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Abstract. This paper outlines the Module-Lattice-Based Key-Encapsulation

Mechanism Standard (ML-KEM) based on Brazilian cryptography to safeguard

sensitive information. In this sense, it details two Brazilian cryptographic al-

gorithms, Forró and Xote, and discusses the modifications in the ML-KEM to

enable their use as symmetric primitives. Relying on experimental results re-

garding execution time, we show that ML-KEM with Xote surpasses ML-KEM

with SHAKE or Forró while maintaining an equivalent level of security in tasks

such as key pair generation, encapsulation, and decapsulation.

1. Introduction

Cryptography is a cornerstone in safeguarding national sovereignty, sensitive informa-

tion, and critical infrastructure against cyber threats and espionage activities, which is

crucial for maintaining trust and security in an interconnected world. By ensuring the

confidentiality, integrity, and authenticity of government communications, cryptographic

measures protect against foreign actions that may introduce vulnerabilities and aid com-

pliance with regulatory standards and international agreements, bolstering trust among

citizens and stakeholders in handling sensitive data and communications. Strong crypto-

graphic schemes are vital for governments to maintain national security, protect digital

sovereignty, and cultivate a secure atmosphere for citizens, businesses, and governmental

activities in the face of evolving cyber threats.

Cryptography, on the other hand, faces significant challenges with the rapid ad-

vancement of quantum computing technology. Once a cryptographically relevant quan-

tum computer (CRQC) emerges, Shor’s algorithm [Shor 1994] will render public-key

cryptography vulnerable due to its ability to efficiently solve problems like factoring

large numbers and discrete logarithms. In anticipation of the quantum era, National

Institute for Standards and Technology (NIST) started a competition in 2017 to stan-

dardize Public Key Encryption (PKE)/Key Encapsulation Mechanism (KEM) and dig-

ital signature algorithms resistant to quantum (and classical) computer attacks, i.e.,

the post-quantum cryptography (PQC). So far, four algorithms have been standard-

ized or selected to be. Among them, CRYSTALS-Kyber [Avanzi et al. 2021], which
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uses Secure Hash Algorithm and Keccak (SHAKE) and Advanced Encryption Stan-

dard (AES) as symmetric primitives, is the only KEM. It has been standardized un-

der the name FIPS-203 Module-Lattice-Based Key-Encapsulation Mechanism Standard

(ML-KEM) [National Institute of Standards and Technology 2024].

As the ML-KEM underwent standardization by NIST, it garnered significant

attention and research. As exemplified by AVX2 in its NIST submission, software

optimizations have been explored, focusing on utilizing fast devices and intrinsic

functions. For instance, [Wan et al. 2022] introduced a GPU-based implementation,

whereas [Nguyen and Gaj 2021] proposed an ARMv8-targeted implementation lever-

aging NEON-based special instructions. Furthermore, hardware optimization strate-

gies have also been investigated, including reconfigurable hardware implementations

with side-channel protection [Jati et al. 2024], compact pure hardware implementations

prioritizing performance and area efficiency [Xing and Li 2021], and the feasibility of

ML-KEM on hardware-constrained devices [Costa et al. 2022], suggesting a system-on-

a-chip (SoC) implementation for accelerating critical operations in hardware while man-

aging the remainder operations in software.

A notable gap in the existing literature pertains to investigations into performance

enhancements of ML-KEM using alternative symmetric primitives beyond SHAKE and

AES. The use of other symmetric primitives is particularly relevant in cryptography; for

instance, governments should use state-of-the-art encryption algorithms and protocols to

safeguard sensitive information from unauthorized access and interception. In this re-

gard, the use of PQC schemes such as the ML-KEM becomes imperative1. Nevertheless,

each nation must develop its unique set of symmetric primitives to reduce dependence on

third parties and mitigate external influence. In this regard, the Research and Develop-

ment Center for Communication Security (CEPESC) has provided government cryptog-

raphy for the Brazilian government since 1982. To enhance transparency, the CEPESC

published a cryptographic library called libharpia, which was used in Brazilian elec-

tions [Pacheco et al. 2022]. Forró [Coutinho et al. 2022], a symmetric algorithm based on

the add-rotate-XOR (ARX) architecture, was later proposed as a special public algorithm

for Brazilian elections and, therefore, embedded in libharpia. However, it is important to

highlight that it is not yet being used in the election process. Focusing on a slight struc-

tural modification of Forró, a fast implementation named Xote [Coutinho 2021] was in-

troduced to reduce Forró’s execution time. Integrating the Forró and Xote, cryptographic

symmetric primitives, with ML-KEM is an interesting strategy to strengthen Brazilian

national security and sovereignty.

