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Abstract. NTRU is one of the most important post-quantum cryptosystems
nowadays and since its introduction several variants have been proposed in the
literature. In particular, the Matrix NTRU is a variant which replaces the NTRU
polynomials by integer matrices. In this work, we develop a lattice-based re-
duction attack on the Matrix NTRU cryptosystem that allows us to recover the
plaintext. We also show that this system is completely vulnerable to the pro-
posed attack for parameters that could be used in practice. In addition, we give
sufficient conditions to avoid decryption failure for the Matrix NTRU.

1. Introduction
Quantum computers are now a reality and if large-scale ones are built, they could break
most of the public key cryptosystems used currently. That is one of the reasons that
research on post-quantum systems (cryptographic systems underpinned on mathematical
problems that are intractable by both quantum and conventional computers) has taken off
in the last decades.

In 2016, the National Institute of Standards and Technology (NIST) started a
public process for the standardization of post quantum algorithms that could be used
to interoperate with existing communications protocols and networks currently used.
One of the main mathematical problem underpinning such system is the shortest vec-
tor problem (SVP), which aims at finding a shortest vector in a structure called lat-
tice (see [Silverman et al. 2008]).Two lattice-based systems have progressed significantly
in the NIST Post-Quantum Cryptography standardization process [NIST ]: the NTRU
[Chen et al. 2020] and the NTRU Prime systems [Daniel J. Bernstein et al. 2024], both
based on the original NTRU system from [Hoffstein et al. 1998].

The NTRU system was presented in 1996 to the cryptographic community dur-
ing the CRYPTO 96 rump session. Since its introduction, the NTRU system has been
extensively analyzed and extended in many different ways. Interesting review arti-
cles containing a wealth of examples and references include [Singh and Padhye 2016,
Salleh and Kamarulhaili 2020] and [Mittal and Ramkumar 2022]. NTRU is based on
modular algebra of polynomials in specific rings and such generalizations range from
changing the polynomial coefficients to using matrix structures.

The first NTRU generalization using matrices was introduced in
[Coglianese and Goi 2005], where key generation, encryption and decryption oper-
ate over matrices whose entries are polynomials. In 2008, [Nayak et al. 2008] proposed
a matrix-based system as a variant of NTRU using only matrices with integer entries,
replacing the arithmetic of truncated polynomials with a simple modular arithmetic on
matrices. This new system, called matrix NTRU, was subject to some further analysis
and even suggested for real data applications. Indeed, [Kumar et al. 2013] presented a
framework for deploying matrix NTRU in real data applications.
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Since its introduction the matrix NTRU has attracted some attention. A compar-
ative study regarding speed and key sizes was performed in [Nayak et al. 2012] showing
that matrix NTRU was faster than the classical NTRU for short dimensions. In addition,
[Nayak et al. 2012] argue that matrix NTRU was more secure than the classical NTRU
since matrices are noncommutative. However, we will show that the matrix NTRU sys-
tem is seriously affected by the lattice attack developed in Section 5. This demonstrates
that the matrix NTRU is far weaker than the classical NTRU system for comparable
key sizes, contrary to what was accredited in the literature (see [Nayak et al. 2012] and
[Kumar et al. 2013]).

Subsequent works on the matrix NTRU focused on expanding the key space
and on eliminating restrictions on the matrices representing the public key by us-
ing Gram-Schmidt orthogonalization and companion matrices ([Luo and Lin 2011,
Tripathi et al. 2016, Mamdikar et al. 2018]).

With regards to the system’s security, [Nayak et al. 2011] applied a reaction
type attack to matrix NTRU, by adapting the results of the original attack presented in
[Hall et al. 1999] for the NTRU system. In addition, a meet in the middle attack was
recently presented in [Wijayanti et al. 2023]. However, the simulation studies presented
in these works only show the performance of the aforementioned attacks for very low
dimensions of the matrix NTRU, which cannot be used in practice.

