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Abstract. Traditional digital signature schemes are insufficient to identify exactly
which part of a signed document had its integrity compromised. In INDOCRYPT

’19, Idalino et al. presented an efficient modification-tolerant signature scheme
(MTSS) framework using group testing techniques, enabling the detection and
correction of modified parts. However, the authors did not give ideal parameters
for real use case scenarios. We implement the framework, discuss the practical
consequences of the effort, give several parameter sets, and compare the perfor-
mance of MTSS against traditional signature schemes. We additionally propose
a novel use case of the framework, which allows for the integrity of any part of a
signed document to be verified without ownership of the whole message.

1. Introduction

A traditional digital signature scheme enables a user to claim the integrity and authenticity
of some signed data. The signature verification algorithm has a boolean output, which
allows for the detection of modifications; it reports failure if a single bit of a signed
document is modified. In practical terms, the signer and the information contained within
the document may not be trusted. However, if additional properties such as location and
correction of possible modifications [Idalino et al. 2019] are considered, digital signatures
can be employed in a variety of new scenarios.

In [Idalino et al. 2015], the authors cite several important use cases: (i) modifica-
tion discovery in fillable forms, allowing one to sign the empty form and others to fill it in
without invalidating the original signature; (ii) crime investigations by data forensics, where
the investigator may retrieve more information about the attacker by knowing what was
modified [Goodrich et al. 2005a]; (iii) improving the efficiency of computer systems: for
instance, if we detect where a large database was modified, we do not invalidate it; (iv) pri-
vacy protection, where parts of a signed document can be intentionally redacted without
invalidating the original signature (cf. content extraction signatures [Steinfeld et al. 2002]
and redactable signatures [Johnson et al. 2002, Haber et al. 2008]).

In the literature, the location property was addressed
by [De Bonis and Di Crescenzo 2011a, De Bonis and Di Crescenzo 2011b] in the
context of hash functions, by [Di Crescenzo et al. 2004, Goodrich et al. 2005b] in the
context of message authentication codes, and by [Idalino et al. 2015, Idalino et al. 2019]
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in the context of digital signatures. In general, the authors propose to compute extra
integrity information that can be used later for the location of modifications.

There also exist situations where portions of the data can be intentionally re-
moved, redacted, or modified. This is the case of malleable signature schemes, which are
studied under the name of redactable and sanitizable signatures [Bilzhause et al. 2017].
They allow the modification of the signed data in a controlled way (in some cases, by
a third party) while the signature is still successfully verified. Such schemes are com-
monly applied in privacy settings, in which portions of the target data are required to be
redacted [Johnson et al. 2002, Haber et al. 2008, Lim and Lee 2011].

Notably, the modification-tolerant signature scheme (MTSS) framework employs
combinatorial group testing techniques, using cover-free families (CFFs), to locate modified
parts of a signed document [Idalino et al. 2019]. Intuitively, a document is split into blocks
and grouped according to a CFF on signature generation. When verifying the signed
document, the framework allows for the location of modified blocks via the underlying
CFF. If the blocks are small enough, it is possible to recover the original file, depending on
the parameter choices of the scheme. MTSS can be used with any signature scheme, such
as RSA, elliptic curves, or post-quantum algorithms.

We address some open questions of the proposal as laid out in [Idalino et al. 2019].
Namely, we concretely implement MTSS in a high-level programming language and use
different underlying signature schemes to measure its performance. We debate which
parameters are feasible for constructing CFFs in many scenarios and measure the per-
formance of signature algorithms with such constructions. We also discuss strategies to
divide to-be-signed documents into blocks, considering different types of documents and
the criteria that affect error identification during signature verification. Additionally, we
propose a novel usage of a variation of MTSS that verifies the authenticity and integrity
of some parts of a signed document without having access to the entire signed data. Our
contributions rely on modification-tolerant signature schemes regarding authentication
and data integrity. In this work, we do not explore applications regarding privacy (such as
redactable and sanitizable signatures).

This work is organized as follows. In Sect. 2, we briefly give the necessary
background to understand MTSS and our contributions. In Sect. 3, we present our specific
objectives and give technical details about the practical implementation of MTSS. In
Sect. 4, we discuss the selection of parameters and other implementation choices for
MTSS; we also provide several performance and storage measurements. In Sect. 5, we
propose a variation of MTSS that verifies the integrity and authenticity of a single block
of the document without having access to the whole document. Finally, in Sect. 6, we
summarize our contributions and suggest further contributions as future work.

2. Definitions

2.1. Cover-free families

A set system is a tuple (X,B), where X is a set of points and B = {B1, . . . , Bn} is a
collection of subsets of X , called blocks. Intuitively, a d-cover-free family is a set system
where the union of any d blocks does not cover any other block in B; a formal definition is
given as follows.
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Definition 1 (d-CFFs) Let d, t, n be positive integers, with d < t ≤ n. A d-cover-free
family, denoted d-CFF(t, n), is a set system (X,B) with |X| = t, |B| = n, where for any
block Bi0 and any other d blocks Bi1 , . . . , Bid in B we have |Bi0 \ ∪d

j=1Bij | ≥ 1.