To address this need, and based on an in-depth study of symmetric primitives in

the ML-KEM, this paper introduces two modified versions of ML-KEM. The first mod-

ified version replaces SHAKE with Forró, while the second replaces SHAKE with Xote.

Replacing SHAKE with Forró or Xote involves the use of modified core functions — i.e.,

pseudo-random function (PRF), extendable-output function (XOF), and key-derivation

1Regarding the use of PQC in government applications, National Cyber Security Centre (NCSC), a

United Kingdom agency, and French Cybersecurity Agency (ANSSI) have reports in this matter, evalu-

ating and discussing PQC [NCSC 2020, ANSSI 2022]. Nonetheless, as far as it is known, only the Fed-

eral Office for Information Security (BSI), a German federal agency, has officially recommended a PQC

scheme [BSI 2020].
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function (KDF) — including algorithm presentations, justifications, and integration in

ML-KEM. Since the security level remains equivalent across ML-KEM, Forró-based

ML-KEM, and Xote-based ML-KEM, we provide a comparison in terms of processing

time. Experimental results indicate that the execution time for Forró-based ML-KEM

is higher than that of ML-KEM (i.e., in between 3.63% and 6.42%), while Xote-based

ML-KEM performs better than ML-KEM (i.e., in between 0.68% and 3.49%).

The remainder of this paper is organized as follows: Section 2 presents fundamen-

tal concepts of cryptography and the algorithms employed in this work. Section 3 delves

into the implementation details, with a primary focus on the roles of Forró and Xote as

PRF, XOF, and KDF within ML-KEM. The experimental results are discussed in Sec-

tion 4, showcasing the execution time of the proposed methods. Finally, Section 5 offers

concluding remarks and potential directions for future research.

1.1. General notation

The notation employed in this paper aligns with that used in the supporting documentation

of ML-KEM [National Institute of Standards and Technology 2024]. Functions within

the schemes operate on byte arrays as both input and output, where B = {0, ..., 255}
represents unsigned 8-bit integers or bytes. Additionally, BK denotes the set of byte ar-

rays of K-length, and B∗ represents byte arrays of any length (i.e., a byte stream). U = B4

represents unsigned 32-bit integers. The symbol || denotes the concatenation of two-byte

arrays. Given a byte array a and a non-negative integer k, a[k] refers to the byte array

starting at byte k of a (with indexing starting at zero). Matrices and vectors are denoted

by uppercase and lowercase bold letters, respectively, and AT refers to the transpose of

matrix A.

2. Fundamentals

This section presents brief descriptions of KEM, ML-KEM, and Forró and Xote algo-

rithms that are necessary for understanding the modified version of the ML-KEM. Sub-

section 2.1 briefly describes the KEM, Subsection 2.2 overviews ML-KEM, and Subsec-

tion 2.3 details Forró and Xote algorithms.

2.1. Key Encapsulation Mechanism

Let us consider that Alice and Bob desire to communicate using a PQC scheme. To do

so, public-key and symmetric cryptographic schemes should be properly used. A KEM

is a public-key cryptography scheme used for exchanging a secret shared (i.e., a key for

symmetric cryptography) between two parties. It is generally divided into three main

functions: key pair generation, encapsulation, and decapsulation. Key pair generation,

executed by Alice, is responsible for generating public and private keys. Alice securely

stores the private key, whereas her public key is securely sent to Bob. In turn, Bob receives

the public key generated by Alice. He obtains a shared secret, executes the encapsulation

on it, and then returns a ciphertext to Alice. Finally, using the ciphertext and the private

key, Alice executes the decapsulation, which returns the same shared secret achieved by

Bob. After those operations, Alice and Bob hold the same shared secret, enabling them

to communicate securely and efficiently with symmetric cryptography. Figure 1 shows

a block diagram that illustrates how KEM (public-key cryptography) is employed in a

cryptographic scheme.
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Figure 1. Block diagram illustrating the key agreement between parties and the
encryption/decryption process. Note that pka, ska, and ss stand for public key,
private key, and shared secret, respectively.