Our main contribution to matrix NTRU is in developing a lattice-based attack and
analyse its resistance in dimensions much higher than the ones suggested for practical
applications in [Kumar et al. 2013]. We will show in Section 5 how this attack can recover
the private key (up to a permutation). In addition, this attack is further used to construct a
message recovery attack that works for a dimension of the system of up to 110. According
to [Nayak et al. 2012], a matrix NTRU system such as this is equivalent to an NTRU
system using polynomials of degree 1102, which is not even close to being broken by
lattice-based techniques ([Chen et al. 2020]).

In addition to the lattice attack, we also analyse the decryption failure rate of the
matrix NTRU. The results of Proposition 2 give sufficient conditions that depend only on
the system’s public parameters to avoid decryption failure.

The rest of the paper is organized as follows. In Section 2, we describe the NTRU
cryptosystem in details and a brief description of Matrix NTRU is given in Section 3.
Sufficient conditions to avoid decryption failure for the Matrix NTRU are also presented
in this section. Then, in Section 4, we construct the lattice structure associated with the
matrix NTRU and report the results of an attack to recover the private key. This attack is
further refined in Section 5 to construct a message recovery type attack that works for a
dimension of up to n2 = 1102 on a personal computer. The results of the previous section
are summarized in Section 6 where we explain why the Matrix NTRU is far weaker than
the NTRU cryptosystem concerning the lattice attack.

2. The NTRU Cryptosystem

Let n and p be prime numbers. Let q ≥ 1 be an integer such that (n, q) = (p, q) = 1. The
main arithmetic operations in the NTRU cryptosystem are calculations over polynomials
defined over the rings R, Rp e Rq defined as:
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R =
Z[x]

(xn − 1)
, Rp =

(Z/pZ)[x]
(xn − 1)

, Rq =
(Z/qZ)[x]
(xn − 1)

.

We can notice that the ring R is related to the other two. In fact, for every a(x)
in R, we can identify it to an element in Rp or Rq by applying reduction modulo p or q,
respectively, over the coefficients of a(x). We say that a(x) is a ternary polynomial if its
coefficients lie in the set {−1, 0, 1}.

The NTRU cryptosystem works as follows.
1. Key Generation: Alice chooses two ternary polynomials at random, namely, f(x)

and g(x). Next, Alice tries to compute the inverse of f over the rings Rq, Rp, i.e,
fq(x) = f(x)−1 ∈ Rq and fp(x) = f(x)−1 ∈ Rp until she succeeds. Finally, she
computes the polynomial

h(x) = fq(x) ∗ g(x) ∈ Rq,

where ∗ denotes polynomial multiplication in Rq, i.e., a cyclic convolution product
as defined in [Hoffstein et al. 1998, Section 1.1] The polynomial h(x) is Alice’s
public key and the pair (f(x), fp(x)) is her private key.

2. Encryption: Suppose Bob wants to send an encrypted message to Alice and let
m(x) ∈ Rp be Bob’s plaintext. Next, Bob chooses, at random, a ternary polyno-
mial r(x) and computes

e(x) ≡ ph(x) ∗ r(x) +m(x) mod q.

Notice that Bob’s ciphertext e(x) is an element of the ring Rq.
3. Decryption: Once Alice receives Bob’s ciphertext e(x), she starts the decryption

process by computing

a(x) ≡ f(x) ∗ e(x) mod q.

Then the reduction modulo p gives the desired plaintext

b(x) ≡ fp(x) ∗ a(x) mod p.

Because of the randomness of the polynomial r(x), NTRU is a probabilistic cryp-
tosystem, since a message m(x) can be encrypted to several ciphertexts ph(x) ∗ r(x) +
m(x), depending on each instance of r(x). However, in doing so, we can introduce a vul-
nerability into the NTRU cryptosystem, since some ciphertext may not decrypt correctly
to the original message, a phenomenon known as a decryption failure. Some attacks in
the literature take advantage of these decryption failures [Howgrave-Graham et al. 2003,
Gama and Nguyen 2007, Jaulmes and Joux 2000] and therefore we should choose the pa-
rameters carefully.