We may also define a d-CFF(t, n) in terms of its incidence matrixM: a t × n
binary matrix withMi,j = 1 if xi ∈ Bj , and 0 otherwise. In the literature, this matrix
representation is also known as a d-disjunct matrix. We hereafter say a binary matrix is d-
CFF if its corresponding set system is d-CFF. Figure 1a shows an example of a 2-CFF(9, 12)
incidence matrix where X = {1, . . . , 9}, the collection B = {Ba, Bb, . . . , Bl}, and
Ba = {1, 2, 3}, Bb = {4, 5, 6}, . . . , Bl = {3, 5, 7}. CFFs are used in combinatorial group
testing, where n items must be tested, and we can detect at most d items as “defective”.
The items are represented by the columns of the incidence matrixM, and the rows identify
the groups to be tested.

The d-CFF property allows us to perform only t tests and identify up to d defects
among the n items in the following way: groups that pass the test contain only non-
defective items; the remaining ones are considered defective. Figure 1b shows how we
can identify up to 2 defective items using a 2-CFF(9, 12). Groups 3, 5, 8, 9 passed the test,
and therefore the items in these groups are all non-defective (in green). Groups that fail
the test must contain at least one defective item, and so after identifying the non-defective
items, the remaining ones are the defective ones (in red). If there are more than d defective
items, some non-defective items might be erroneously considered defective due to the
group testing technique.

a b c d e f g h i j k l
1 1 0 0 1 0 0 1 0 0 1 0 0
2 1 0 0 0 1 0 0 1 0 0 1 0
3 1 0 0 0 0 1 0 0 1 0 0 1
4 0 1 0 1 0 0 0 0 1 0 1 0
5 0 1 0 0 1 0 1 0 0 0 0 1
6 0 1 0 0 0 1 0 1 0 1 0 0
7 0 0 1 1 0 0 0 1 0 0 0 1
8 0 0 1 0 1 0 0 0 1 1 0 0
9 0 0 1 0 0 1 1 0 0 0 1 0

a. Incidence matrix of a 2-CFF(9, 12).

a b c d e f g h i j k l
Test 1 ✗ 1 0 0 1 0 0 1 0 0 1 0 0
Test 2 ✗ 1 0 0 0 1 0 0 1 0 0 1 0
Test 3 ✓ 1 0 0 0 0 1 0 0 1 0 0 1
Test 4 ✗ 0 1 0 1 0 0 0 0 1 0 1 0
Test 5 ✓ 0 1 0 0 1 0 1 0 0 0 0 1
Test 6 ✗ 0 1 0 0 0 1 0 1 0 1 0 0
Test 7 ✗ 0 0 1 1 0 0 0 1 0 0 0 1
Test 8 ✓ 0 0 1 0 1 0 0 0 1 1 0 0
Test 9 ✓ 0 0 1 0 0 1 1 0 0 0 1 0

b. Procedure to identify defects.

Figure 1. Matrix representation of a CFF and defect location procedure.

Hence, given n and d, we aim to build d-CFFs that minimize the number of rows t.
In the case d = 1, an optimal construction is given by Sperner set systems. For a given
n, we set t = min{s :

(
s

⌊s/2⌋

)
≥ n}. Then, let X = {1, 2, . . . , t} and B be the collection

of all distinct subsets of X of size ⌊t/2⌋ [Sperner 1928, Wei 2006]. Since all subsets are
distinct and have the same size, no subset is contained in any other, yielding a 1-CFF(t, n).

For d ≥ 2, it is known that t ≥ c d2

log d
log n for a constant c [Füredi 1996,

Ruszinkó 1994, Wei 2006]. The best existence results are given by proba-
bilistic methods, achieving t = Θ(d2 log n) [Bshouty 2015, Gargano et al. 2020,
Porat and Rothschild 2011, Rescigno and Vaccaro 2023]. We hereafter consider a polyno-
mial construction based on finite fields, first presented in [Erdös et al. 1985].
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Consider a finite field Fq, with q a prime power and 2 ≤ k ≤ q. We define
Fq[x]<k to be the set of all polynomials with degrees less than k and coefficients in Fq.
For d ≤ ⌊ q−1

k−1
⌋, a d-CFF(q2, qk) defined by the set system (X,B) is constructed as follows.

Let X = Fq × Fq; then, for each polynomial p ∈ Fq[x]<k we have an associated subset
Bp = {(a1, p(a1)), . . . , (aq, p(aq))}, and consequently B = {Bp : p ∈ Fq[x]<k}. For more
details on cover-free families, applications, and other constructions for the case d ≥ 2,
see [Idalino and Moura 2024].

2.2. The modification-tolerant signature scheme framework

As previously mentioned, the MTSS framework [Idalino et al. 2019] is able to locate d
modifications in a signed document using a d-CFF(t, n). On signature generation, a to-be-
signed document must be split into n blocks of s bits to fit the underlying CFF. For blocks
of small enough size, the authors also propose correcting such modifications. The signature
must carry extra information in the form of cryptographic hashes of blocks in each row
(or test). From now on, we may refer to test as the document hashes computed using a
CFF. Thus, signature size depends on t, d, and n, and it is crucial to provide parameter sets
compatible with several use cases.