2.2. ML-KEM

The ML-KEM originated from the K-PKE via a slightly modified Fugisaki-Okamoto

transform [Barbosa and Hülsing 2023]. It is the only PQC algorithm being stan-

dardized by NIST in the PKE/KEM category. Furthermore, the ML-KEM relies

on the Module-Learning With Errors (M-LWE) problem [Langlois and Stehlé 2015,

Albrecht and Deo 2017], which was designed to seek high performance without los-

ing flexibility. The ML-KEM is available in three different versions, named

ML-KEM-512, -768, and -1024, targeting distinct security levels and, consequently, en-

suring a security level equivalent to AES-128, AES-192, and AES-256, respectively.

To run the ML-KEM, the following symmetric primitives are required: two hash

functions, a XOF, a PRF, and a KDF. Moreover, to reduce code size and minimize

vulnerability, ML-KEM opts for a single underlying symmetric primitive to fulfill all

these functions. In this sense, ML-KEM defined SHAKE functions standardized in FIPS-

202 [Dworkin 2015]2. This standard also describes hash functions with the required out-

put lengths and is designed to work as PRF and KDF. The symmetric primitives used by

ML-KEM are detailed as follows:

• Hash functions: A hash function is an algorithm that takes input data and pro-

duces fixed-size output data. In the ML-KEM, the hash functions are instantiated

as SHA3-256 and SHA3-512, as described in FIPS-202. The hash functions are

required in key pair generation, encapsulation, and decapsulation processes.

• Extended output function (XOF): A XOF is a function that maps an arbitrary-

length input bit string to an output bit string that can be extended to any desired

length. The XOF instantiated by ML-KEM is the SHAKE-128, divided into two

steps: absorbing and squeezing. The absorbing step has a seed and two distinct

counters as input, which are absorbed by the sponge structure, modifying its inter-

nal state. On the other hand, the squeezing step outputs a bit string of the desired

length based on the modified internal state provided by the absorbing step. The

XOF is used as a step for generating two fundamental matrices for the ML-KEM,

2ML-KEM also offers AES-256 and SHA-2 as symmetric primitives, as those primitives can be hard-

ware accelerated on various platforms. As this work does not approach hardware acceleration, only the

SHAKE family is addressed.
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namely Â and Â
T

, which are indirectly part of the public key. It significantly im-

pacts the total execution time of the ML-KEM [Da Costa et al. 2022]. The XOF

is required in key pair generation, encapsulation, and decapsulation processes.

• Pseudo-random function (PRF): a PRF is a structure used in cryptography that

emulates a random oracle. It usually takes a key and a nonce as inputs and then

outputs the requested number of bytes. In the ML-KEM, the PRF instantiated is

the SHAKE-256. It uses random coins as a key and a counter as a nonce. In the

ML-KEM, the PRF generates part of the private key and error vector, which is

relevant for the M-LWE problem as it ensures computational hardness and secu-

rity. The PRFs is required in key pair generation, encapsulation, and decapsulation

processes.

• Key-derivation function (KDF): A KDF is a cryptographic algorithm that trans-

forms a secret key, password, or key material into a derived key. The SHAKE-256
is also used as KDF in the ML-KEM. It receives a key as input and returns a

derived key, i.e., the shared secret. The KDF is required by encapsulation and

decapsulation processes.

2.3. Forró and Xote

Forró [Coutinho et al. 2022] and Xote [Coutinho 2021] are two symmetric algo-

rithms. Aiming to enhance security performance, both algorithms evolved from

Salsa20 [Bernstein 2008] and ChaCha20 [Bernstein et al. 2008], also known as

Salsa20/R and ChaCha20/R where the variable R indicates the number of rounds. To

understand Forró and Xote, the following paragraphs describe their evolution, tracing the

progression from Salsa20 through ChaCha20 and Forró to Xote.