3. The Matrix NTRU Cryptosystem
Let p be a prime number and q >> p an integer such that (p, q) = 1. Let

A =

a11 . . . a1n
... . . . ...

an1 . . . ann



Anais do SBSeg 2024: Artigos Completos

3



be an n × n matrix whose entries are integer numbers, that is, A ∈ Mn(Z). In a similar
way we have done before with polynomials, we say that A is a ternary matrix if all of its
entries lie in the set {−1, 0−, 1}.

We say that A is reduced modulo p, denoted as A mod p, if every entry of A is
reduced modulo p. Therefore

A mod p =

a11 mod p . . . a1n mod p
... . . . ...

an1 mod p . . . ann mod p

 .

Notice that, in the latter case, we can view matrix A as an element of the ring Mn(Fp).
In this work, we are going to consider the center lift operation modulo p and q in the
decryption process. In that case, it can be useful to consider a noncanonical representation
of the elements on the rings. Therefore, when we are dealing with a prime modulus, we
have

Fp =

{
−p− 1

2
, . . . ,

p− 1

2

}
and for a composite number, we have

Zq =
{
−q

2
+ 1, . . . ,

q

2

}
.

Modular arithmetic over the rings Mn(Fp) and Mn(Zq) is what underpins the Ma-
trix NTRU system. In such rings we can add, subtract and multiply matrices in the same
way we have done with matrices over the field of real numbers. However, in order to in-
vert a matrix in Mn(Fp) we have to be sure that p and the determinant of A are relatively
prime [Jacques-Garcı́a et al. 2022, Wijayanti et al. 2023]. If that is the case, then there
exists a (unique) matrix B such that AB = BA = I in Mn(Fp), where I is the identity
matrix. The matrix B is called the inverse of A modulo p and denoted A−1 mod p.

The matrix NTRU system works as follows.

1. Key generation: In the Matrix NTRU cryptosystem, the private and public keys
are n × n matrices. First, we choose a pair of ternary matrices F,G such that F
mod p and F mod q are invertible in Mn(Fp) and Mn(Zq), respectively. Then
we compute the matrices Fp and Fq, where Fp = F−1 mod p and Fq = F−1

mod q. The pair F, Fp is the private key and the parameters F,G, Fp, Fq should be
kept in secret. Now, we can compute the public key by performing the calculation

H = pFqG mod q.

2. Encryption:To encrypt a message, we encode it as a matrix M ∈ Mn(Fp) and
choose a ternary matrix R ∈ Mn(Z), at random. Now, we compute the ciphertext
as

E = HR +M mod q.

3. Decryption: To decrypt, we compute

A = FE mod q,
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where F is the private key we saw previously. Next, we reduce A modulo p and
compute

B = FpA mod p.

If everything went well, the matrix B will be precisely the message M we started
with before the application of the encryption function.

However, depending on the parameters selection, we can have errors when
operating on Matrix NTRU, just as we have when dealing with NTRU cryptosystem.
Sometimes, the matrices B and M can be different and we say there is a decryption
failure if that is the case. We notice that the authors [Nayak et al. 2008] did not address
that question. However, it turns out that this is an important issue concerning any
probabilistic cryptosystem. To fill such a lack in their proposed algorithm, we prove
the following result, which shows that there are parameter selections to prevent failure
decryption on Matrix NTRU.

Proposition 1. Suppose that p, q and n are fixed parameters for the Matrix NTRU defined
above. If n(3p−1) < q, then any ciphertext E resulting from the encryption of a message
M with private key F , decrypts correctly to M .

Proof. During decryption, one computes

A = FE mod q

= F (HR +M) mod q

= FHR + FM mod q

= pFFqGR + FM mod q

= pGR + FM mod q.