Let Σ be a digital signature scheme, with the usual key generation (KEYGEN),
signature generation (SIG), and signature verification (VER) algorithms; letH be a cryp-
tographic hash function, andM a d-CFF(t, n) incidence matrix. We hereafter refer to a
complete instantiation of the framework as MTSS(Σ,H,M). MTSS has 4 algorithms:
KEYGEN, SIG, VER and “verify-and-correct” (VCOR); a brief description of each one is
given as follows. We also define the set of modified blocks identified by the framework as
I . Let ⊤ be a valid output, and ⊥ otherwise.

KEYGEN(λ). Let λ ∈ N be the security parameter. The algorithm proceeds as follows.

1. Set (sk, pk)← Σ.KEYGEN(λ).
2. Output (sk, pk).

SIG(m, sk). Let sk be a private key of Σ, and m = (m1, . . . ,mn) any message divided
into n blocks. The algorithm proceeds as follows.

1. For 1 ≤ i ≤ t and 1 ≤ j ≤ n, set hj ← H(mj), ci the concatenation of all hj such
thatMi,j = 1, and Ti ← H(ci).

2. Set T ← (T1, . . . , Tt,H(m)).
3. Set σ′ ← Σ.SIG(T, sk).
4. Output (σ′, T ).

VER(m,σ, pk). Let m = (m1, . . . ,mn) be any message divided into n blocks, σ = (σ′, T )
a MTSS signature, and T = (T1, . . . , Tt, hm), and pk a public key of Σ. The algorithm
proceeds as follows.

1. Set r ← Σ.VER(T, σ′, pk). If r = ⊥, output (⊥, {}). Otherwise, go to step 2.
2. IfH(m) = hm, output (⊤, {}). Otherwise, go to step 3.
3. For 1 ≤ i ≤ t, compute T ′

i analogously to Step 1 of SIG.
4. Set V ← {}. For 1 ≤ i ≤ t, if Ti = T ′

i , set V ← V ∪ {j :Mi,j = 1}.
5. Set I ← {1, . . . , n} \ V . If |I| ≤ d, output (⊤, I); otherwise, output (⊥, I).

VCOR(m,σ, pk). Let m = (m1, . . . ,mn) be any message divided into n blocks, σ =
(σ′, T ) a MTSS signature, and pk a public key of Σ. The algorithm proceeds as follows.
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1. Set (r, I)← VER(m,σ, pk). If r = ⊥, output (⊥, {}, {}). Otherwise, go to step 2.
2. If |I| = 0, go to step 7. Otherwise, set b← min(I), I ← I \ b and go to step 3.
3. Set i to be the index of any rowMi such thatMi,b = 1 andMi,j = 0 for all j ∈ I .
4. For all j such thatMi,j = 1 and j ̸= b, set hj ← H(mj). Set cb = ⊥.
5. For every possible bit string q of size ≤ s:

(a) Set hb ← H(q).
(b) For 1 ≤ j ≤ n, compute T ′

i analogously to Step 1 of SIG.
(c) If T ′

i = Ti and cb = ⊥, set cb = ⊤ and mb ← q; otherwise, if T ′
i = Ti and

cb = ⊤, output (⊤, I, ε), where ε is the empty string.
6. Go to step 2.
7. Output (⊤, I,m).

We refer the reader to [Idalino et al. 2019] for a detailed algorithm explanation
and proof of the security and correctness of the framework. We remark on an interesting
characteristic of MTSS: given only a signature σ and the number of blocks n, we can
reconstruct M. This may be used for implementation purposes. In the following, we
address the practical consequences of the algorithms above, such as the division of m
into n blocks, the construction ofM, and the impact of Σ, H, and the aforementioned
procedures in overall performance and signature sizes.

3. Discussion on MTSS parameters

As previously mentioned, several practical considerations were not given or deeply ex-
plored in [Idalino et al. 2019]. We present the following questions as a guideline for our
discussion about parameters and their consequences on implementations of MTSS.

Q1 How to efficiently implement message division, and what are the consequences for
SIG, VER, and VCOR?

We recall that all algorithms except KEYGEN expect to receive a message m already
separated in n blocks; however, in practice, a user expects to simply input the entire
to-be-signed message, and an implementation of MTSS performs the appropriate division.
Hence, we define a DIVIDEBLOCKS(m′) algorithm, which separates the input message
m′ into blocks according to some criteria depending on the file type. Its output is a tuple
(m,n), where m = (m1, . . . ,mn). Our implementation does not consider n as a free input
because of possible issues in locating errors using VER algorithm; rather, we infer n from
the type of document chosen. We further address this question in Sections 3.1 and 4.1.

Q2 Which parameters are suitable forM and what is their effect on performance?