The stream cipher Salsa20 consists of addition, rotation, and XOR operations on

32-bits words, characterizing an ARX architecture. One of its main characteristics is its

efficiency in hardware and software. Salsa20 operates on a state of 64-bytes (or 512-

bits), organized as a 4 × 4 matrix with 32-bits integers. Its state is initialized with a

256-bits key, a 64-bits nonce, a 64-bits counter3, and 4 constants of 32-bits each. The

state matrix is altered in each round by a quarter round (QR) function, which receives

4 of the 16 integers of the state matrix and updates them. A round comprises 4 (four)

applications of the QR function receiving different inputs at each call. The output of

the Salsa20 is then defined as the sum of the initial state with the resulting state after R
rounds4. For more details regarding the matrix construction, constants, and QR function

of Salsa20, see [Bernstein 2008]. ChaCha20 was proposed as an improvement of Salsa20.

Although they present the same structure, modifications in the QR function were made in

ChaCha20, enhancing security. For more details regarding security, matrix construction,

constants, and QR function of ChaCha20, see [Bernstein et al. 2008].

Forró was designed to evolve ChaCha20 using a novel concept called Pollina-

tion [Coutinho et al. 2022]. While ChaCha20 improves diffusion between rounds com-

pared to Salsa20, Forró aims to enhance diffusion within rounds when compared to

ChaCha20. This enhancement in Forró is achieved because the QR functions of Forró

were modified to be applied dependently between columns and diagonals, which is not

3The concatenation of nonce and counter is the initialization vector (IV): iv := nonce||counter
4As default, R is defined as 20. However, reduced-round variants with R equal to 8 (eight) and 12 have

also been introduced.
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made in ChaCha20. Consequently, obtaining more diffusion with fewer operations (or

rounds) is possible. As a result, the QR function of Forró receives 5 (five) integers instead

of 4 (four) and needs to perform fewer rounds, 14 against 20 in ChaCha. For comparison,

the best distinguishers against 5 rounds of Salsa, ChaCha, and Forró are, respectively, 28,

216, and 2130. Therefore, Forró can deliver the same security as Salsa20 and ChaCha20 in

fewer rounds.

Subsequently, Xote was developed as an evolution of Forró. It maintains identical

parameters to Forró, including its QR function but employing two state matrices instead

of one. Upon initializing the first matrix, it is duplicated into the second one with an

incremented counter. While doubling the computational operations needed to process the

state matrix, this design choice allows Xote to generate twice as much keystream as Forró

without doubling the processing time. As a result, Xote exhibits improved execution

time compared to Forró while delivering the same security level at the cost of using more

memory. In summary, with fewer operations, Forró and Xote achieve the same security

level as ChaCha20. Consequently, Forró and Xote can perform faster on certain platforms,

especially constrained devices with low processing power.

3. ML-KEM instantiating Forró and Xote

To adapt ML-KEM to use Forró or Xote instead of SHAKE, we introduce mod-

ified versions of XOF, PRF, and KDF. The hash functions do not use Forró

or Xote to maintain a domain separation, as recommended in [Avanzi et al. 2021].

To do so, the algorithms of modified versions of XOF, PRF, and KDF use the

following functions5: {Forro, Xote}.Keysetup(·), {Forro, Xote}.IVsetup(·), {Forro,

Xote}.QR(·), and {Forro, Xote}.Encrypt(·), found in [Coutinho et al. 2022]. In addi-

tion, {Forro,Xote}.GenerateBytes(·) is a slight modification of {Forro,Xote}.Encrypt(·).
In {Forro,Xote}.GenerateBytes(·), the output is not the input xored with the keystream

as in {Forro,Xote}.Encrypt(·); instead, the output of {Forro,Xote}.GenerateBytes(·)
is directly the keystream. SHAKE functions are also described in detail by FIPS-

202 [Dworkin 2015].

Note that the security of ML-KEM with Forró and Xote will be very similar to that

of ML-KEM with SHAKE because Forró and Xote are also secure [Coutinho et al. 2022].