(1)

Following the same arguments as in the proof of Proposition 6.48 in
[Silverman et al. 2008], we need to bound the largest coefficient (in modulus) of
each entry of the matrix pGR + FM computed exactly (without module q). For
decryption to work, the above matrix should have entries whose absolute value does
not exceed q/2. Since every entry of the matrices G and R lie in {−1, 0, 1}, the largest
possible entry of the product GR is upper bounded by n. On the other hand, the matrix
M has coefficients between −(p − 1)/2 and (p − 1)/2 and F has coefficients lying in
{−1, 0, 1}. Therefore, all coefficients of the product FM can be bounded by n(p− 1)/2.
Finally, the entries of the matrix pGR + FM are all upper bounded in module by
np + n(p − 1)/2 = n(3p − 1)/2. Under the assumption of the proposition, this can be
further bounded by q/2 which will ensure correct decryption of the ciphertext.

We implemented the Matrix NTRU in [Team 2024] and assessed the decryption
failure rate for a set of different parameters. Table 1 shows the results:

4. Lattice attack on the private key
In the following section we show how the problem of finding the private key F of the
matrix NTRU system is connected to solving a well-known problem in lattices, namely
finding the shortest vector in a lattice. A lattice can be defined in the following way.
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Table 1. Decryption failure estimated probability for the Matrix NTRU system for
fixed p = 3 and varying n and q. For each parameter setting a new key and
message were generated and encrypted. Results present the proportion of
messages decrypted correctly over 10000 repetitions.

q
n 32 64 79 128 256 307 512 701 1024 2048 4096
5 0.008 0 0 0 0 0 0 0 0 0 0

10 0.775 0 0 0 0 0 0 0 0 0 0
20 1 0.210 0.008 0 0 0 0 0 0 0 0
30 1 0.989 0.397 0 0 0 0 0 0 0 0
40 1 1 0.989 0.002 0 0 0 0 0 0 0
50 1 1 1 0.039 0 0 0 0 0 0 0
60 1 1 1 0.257 0 0 0 0 0 0 0
70 1 1 1 0.734 0 0 0 0 0 0 0
80 1 1 1 0.984 0 0 0 0 0 0 0
90 1 1 1 1 0 0 0 0 0 0 0

100 1 1 1 1 0 0 0 0 0 0 0
110 1 1 1 1 0 0 0 0 0 0 0

Definition 1. ([Silverman et al. 2008, Section 6.4]) Let f1, . . . , fn ∈ Rn be a set of lin-
early independent vectors. The lattice L generated by f1, . . . , fn is the set of linear com-
binations of f1, . . . , fn with coefficients in Z,

L = {α1f1 + · · ·+ αnfn : α1, . . . , αn ∈ Z}. (2)

The set of vectors f1, . . . , fn is called the lattice basis and it is usual to stack
them into a matrix and work with the matrix as being the lattice basis that generates
L. A fundamental problem in lattice is finding a shortest nonzero vector in the lattice
which minimizes the Euclidean norm ∥f∥. This is called the shortest vector problem
(SVP). It is important to notice that the SVP problem asks for a shortest vector and not
the shortest vector since e.g. f and −f have the same Euclidean norm. According to
[Silverman et al. 2008] Finding a solution for the SVP problem can be used to break
various cryptosystems, in particular the NTRU system from Section 2 (for certain
parameters) and as we will show next how it can be used to finding the private key
F in the matrix NTRU system. It is worth noticing that the current version of NTRU
submitted to NISTs post quantum competition [Chen et al. 2020] have parameters that
avoid private key attacks with current computational resources and it is practical. On the
other hand, the matrix NTRU variant has a serious vulnerability in its construction, that
makes it breakable for quite high values of parameters that could be used in practice.