As per Sect. 2.1, a CFF is defined via parameters d, t, and n, with t minimized. We recall
that n is the number of blocks of a message m′ given by DIVIDEBLOCKS(m′), as discussed
in Q1. It remains to calculate d and t; we recall that the parameter k can be used to yield d
and t, and also q for k ≥ 2, via the constructions presented in Sect. 2.1. Hence, we define
the CREATECFF(n, k) algorithm as follows: if k = 1, the Sperner construction is used,
where d = 1; otherwise, we use the polynomial over finite fields construction, in which
d depends on q and k, i.e., given n and k, we choose the smallest q such that n ≤ qk. Its
output is the incidence matrixM. We further address this question in Sections 3.2 and 4.1.

Q3 How does the choice ofH impact overall performance?
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We observe that SIG and VER require nt + 1 evaluations of H. Thus, the choice of the
underlying cryptographic hash function greatly influences the performance of operations
on signatures. We evaluate several choices of H, and give performance results and
recommendations in Sections 4.2 and 4.3.

Q4 How does the choice of Σ impact overall performance?

We observe that the authors of [Idalino et al. 2019] roughly estimate the performance of
MTSS depending on Σ. We explore other choices of signature schemes and give actual
performance and signature size results in Sections 4.2 and 4.3.

3.1. Documents and blocks division

We remark that CFF blocks need not be homogeneous in size; this is useful for digital
documents since each file type has specific syntactic characteristics. However, as per Step 5
of the VCOR algorithm, a large block implies a slower error correction procedure since all
possible bit strings need to be searched to correct the block. Hence, efficient block division
criteria are relevant in this context. Several authors [Idalino et al. 2019, Pöhls 2018]
consider strategies such as sequential ordering considering some delimiter, non-sequential
ordering using complex structural data, a header at the beginning of the file informing the
blocks, or even a combination of these.

The easiest way to separate the content into blocks is to divide a message
into sequential sections of fixed size. However, this approach is not free of prob-
lems [Idalino et al. 2015]. Without loss of generality, for any bit string that is divided into
blocks, if any bit is added to or removed from any block but the last, a cascade effect
happens to the subsequent blocks. To prevent this problem, we must define document
representations and block delimiters for the DIVIDEBLOCKS algorithm.

We first consider plain text files using the ASCII encoding; we set the line break
(0x0a) character as the default delimiter. Hence, the number of lines must remain the
same to detect changes, but any individual lines are modifiable. We also discuss how to
interpret XML files (also encoded in ASCII) as an example of a more complex document
type. As canonicalization algorithms usually remove indentation and spaces [W3C 2008],
such characters cannot be used as block delimiters.

The < (0x3c) character can be used as a delimiter, but we would have redundancy
among different types of tags (opening and closing). Hence, we choose to pair opening
and closing tags in the same block. The parent tag is kept in a separate block if any child
elements exist. One disadvantage of this approach is the excess of usual tag delimiter
characters since they are always put in the blocks. This approach can also be applied to
other similar markup systems, such as HTML.

A more natural way for hierarchy file types could be using a tree as structural
data. This way, we could separate each node as a tag and their children as connected to
this parent node. This separation method could also be used for other hierarchy-like files.
Nevertheless, we show hereafter that the DIVIDEBLOCKS algorithm has poor efficiency
using the simple pair opening and closing tags, and using a tree would add more complexity
to that. Besides, we would have the override of implementing a search algorithm to access
a particular node, which would also affect the performance of MTSS algorithms.
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3.2. CFF parameters

We remark some initial observations from the algorithms described in Sect. 2.2: (i) the
signature size grows with the number of blocks n; (ii) to efficiently correct modifications, it
is suggested to limit block size to a small enough size s. However, this minimization leads
to more blocks; (iii) larger blocks lead to less accuracy in error location and fewer tests t
executed. In this context, we aim to find ideal parameters for polynomial constructions,
i.e., d ≥ 2. From Sect. 2.1, we recall that n = qk or n = tk/2, t = q2, and d ≤ ⌊ q−1

k−1
⌋. As

previously mentioned, we calculate q from n and k via the CREATECFF algorithm.

To generate smaller CFFs and improve efficiency, we increase the gap between
the number of blocks and tests to minimize t. The proportion between n and t is given
by qk−2, which gives us the signature compression rate; hence, larger values for k lead
to further gains in compression. However, due to the upper bound of d, we observe that
smaller k are useful for achieving larger error location abilities. On the other hand, q ≤ 5
are not generally useful because they generate 1-CFFs, which are already optimally built
using Sperner set systems. The same occurs for k ≥ 7 since most constructions with this
parameter can be achieved via Sperner families or are meant for larger n.

A d-CFF(q2, qk) allows locating up to d modifications. The ratio between d and n is
given as follows: d

n
= (q−1)/(k−1)

qk
. This leads us to a conclusion: for fixed n, smaller values

of q have a better proportion of modifiable blocks d. Furthermore, the aforementioned
relation between d, q, and k shows that d grows with q. These statements help us answer Q2.
In summary, smaller values for k have more advantages: they optimize the modification
localization while obtaining modifiable blocks at a higher number and proportion. Hence,
we suggest 3 ≤ k ≤ 7 and q > 5 to yield efficient constructions when d ≥ 2.