In particular, there is a small improvement in security since the XOF in ML-KEM using

Forró and Xote provides 256-bits of security. In contrast, XOF in ML-KEM with SHAKE

uses SHAKE-128, which provides 128-bits of security. It is important to note that the

remaining introduced algorithms maintain the same security level as those they replace.

In the sequel, Subsections 3.1 to 3.3 detailed the modified versions of XOF, PRF,

and KDF based on both Forró and Xote, which are required for instantiating symmetric

primitives within the ML-KEM.

3.1. Extended-output function

Algorithms 1 and 2 respectively implement the {Forro,Xote}.XOF-absorb(·) and

{Forro,Xote}.XOF-squeeze(·) functions proposed by the authors. As discussed in Sub-

5From now on, we use a notation where multiple functions are grouped by listing their names

within curly braces before the function name. For instance, {Forró, Xote}.Function(·) refers to both

Forro.Function(·) and Xote.Function(·). If any additional function like SHAKE has to be included, we

add them to the list: {SHAKE, Forró, Xote}.Function(·).
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section 2.2, the XOF is used for generating two matrices, Â and Â
T

, which are required

in key pair generation, encapsulation, and decapsulation algorithms. The absorb step has

a 3-tuple (ρ, j, i) and a state matrix st as input. In Forró and Xote, ρ plays as key, whereas

i and j will be the first and second 32-bits words of nonce. As the output of the absorbing

step, a modified state matrix st is returned. On the other hand, the squeeze step consists of

receiving the processed state matrix st by {Forro,Xote}.XOF-absorb(·) and the length N
of the output required. In this sense, {Forro,Xote}.XOF-squeeze(·) only calls the function

{Forro, Xote}.GenerateBytes(·), generating N -bytes as output.

Algorithm 1 {Forro, Xote}.XOF-absorb(st, ρ, i, j)

Input:

State matrix: st ∈ U4×4

Seed: ρ ∈ B32

Nonce: i, j ∈ B4

Output:

State matrix: st ∈ U4×4

Procedure:

iv = i||j
{Forro, Xote}.Keysetup(st, ρ)

{Forro, Xote}.IVsetup(st, iv)

{Forro, Xote}.QR(st)
Return:

State matrix: st

Algorithm 2 {Forro, Xote}.XOF-squeeze(st,N )

Input:

State matrix: st ∈ U4×4

Output length: N ∈ U
Output:

Byte string: out ∈ B∗

Return:

Byte string: out := {Forro, Xote}.GenerateBytes(st,N )

3.2. Pseudo-random function

Algorithms 3 implements the {Forro, Xote}.PRF(·). This function receives a seed r, a

nonce i, and the output length N as inputs. In this algorithm, {Forro, Xote}.Keysetup(·)
sets r as a key while {Forro, Xote}.IVsetup(·) uses i as IV, initiating the state matrix st.
Based on st and N , {Forro, Xote}.GenerateBytes(·) is called outputting a N -bytes string.

3.3. Key-derivation function

Algorithm 4 implements the {Forro, Xote}.KDF(·). This function receives 64-bytes of

key material kr and operates on it to generate a shared secret of N bytes, which, in this
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Algorithm 3 {Forro, Xote}.PRF(r, i, N )

Input:

Seed: r ∈ B32

Nonce: i ∈ B
Output length: N ∈ U
Output:

Byte string: out ∈ B∗

Procedure:

State matrix: st ∈ U4×4

IV: iv ∈ B32

iv[0] = i
{Forro, Xote}.Keysetup(st, r)

{Forro, Xote}.IVsetup(st, iv)

Return:

Byte string: out := {Forro, Xote}.GenerateBytes(st,N )

case, of the ML-KEM, is fixed to N = 32. Nonetheless, Forró and Xote can only use 32-

bytes as a key and 16-bytes as a nonce. Consequently, two iterations are required to con-

sume all bits of key material kr. Therefore, the first half of key material kr and iv are ini-

tialized in state matrix st1, and the second half of kr and iv, incremented by one, are ini-

tialized in state matrix st2. Both state matrices are xored, generating a state matrix st. Fi-

nally, a 32-bytes shared secret is achieved by performing {Forro, Xote}.GenerateBytes(·)
with st as input.