Proposition 2. Let F,G be the private keys and let H be the public key of the matrix
NTRU with parameters n, p, q. Let (fk, gk) be the k-th line of F and G respectively and
p−1 be the inverse of p module q. Then, (fk, gk) belongs to the lattice generated by the
lines of the 2n× 2n block matrix

L =

(
In p−1H
0n qIn

)
, (3)
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where In is the n dimensional identity matrix and 0n is the n dimensional zero matrix. In
other words, the unknown vector (fk, gk) can be written as an integer linear combination
of the lines of L (which has only known quantities).

Proof. The public key is defined as H = pFqG, where p and q are coprime, and F and
G are the private keys created during the key generation step. Multiplying both sides of
the above equation by Fp−1 we get Fp−1H = G mod q. This implies that there exists a
matrix A ∈ M(Z) such that

G = F (p−1H) + qA, (4)

Let V = (αH) and denote by fk, gk and ak the k-th line of the matrices F,G and
A. Equation (4) implies that gk = fkV + qak. Therefore, the 1 × 2n vector (fk, gk) can
be written as

(fk, gk) = (fk, fkV + ak(qIn))

= (fkIn + ak0n, fkV + ak(qIn))

= fk(In, V ) + ak(0n, qIn)

= fk1(1, 0, . . . , 0, 0, v11, v12, . . . , v1n)

+ fk2(0, 1, . . . , 0, 0, v21, v22, . . . , v2n)

. . .

+ fkn(0, 0, . . . , 0, 1, vn1, vn2, . . . , vnn)

+ ak1(0, 0, . . . , 0, 0, q, 0, . . . , 0)

+ ak2(0, 0, . . . , 0, 0, 0, q, . . . , 0)

. . .

+ akn(0, 0, . . . , 0, 0, 0, 0, . . . , q).

(5)

Since all 1× 2n dimensional vectors at the rhs of (5) equation are exactly the lines of the
matrix L in (3), the proof is completed.

Recall that the matrices F and G have only coefficients in {−1, 0, 1}, and therefore
any line of the type (fk, gk) is a relatively short vector in the lattice L for large q. Indeed,
using a Gaussian heuristic, the shortest vector expected from a lattice L depends only on
the dimension of L and its determinant. Since L is upper triangular, we have det(L) = qn.
Therefore, the length of the shortest vector expected from L is

l =

√
n

2πe
(det(L))1/(2n) =

√
nq

2πe
.

The target vector (fk, gk) has varying norm depending on how the private key is chosen.
If every entry is chosen with uniform probability on {−1, 0, 1}, then, its expected norm
is α =

√
2n/3. This means that for higher values of q, the target vector has norm smaller

than the expected by the by the Gaussian heuristics, which means that the LLL algorithm
has a high probability of find a short vector in L (see [Silverman et al. 2008]).

Another interesting fact is that we do not need to attack the whole private key F
which has dimension 2n. Using a suitable algorithm to solve the SVP in L we can try to
find any line of F and hopefully all lines separately reducing the complexity of the attack
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by a factor of n instead of n2 (when the attacker is interested in obtaining all entries of F
at once).

Solving the SVP problem can be done in many ways, and one commonly done
is by using lattice-based reduction algorithms such as the famous LLL algorithm from
[Lenstra et al. 1982] and or the BKZ algorithms [Chen and Nguyen 2011]. For more de-
tails on the LLL algorithm see e.g. [Bremner 2011, Chapter 4]. These base reduction
algorithms try to find a shorter basis for the lattice L, and in doing so, they usually return
potential short vectors for the lattice L and we can test if they correspond to any line of
the matrix F .

In addition to using the LLL algorithm, there is an improved variant of lattice
based reduction algorithms called BKZ as defined in [Chen and Nguyen 2011]. The BKZ
algorithm, proceeds with repeated local improvements to the lattice basis. One of its
simple implementations is a recurring set of calls to SVP oracle solvers of dimension set
by the block size parameter of the BKZ algorithm and LLL calls and will be used in the
following for recovering the private key. Although these algorithms can be further refined
to lead to better solutions for the SVP problem, the first vectors of the BKZ output are
already short enough to give us candidates for lines of the private key matrix F .