4. Experiments

We provide an open-source implementation1 of the MTSS framework as described in
the original work [Idalino et al. 2019]. We use Python 3.10 and run the tests on an Intel
Core i7-13700H @ 5.0 GHz with CPU performance scaling disabled. Except when
otherwise indicated, the performance results presented in this section were calculated
by executing each algorithm 100 times and taking the mean. For the choices of Σ, we
consider (i) RSA-2048 and RSA-4096, which are known to be widely used in public-key
cryptographic applications [Cao and Fu 2008]; (ii) Ed25519, an elliptic-curve signature
scheme which is a recent alternative to RSA, with smaller signatures and higher overall
performance [Bernstein et al. 2012]; (iii) and all instances of ML-DSA, a post-quantum
algorithm based on lattices which is currently in the process of standardization by the U.S.
National Institute of Standards and Technology [of Standards and Technology 2023].

We also consider several cryptographic hash functions for the choice ofH: SHA2-
256, SHA2-512, SHA3-256, SHA3-512, BLAKE2s, and BLAKE2b. We argue that these
choices of Σ andH represent a wide range of use cases and allow for easier reproducibility
of our results while also considering state-of-the-art algorithms. We note that H may
vary according to Σ, except in the case of Ed25519, where it is required thatH = SHA2-
512 [Josefsson and Liusvaara 2017]). Otherwise, we test all H against all Σ to compare
the performance of signature generation and verification in the context of MTSS.

1https://github.com/AnthonyKamers/mtss-signer/
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We follow the guidelines of the original authors of MTSS in our implementation.
Particularly, we parallelize hash computations whenever possible in VCOR. We anticipate
that CFF generation is costly when on-demand, i.e., in every computation of SIG, and if
errors are detected by VER. Therefore, we implement a simple cache for d-CFF(t, n) with
distinct d, t, n to prevent such overhead. In our experiments, we assume that all CFFs used
are already cached and previously serialized to memory, except when otherwise noted.
Finally, we execute DIVIDEBLOCKS before every computation of SIG, VER, and VCOR.

4.1. Auxiliary algorithms

As previously mentioned, auxiliary algorithms for MTSS create overhead in signature
generation and verification. In the following, we answer Q1 and Q2 by respectively
discussing the practical consequences of implementing DIVIDEBLOCKS and CREATECFF.
Due to time constraints, both algorithm’s performance tests were executed only once.
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a. Performance of DIVIDEBLOCKS.
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b. Performance of CREATECFF.

Figure 2. General performance of auxiliary algorithms for several choices of k, q, n.

Document division. Figure 2a summarizes the performance of DIVIDEBLOCKS
considering plain text and XML documents of several sizes. As n increases, XML files
require more time to separate into blocks due to the additional overhead of canonicalization,
syntactic validation, and structure parsing. However, according to [Mlynkova et al. 2006],
the average size of XML documents is around 4.6 kB, containing a small number of
nodes; moreover, 99% of XML documents have fewer than eight levels. This suggests
that, despite larger XML documents taking longer to separate into blocks, most real-world
XML documents are relatively short and simple, making them suitable for use with MTSS
in practical applications. Nonetheless, since parsing plain text files is considerably simpler,
our subsequent experiments will focus on this file type.

CFFs. We first note that, for a fixed number of blocks n, the relative number of
tests t is ≈ 173.39% larger when employing polynomial constructions and takes ≈ 2000×
longer to execute. Thus, for the case d = 1, Sperner families are the most efficient solution.
However, we recall that the polynomial construction is required if d ≥ 2. Figure 2b shows
the performance of creating CFFs with polynomial constructions for several choices of k
and q. We observe that as q increases, the execution becomes exponentially slower since
n = qk and, as n grows, the entire CFF grows. A particularly efficient point is shown
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between 5 ≤ q ≤ 8, and k = 5, where the parameters are among the ones proposed in
Sect. 3.2, generates a large CFF and in a reasonable time (< 40ms).

While q > 5 produces more valuable CFFs, performance tends to decline for values
greater than this threshold. Techniques such as pre-constructing the CFFs can mitigate
this issue and improve the framework’s overall efficiency. If we consider using MTSS in a
central resourceful server, CFFs could be made in advance and stored locally, which would
not disturb other algorithms’ performance.

4.2. Signing

We divide the overall signature generation procedure into two separate stages, pre-sign and
sign (SIG proper), for ease of discussion. In the pre-sign stage, we handle I/O operations,
segment the message into blocks based on the document type using DIVIDEBLOCKS, and
create or parse the cached CFF with CREATECFF. We integrate both algorithms in the
pre-sign stage. As a practical consequence, the implementation of SIG takes an additional
parameter k so that auxiliary algorithms need not be invoked by the user.

During the pre-sign stage, the document m′ (not parsed into blocks yet) is read from
the disk, processed by DIVIDEBLOCKS(m′), and subsequently by CREATECFF(n, k). The
secret key sk is also retrieved from the disk, preparing all necessary components for the
sign stage. Given the potential computation cost of these operations, we provide examples
illustrating the execution time of both stages in the following.

