but also improve the offset when compared to
other algorithms. Moreover, the integration of additional artificial intelligence tech-
niques could further enhance the effectiveness and resilience of autonomous cyber
defense systems. Conducting experiments in increasingly complex and variable en-
vironments could also provide further insights into the robustness and adaptability
of the KCU in dynamic attack scenarios.
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