4. Experimental results

This section analyzes the implementation of the modified versions of ML-KEM, based

on Forró and Xote, and provides a comparison with the standard ML-KEM based on

SHAKE. To provide comprehensive analyses, it details the execution time of the core

functions—XOF, PRF, and KDF—using SHAKE, Forró, and Xote, separately from the

ML-KEM. Moreover, it compares the execution time of composite functions—key pair

generation, encapsulation, and decapsulation—using SHAKE, Forró, and Xote across all

security levels. The performance results refer to several execution times conducted across

different security levels. They are also presented as boxplots from a collection of 101
samples. Each sample represents the median of 10, 001 iterations of each function at each

security level. The results were achieved in a Xeon E5-1650 v4 processor, using GCC
compiler with −O3 optimization flag. It is important to mention that experiments ran in

an Intel Core i5 10th Generation and Apple M2 Pro achieved similar results. The source

code can be found in [Lagrota and Azevedo 2024]

This section is organized as follows: Subsection 4.1 pays attention to the results

of the core functions; Subsection 4.2 details the results of the composite functions; and

Subsection 4.3 discusses the execution time improvements of Forró and Xote compared

to SHAKE.
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Algorithm 4 {Forro, Xote}.KDF(kr,N )

Input:

Key material: kr ∈ B64

Output:

Shared secret: ss ∈ B32

Procedure:

State matrix: st, st1, st2 ∈ U4×4

IV: iv ∈ B32

iv := 0
⊲ Consuming first half of key material kr
{Forro, Xote}.Keysetup(st1, kr)

{Forro, Xote}.IVsetup(st1, iv)

⊲ Consuming second half of key material kr
{Forro, Xote}.Keysetup(st2, kr[32])
{Forro, Xote}.IVsetup(st2, iv + 1)

st := st1 ⊕ st2
Return:

Shared secret: ss := {Forro, Xote}.GenerateBytes(st, N )

4.1. Core functions

Core functions, composed of XOF, PRF, and KDF, are functions in the ML-KEM that use

symmetric cryptography to accomplish their tasks. Their timing analyses are presented in

Subsections 4.1.1, 4.1.2, and 4.1.3, respectively.

4.1.1. XOF

Figure 2 shows the boxplot of the XOF-absorb execution time. The data shows that XOF-

absorb runs faster when SHAKE is used compared to Forró and Xote for all security

levels. This increased speed is attributed to the use of SHAKE-128. SHAKE-128 out-

performs SHAKE-256 due to its higher rate and lower capacity, although it offers less

security [Dworkin 2015]. Additionally, Forró runs faster than Xote, which is explained

by Xote’s architecture, which uses two state matrices instead of one, as Forró does. Con-

sequently, when Forro.QR(·) and Xote.QR(·) are called in Algorithm 1, Xote processes

two state matrices, doubling the time required compared to Forró.

On the other hand, in the XOF-squeeze, Xote is faster than SHAKE and Forró

regardless of the security level, see Figure 3. This advantage is also due to the state

matrices, but in this case, it benefits Xote. As shown in Algorithm 2, the only required

function is {Forro, Xote}.GenerateBytes(·), which uses {Forro, Xote}.QR(·) to generate

bytes. Consequently, the double-state matrix construction of Xote allows it to outperform

both SHAKE and Forró in this context.
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Figure 2. Boxplot of XOF-absorb execution time.
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Figure 3. Boxplot of XOF-squeeze execution time.

4.1.2. PRF

The boxplot of the PRF execution time is shown in Figure 4 for all security levels. While

SHAKE, Forró, and Xote exhibit similar performance, Xote slightly outperforms the other

two, particularly at higher security levels. This is because {Forro, Xote}.PRF(·) relies on

{Forro, Xote}.Encrypt(·), which in turn utilizes {Forro, Xote}.QR(·). The use of two-

state matrices in Xote speeds up the process. As higher security levels require more

pseudorandom data to be generated, the performance difference between SHAKE, Forró,

and Xote becomes more pronounced with the increased data requirement.
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Figure 4. Boxplot of PRF execution time.
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4.1.3. KDF

Figure 5 presents the boxplot of KDF execution time for all security levels. In this case,

Forró outperforms Xote and SHAKE. The doubled state matrices work against Xote in

this scenario. Although {Forro, Xote}.GenerateBytes(·) is used, the required data length

is only 32-bytes. This amount can be generated in a single operation by one state matrix.