The hash function H and the signature scheme Σ used in the framework signif-
icantly impact the signing performance. Table 1 shows a performance comparison of
different signature schemes and hash functions in the context of our implementation. We
do not consider the pre-sign stage in performance measurements. The last two columns
represent the size of the resulting MTSS signature in bytes, depending on the output size
(in bits) ofH. This comparison addresses Q3, demonstrating that the choice of the hash
functionH plays a crucial role in MTSS performance. Furthermore, the signing time of
MTSS-augmented Σ remains consistent with traditional Σ, which answers Q4.

Based on these findings, we hereafter consider Σ = RSA-2048 andH = BLAKE2b
for our next experiments, as RSA-2048 is commonly used in practice and BLAKE2b
showed the best performance among the evaluated hash functions. The performance of
sign is influenced by the number of tests t inM. We identify that increasing the number
of tests results in longer signing times and larger signatures, as shown in Table 2. The
upper group demonstrates how performance is affected by the size of the input file for
fixed k. On the other hand, the lower group shows how different k affects the same file.
It is important to note that the same file can have varying numbers of tests t, depending
on the chosen values for k. The framework efficiency is reduced as tests or the number
of blocks increases. However, MTSS creates stronger signatures that make it easier to
identify document alterations, which is crucial in the discussed scenarios.

The pre-sign stage can sometimes take longer than sign, depending on the input file
(and subsequent number of blocks). As discussed in Sect. 4.1, parsing large XML files can
be time-consuming. This is an important consideration when using the MTSS framework.
Figure 3 compares the performance of the pre-sign and sign stages, showing the total time
to sign different files with k = 4. For simplicity, each file is named n.ext, where n is

Anais do SBSeg 2024: Artigos Completos

9



Table 1. Performance and output size of MTSS(Σ,H,M).SIG for several choices of
Σ, H and security parameter λ, consideringM = 2-CFF(25, 125), k = 3 and a
1.19MB plain text file as input.

λ Σ

SIG time (ms)
|σ| (bytes)SHA-2 SHA-3 BLAKE

256 512 256 512 2s 2b 256 512

R
aw

Σ

128 RSA-2048 4.83 3.63 3.93 6.42 2.49 3.32 256 256
128 ML-DSA-44 3.93 2.67 2.96 5.49 1.54 2.36 2360 2360
128 Ed25519 3.08 64
256 RSA-4096 8.83 7.64 7.96 10.44 6.54 7.38 512 512
256 ML-DSA-65 3.98 2.71 2.98 5.55 1.60 2.49 3220 3220
512 ML-DSA-87 4.10 2.73 3.02 5.58 1.62 2.41 4490 4490

M
T

S
S

128 RSA-2048 27.35 19.42 21.76 36.85 10.86 15.63 1088 1880
128 ML-DSA-44 26.44 18.85 21.27 36.04 10.36 15.2 3180 3990
128 Ed25519 19.99 1690
256 RSA-4096 31.32 23.37 25.74 40.87 14.9 19.66 1310 2120
256 ML-DSA-65 26.63 18.83 21.1 35.93 10.22 15.29 4030 4840
512 ML-DSA-87 26.76 18.98 21.12 36.17 10.02 15.05 5300 6110

the number of blocks and ext represents plain text and XML files. When considering
complex files, we note that pre-sign can overtake the sign stage time.

0 750 1,500 2,250

2401.txt

4096.txt

6561.txt

14641.txt

2401.xml

4096.xml

6561.xml

67

180

434

1,648

102

267

815

108

142

216

588

255

540

1,230

Time (ms)

pre-sign
sign

Figure 3. Performance of the signature generation procedure stages for
MTSS(Σ,H,M), whereM changes according to each file.

4.3. Verifying the signature and locating errors

Analogously, we divide the signature verification procedure into pre-verify and verify. The
former handles I/O operations by reading the message m, signature σ, and public key pk
from the disk; the latter follows the MTSS VER algorithm. In the framework, signature
verification performance depends on whether the signed message was modified or not. If
its integrity is preserved, the efficiency of VER is comparable to Σ.VER, albeit with the
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Table 2. Performance of signature operations of MTSS(Σ,H,M) for several choices
ofM, plain text files of different sizes, and |I| = 1.

Parameters ofM Size (kB) Time (ms)

k q t n d m σ SIG VER

4 7 49 2401 2 4.69 3.38 56.98 33.41
4 9 81 6561 2 12.8 5.38 156.27 185.95
4 11 121 14641 3 28.6 7.88 471.47 777.91
4 13 169 28561 4 55.8 10.9 1318.92 2609.34

- - 15

4096

1

8

1.25 96.21 88.41
4 8 64 2 4.31 91.30 82.93
3 16 256 7 16.3 187.37 191.41
2 64 4096 63 256 1720.94 2238.13

overhead of the MTSS signature being larger (cf. |σ| in Table 1). Therefore, we focus on
the performance of locating modifications in signed messages.