In what follows we use the result of Proposition 2 to recover the private key matrix
F in the following way.

Algorithm 1: Recovering private key F :

Let H the public key of the matrix NTRU system with parameters n, p, q.

1. Compute p−1 mod qand create the matrix L from eq.(3).
2. Run the BKZ algorithm on L and get Lred.
3. Use Lred to create a submatrix L∗

red with entries corresponding to the first n
columns of Lred.

4. For each line f of the matrix F , check whether or not f is contained in one of the
lines of L∗

red.

We implemented the above algorithm to assess the performance of the attack for
several values of the parameters. Namely, we choose q ∈ {256, 4096} for varying n and
recorded what proportion of the lines of F one can recover from the attack using only the
public key and public parameters p, q, n.

We see that the attack, in almost all experiments, can recover all lines of the matrix
F for n ∈ 40, 50, . . . , 80 and q = 256 and for n ∈ 40, 50, . . . , 110 and q = 4096. For
the case q = 4096 we also tried n = 113 and obtained success for quite some experi-
ments, but in some cases the BKZ algorithm terminates with the message terminate
called recursively and does not return the reduced basis.. At this stage, the lat-
tice dimension is already 2n = 226 and it gets more difficult to reduce the basis. For all
settings we set the block of the BKZ algorithm to 10 since this allowed quite good results.
One could increase the block size at the expense of a bigger running time.

One issue with the attack of algorithm 1 is that even though we can recover some
lines of the matrix F , we still do not know how to reorder them to reconstruct the true F
and use it for decryption. Nevertheless, we will see in the next Session that any permuta-
tion of lines of the private key F can be used to successfully decrypt a message encrypted
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Figure 1. Performance of the attack of algorithm 1 for recovering lines of the
matrix F for the matrix NTRU with parameters n and fixed q = 256 (upper
figure) and q = 4096 (bellow figure). For each experiment, we generate new
keys F and H and apply the attack recording how many experiments were
able to recover all lines of F (100%), between 1 and n − 1 lines of F and
none of the lines of F (0%).
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with F and this allows us to construct a message recovery attack on the matrix NTRU
system.

5. Message recovery attack

In the previous section we showed how to construct the associated lattice for the matrix
NTRU system and demonstrated the viability of the attack for recovering, up to a
permutation, the whole private key matrix F . In what follows we show that this attack
can be used to successfully decrypt a message encrypted with F , even though the correct
order of the lines of F is not known by the attacker.

Proposition 3. Let F,H be a corresponding private and public key pair for the matrix
NTRU system with parameters n, p, q and let E be a ciphertext associated with the en-
cryption of a message M such that the decryption process of E using F correctly returns
M . Let F ∗ be a matrix formed by permuting the lines of the matrix F . Then, applying the
decryption process to E using F ∗ returns the message M .

Proof. By the construction of F ∗, there exists an unimodular matrix D1, such that F ∗ =
D1F = FD2. Applying the decryption process gives us

A2 = F2E mod q = D1F (HR +M) mod q.

Using the definition of the matrix H and the fact that FFq = I we get,
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Figure 2. Same settings as in Figure 3 but with q = 4096.
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A2 = D1F (HR +M) mod q

= D1F (pFqGR +M) mod q

= D1pFFqGR +D1FM mod q

= pD1GR +D1FM mod q

(6)

Next we are going to make this equations modulo p and notice that since D1 only change
signs and permute lines of GR, we can still make this operation without incurring in the
risk of extrapolating the norm of the entries of the matrix D1GR. Therefore, we have

A2 mod p = 0 +D1FM = F ∗M.

Finally, using the inverse of F ∗
p of F ∗ mod p we compute

C2 = F ∗
pA2 = F ∗

pF
∗M mod p = M.

We use the result of Proposition 3 in combination with Algorithm 1 to create
a practical message recovery attack. This attack uses the upper left part of the reduced
lattice basis returned by the BKZ algorithm as a potential key. As we saw in Section 4, this
gives us in several cases the whole private key (up to a permutation of lines). The result
of Proposition 3 says this potential key can still be used to decrypt a message successfully
and this is tested in practice.