Consequently, Xote processes more data than necessary, reducing its efficiency regardless

of the security level.
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Figure 5. Boxplot of KDF execution time.

4.2. Composite functions

Composite functions are the primary interfaces of ML-KEM used by applications. These

functions invoke various operations, including core functions. Table 1 details the fre-

quency with which each core function is called in ML-KEM. It provides essential in-

formation for understanding the execution time of composite functions, as core functions

directly influence their execution time. Next, Subsections 4.2.1, 4.2.2, and 4.2.3 present

the execution time for key pair generation, encapsulation, and decapsulation, respectively.

Table 1. Number of times that XOF-absorb, XOF-squeeze, PRF, KDF are called in
key pair generation, encapsulation, and decapsulation. K ∈ {2, 3, 4} refers to the
security level of ML-KEM-512, -768, -1024, respectively.

XOF-absorb XOF-squeeze PRF KDF

Key pair generation K2 K2 2K 0

Encapsulation K2 K2 2K + 1 1

Decapsulation K2 K2 2K + 1 1

4.2.1. Key pair generation

Figure 6 presents the boxplots of the total execution time for key pair generation. It

is important to note that key pair generation involves extensive use of XOF-absorb and

XOF-squeeze functions (see Table 1) and is therefore significantly impacted by their ex-

ecution times. XOF-squeeze has a greater influence among these functions due to its
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longer total execution time. Consequently, the boxplot of key pair generation execution

time closely resembles that of the XOF-squeeze function. Specifically, for all security

levels, the ML-KEM instantiated with Xote demonstrates the best performance, followed

by its versions based on SHAKE and Forró, in that order.
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Figure 6. Boxplot of key pair generation execution time.

4.2.2. Encapsulation

The boxplot of encapsulation execution time is presented in Figure 7. The overall behav-

ior of the results is similar to that of key pair generation for all security levels. Thus, the

ML-KEM instantiated with Xote shows the best performance, followed by the versions

based on SHAKE and Forró, respectively. These results are primarily due to the impact of

XOF-squeeze, but also reflect the influence of an additional PRF. Encapsulation involves

one more PRF and KDF compared to key pair generation. Consequently, the total exe-

cution time of encapsulation is greater, although the performance of the ML-KEM with

different symmetric primitives follows the same order.
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Figure 7. Boxplot of encapsulation execution time.

4.2.3. Decapsulation

Finally, the boxplot of decapsulation execution time is presented in Figure 8. Again,

the ML-KEM instantiated with Xote is the fastest, with the SHAKE and Forró versions

following in that order. These results follow the same pattern observed for key pair gener-

ation and encapsulation. Since encapsulation and decapsulation execute the same number
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of symmetric primitive functions, similar performances are equally attributed to the im-

pact of XOF-squeeze and PRF. However, note that the overall execution time for decap-

sulation is greater than for encapsulation. This difference is due to additional functions

beyond symmetric primitives required only by decapsulation.
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Figure 8. Boxplot of decapsulation execution time.

4.3. Execution time improvement

Table 2 presents the execution time improvement of key pair generation, encapsulation,

and decapsulation when ML-KEM, Forró-based ML-KEM, and Xote-based ML-KEM

are considered. The execution time improvement is given by

γα,β,K = 1−
Tα,β,K

Tα,SHAKE,K

, (1)

where α ∈ {key pair generation, encapsulation, decapsulation} and β ∈ {Forró, Xote}.

Tα,SHAKE,K and Tα,β,K refer to the execution times demanded by the ML-KEM and its

modified versions, respectively.