We discuss the influence of the number of tests t in modified signed messages in
Table 2. We infer that the verification time is directly proportional to t. In order to become
practical, fewer tests are desired; nevertheless, depending on the framework’s application,
more tests and a higher number of modifications detected are expected. This tradeoff
is necessary for the more powerful signatures MTSS produces. Another experiment we
conducted was changing the number of modified characters |I| in the same document from
the bottom part of Table 2, using k = 3, i.e., generating a 7-CFF(256, 4096); we noted
that the performance for different |I| is very small, since step 4 from VER recognizes all
modified blocks in a loop, not stopping until reaches all tests.

Table 3 shows the performance overhead of MTSS.VER with |I| = 0 and |I| = 1
against verifying using only Σ.VER. We remark that locating errors increases the verifying
time by up to 2×, depending on the number of tests t. However, we still consider it as
efficient and practical in real scenarios. This comparison also addresses Q3 and Q4 in the
context of signature verification.

4.4. Correcting

The VCOR algorithm supersets VER: modified blocks are first located, and then corrections
are tried. As mentioned in Sect. 2.2, we need to brute-force all possibilities from some
block considering some character encoding. Aspects such as the number of blocks, number
of modifications, content to be corrected, and the cryptographic hash function used affect
the performance of the algorithm. Particularly, the chosen H has a greater impact on
correcting modified blocks since a block with s bits requires 2s hash calculations. We note
that our implementation has already been performed using multiprocessing.

In our experiment, we varied the parameter |I| and s, using configurations Σ =
RSA-2048, H = BLAKE2b, andM as 7-CFF(126, 4096) and k = 3. We observed that
the overall performance for locating and correcting errors is linearly proportional to |I|.
Increasing |I| linearly scales the time, so doubling |I|would double the time required. From
that, we can infer that the time complexity T of the algorithm is T (|I|, s) = O(|I| × f(s)),
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Table 3. Performance and output size of MTSS(Σ,H,M) VER for several choices
of Σ, H and security parameter λ, considering M = 2-CFF(25, 125), k = 3
and a 1.19MB plain text file as input.

λ Σ

VER time (ms)

SHA-2 SHA-3 BLAKE

256 512 256 512 2s 2b

R
aw

Σ

128 RSA-2048 4.09 2.87 3.15 5.66 3.21 4.84
128 ML-DSA-44 3.88 2.61 2.90 5.47 1.51 2.30
128 Ed25519 3.84
256 RSA-4096 4.37 3.17 3.44 5.94 3.50 5.12
256 ML-DSA-65 3.91 2.62 2.92 5.47 1.51 2.32
512 ML-DSA-87 3.91 2.64 2.94 5.49 1.53 2.34

M
T

S
S

(|I
|=

0) 128 RSA-2048 4.16 2.95 3.25 5.80 1.81 2.64
128 ML-DSA-44 3.94 2.69 3.00 5.55 1.55 2.37
128 Ed25519 3.90
256 RSA-4096 4.45 3.23 3.54 6.08 2.10 2.91
256 ML-DSA-65 3.95 2.70 3.08 5.58 1.56 2.38
512 ML-DSA-87 3.95 2.72 3.05 5.57 1.58 2.40

M
T

S
S

(|I
|=

1) 128 RSA-2048 159.95 174.53 162.22 162.29 153.15 162.94
128 ML-DSA-44 156.93 177.55 159.49 165.35 163.51 154.37
128 Ed25519 165.41
256 RSA-4096 169.32 153.97 166.26 161.66 167.44 160.91
256 ML-DSA-65 160.05 191.31 165.23 162.47 154.52 160.33
512 ML-DSA-87 158.34 162.69 167.37 158.83 162.81 152.57

where f(s) represents the super-linear growth rate concerning s. Some performance
examples are given next, for |I| = 1: i) for s = 1, the time was 50ms; ii) for s = 2, the
time increased to 200ms; iii) For s = 3, the time significantly increased to 130,000ms; iv)
we estimated for s = 5, it would take ≈ 80.2 days.

5. Ensuring data integrity of individual blocks

We now consider a novel approach to the MTSS framework, framed as another question.

Q5 Is it possible to verify the integrity and authenticity of only one block of the original
signed data without having access to the whole data?

We were inspired by big data applications where a large signed dataset is stored on a
server, and the challenge is to verify the integrity of a small portion of this data without
downloading the entire set. We aim to verify whether a given small portion of data belongs
to the original dataset and ensure its authenticity. For instance, we want to verify that a
single page from a large signed PDF document belongs to the whole document and check
its integrity without accessing the entire file. This is relevant to documents in the Brazilian
Federal Register (Diário Oficial da União), where each page currently needs a separate
digital signature. The approach we propose in this section allows the entire document to be
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signed once, enabling verification of each page’s integrity and authenticity without multiple
signatures. Here, we solely focus on integrity and authenticity verification, and we do not
explore applications of this scheme for privacy protection or correction of modifications.

We positively answer the question by defining a protocol between two parties: the
server S, which stores the original document m, its corresponding MTSS signature σ, and
the system parameters of the framework, and the client C, which requests whether some
block mj belongs to the original document m, i.e., mj ∈ m.