For each experiment, we generate new key pair F,H a new message M , encrypt
it and try to decrypt with the key F ∗ returned from the attack of algorithm 1. The ex-
periment was repeated 100 times on an Intel(R) Core(TM) i5-9500T CPU 2.20GHz and
the success rate reported in Figures 3 and 4. In the worst case scenario (n = 110 and
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Figure 3. Performance of the attack of algorithm 1 for recovering lines of the
matrix F for the matrix NTRU with parameters n and fixed q = 256 (upper
figure) and q = 4096 (bellow figure). For each experiment, we generate new
key pair F,H a new message M , encrypt it and try to decrypt with the key
F ∗ returned from the attack of algorithm 1. The experiment was repeated
100 times and the sucess percentage recorded.

q = 4096) we can recover the true message in less than one minute. For q = 256 the
attack works for dimension until n = 80 and for q = 4096 it works for dimensions up to
100. Since [Nayak et al. 2012] a matrix NTRU of dimension n with an NTRU of dimen-
sion n2, this clearly shows that matrix NTRU is far weaker than NTRU since an NTRU
with dimension 1002 = 10000 is far from being broken. In fact, the highest security
suggested for NTRU in practical applications has parameters n = 821 and q = 4096 as
shown in [Chen et al. 2020, Section 1.6]. By the results of this section, the matrix NTRU
of dimension n2, should be comparable (in terms of the lattice attack) to at most an NTRU
of dimension n. Therefore, even though the Matrix NTRU can encode a similar number
of bits in the private key as the NTRU, its internal structure makes it vulnerable to attacks
in a much smaller dimension.

6. Conclusion

In [Nayak et al. 2012], the authors compare the speed performance for encryption and de-
cryption of the classical NTRU and the Matrix NTRU arguing that matrix NTRU is faster
than NTRU for comparable parameters. They compare a matrix NTRU with parameters n
with an NTRU with parameter n2, since the original idea of the matrix NTRU system is to
encode the private key polynomial of degree n2 into a matrix of dimension n×n. In terms
of brute force search for the private key they are comparable. In terms of lattice-based
attacks, the post-quantum NIST finalist NTRU encrypt (REF) with parameters n = 509
and q = 2048 has already moderate security and cannot be broken by current the avail-
able techniques using lattice attacks. The equivalent matrix NTRU would have dimension
around 23, an integer approximation to

√
509. However, a matrix NTRU with parameters

n = 23 is completely vulnerable to lattice attacks on a personal computer as showed in
Section 4. In fact we can attack such system for even higher dimension.
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Figure 4. Same settings as in Figure 3 but with q = 4096.

The bottleneck of the proposed attack is in finding a suitable short vec-
tor for the matrix NTRU system using lattice basis reduction algorithms. There-
fore, any improvement on these techniques such as replacing the BKZ routine by,
e.g., the ones described in ([Albrecht and Ducas 2021], [May and Silverman 2001], and
[Bi and Han 2021, Zhao and Ye 2023]) would improve the results showed in Figures 1
and 2.

This vulnerability of the matrix NTRU system is very serious since its security
drooped from n2 to n using the refereed lattice attacks developed here. In comparisons
with the NTRU the matrix NTRU tries to creates a faster variant of NTRU by separating
the private key into slices (lines of a matrices) and using this to create the public key. On
the other hand this come at a very high security cost since just one line is used at a time to
construct the lines of the public key. That means it runs faster at the cost of reducing the
diffusion during the creation of the public key. On the other hand, NTRU creates public
keys by using convolution of polynomials, and therefore, every coefficient contributes to
create every coffined of the public key.

To conclude, we believe that the proposed attack can be adapted to other NTRU
like systems relying on matrices operations such as the one based on the Gaussian Inte-
gers.
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