Note that ML-KEM with Xote shows a small performance improvement over

ML-KEM with SHAKE. This improvement is attributed to the efficient performance of

Xote.XOF-squeeze(·) and Xote.PRF(·) (see Figures 3 and 4), which enable ML-KEM to

be executed slightly faster with Xote than with SHAKE. Conversely, ML-KEM with Forró

experiences a small performance decrease compared to ML-KEM with SHAKE. This is

due to Forro.XOF-squeeze(·) significantly impacts the performance, making it slower than

SHAKE in total execution time. The performance comparison remains consistent across

all security levels (K).

5. Conclusion

This paper has explored replacing SHAKE with Forró and Xote as cryptographic prim-

itives in ML-KEM. To achieve this, detailed modifications to the core functions of

ML-KEM were made to fulfill Forró and Xote, and their integration with ML-KEM

was discussed. Numerical results from experiments show that ML-KEM, Forró-based

ML-KEM, and Xote-based ML-KEM exhibit distinct execution times for their core func-

tions. Interestingly, the optimal performance for each core function is achieved by a dif-

ferent symmetric primitive. However, when evaluating the composite functions—key pair

generation, encapsulation, and decapsulation—integral to a KEM, Xote-based ML-KEM
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Table 2. Execution time improvement (γα,β,K ) of Forró- and Xote-based ML-KEM
in percentage (%).

Algorithm Forró Xote

M
L

-K
E

M
-5
12

Key pair

generation
-4.13 1.03

Encapsulation -3.66 0.92

Decapsulation -3.22 0.88
M

L
-K

E
M

-7
68

Key pair

generation
-7.90 0.44

Encapsulation -6.04 0.93

Decapsulation -5.61 0.63

M
L

-K
E

M
-1
02
4 Key pair

generation
-6.38 3.10

Encapsulation -4.70 3.40

Decapsulation -3.37 3.88

demonstrates slightly better performance than ML-KEM while maintaining equal or su-

perior security across various security levels. Furthermore, the numerical results reveal

that Forró-based ML-KEM is outperformed by both Xote-based ML-KEM and ML-KEM

in terms of execution time, despite offering similar security. Overall, this work presented

ML-KEM, a PQC algorithm, instantiated with Forró and Xote, two Brazilian crypto-

graphic primitives, presenting better or similar performance. Future work should include

a similar analysis incorporating AES with hardware acceleration and optimizing SHAKE,

Forró, and Xote using Advanced Vector Extensions 2 (AVX2).
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Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) under grants APQ-03609 −
17, TEC-PPM 00787 − 18, and APQ-04623-22, Instituto Nacional de Energia Elétrica

(INERGE).

References

[Albrecht and Deo 2017] Albrecht, M. R. and Deo, A. (2017). Large modulus ring-LWE ≥
module-LWE. In Proc. Int. Conf. on the Theory and Application of Cryptology and

Information Security, pages 267–296. Springer.

[ANSSI 2022] ANSSI (2022). Anssi views on the post-quantum cryptography transition.

Technical report, ANSSI.

[Avanzi et al. 2021] Avanzi, R., Bos, J. W., Ducas, L., Eike Kiltz, T. L., Lyubashevsky,

V., Schanck, J. M., Schwabe, P., Seiler, G., and Stehlé, D. (2021). CRYSTALS-Kyber
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Coutinho, M. (2022). libharpia: a new cryptographic library for brazilian elections. In

Anais do XXII Simpósio Brasileiro em Segurança da Informação e de Sistemas Com-

putacionais, pages 250–263. SBC.

[Shor 1994] Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms

and factoring. In Proc. 35th Annual Symposium on Foundations of Computer Science,

pages 124–134.

[Wan et al. 2022] Wan, L., Zheng, F., Fan, G., Wei, R., Gao, L., Wang, Y., Lin, J., and

Dong, J. (2022). A novel high-performance implementation of crystals-kyber with ai

accelerator. In Atluri, V., Di Pietro, R., Jensen, C. D., and Meng, W., editors, Computer

Security – ESORICS 2022, pages 514–534, Cham. Springer Nature Switzerland.

[Xing and Li 2021] Xing, Y. and Li, S. (2021). A compact hardware implementation of

cca-secure key exchange mechanism crystals-kyber on fpga. IACR Transactions on

Cryptographic Hardware and Embedded Systems, pages 328–356.

Anais do SBSeg 2024: Artigos Completos

16