The server S stores a tuple Z = (m,H(m), σ,Σ,H, n), where m = (m1, . . . ,mn)
is the document already split into n blocks; H(m) is the cryptographic hash of m; σ =
(σ′, T ) is a MTSS signature, and Σ,H, n are MTSS parameters as shown in Sect. 2.2.
Without loss of generality, S usesH(m) as a unique index to identify the corresponding
message m. We assume C holdsH(m), made publicly available by S. We recall that S can
reconstruct the d-CFFM, given the necessary parameters. First, we provide an auxiliary
algorithm that allows for the verification of the integrity and authenticity of a single block.

BLOCKVER(mj, pk, Y ). Let mj be a block of a message m, pk a public key of Σ, and
Y = (σ, i,M, k), where σ = (σ′, T ) is a MTSS signature, i ∈ N is an index such that Ti is a
hash of the MTSS signature in which block mj appears, M = (mℓ ∈ m :Mi,ℓ = 1, ℓ ̸= j),
and k is the index of mj ∈ Ti. The algorithm proceeds as follows.

1. Set r ← Σ.VER(σ′, T, pk). If r = ⊥, output ⊥. Otherwise, go to step 2.
2. Set M ← (M1, . . . ,Mk−1,mj,Mk, . . . ).
3. For 1 ≤ x ≤ |M |, set hx ← H(mx).
4. Set h′ ← H(h1||h2|| · · · ||h|M |).
5. If h′ = Ti, output ⊤. Otherwise, output ⊥.

Then, we propose an iterative protocol between C and S as follows:
1. C sends a tuple X = (H(m), j) to S, where j is the index of the desired block; S

keeps this information in memory until C ends the protocol or step 5 is reached.
2. S sends Y = (σ, i,M, k) to C; the contents of Y are described in BLOCKVER.
3. C sets r ← BLOCKVER(mj, pk, Y ).
4. If r = ⊥, C sends i to S, so it decides on a new i and goes back to step 2. Otherwise,

C sends ⊤ to S to end the protocol.
5. If S has no more item i, this terminate the protocol.

Now, we discuss how the protocol and algorithm solve the proposed problem. First,
note that even though we don’t need the entire message m to perform the verification, we
still need some extra blocks from m, i.e., the ones concatenated to mj in hash Ti, denoted
by the tuple M .

The first step in BLOCKVER ensures that the set T of hashes from σ is authentic
and can be used to verify mj . The next steps recreate the particular hash h′ using both mj

and the other blocks from M . Finally, in step 5, we compare Ti, which is the i-th hash of
the signature, with the computed hash h′. If they match, it means that mj is authentic and
belongs to the expected original message m. Otherwise, we have two possibilities: i) mj

does not belong to m or has integrity issues; ii) some other ms ∈M has integrity issues
and is the reason why step 5 failed.

We can not be sure about i) since we always depend on other blocks to perform
the verification. However, we can still surpass case ii) for up to d invalid accompanying
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blocks ms since σ comes from a d-CFFM. Note thatM has several other rows i for
whichMi,j = 1, so we can ask the server for the next index i and the corresponding set of
accompanying blocks M . For each new set of parameters, we can perform BLOCKVER
again. If step 5 outputs ⊤ for one of them, we know mj is authentic and belongs to m.

We observe that the number |M | of extra blocks necessary for the verification
depends on the number of 1s per row in M. For instance, if M came from the poly-
nomial construction, we have |M | = qk−1. In this case, we are interested in construc-
tions that minimize the 1s per row of M, which is an open problem, as mentioned
in [Idalino and Moura 2024]. Assuming no storage limitations, the server can minimize t
in exchange for larger signatures.

Also, restarting the protocol with the next index i and tuple M in case BLOCKVER
outputs ⊥ can be performed several times, which is equal to the number of 1’s in column j
ofM. For the polynomial construction, this value equals q; for the Sperner construction,
it equals ⌊ t

2
⌋. Finally, our solution uses the same signature algorithm of the MTSS scheme,

but we execute a partial verification instead of the one from MTSS. We claim that our
protocol signature is secure under the same assumptions proved in [Idalino et al. 2019].

Moreover, our proposal assumes that C has access to the block index j, which may
not be practical in real-world applications. A more feasible approach would involve C
sending a tuple (hm,mj) to S, or, to optimize network resources, (hm,H(mj)). Given
that S is a resource-rich server in terms of processing and storage, it would be possible to
create structural data that efficiently correlate H(mj) with tests Ti inM, allowing S to
send the tuple Y back to C. Although this would require additional algorithms and storage,
it would simplify the process for C, which would only need to have hm and its block mj .

6. Conclusion
We implement the modification-tolerant signature scheme (MTSS) framework, first intro-
duced by [Idalino et al. 2019], in a high-level programming language. With that, we test
its overall performance for its different algorithms, such as signing, verifying, and locating
errors and correcting them. We demonstrated how choosing a traditional signature scheme
Σ and a hash function H can affect the performance of its algorithms. Additionally, we
showed different arguments to give ideal parameters for constructing CFFs, depending on
how many modified blocks d are desired.

We also showed how difficult it is to separate different digital documents into
blocks so we can locate changes in them afterward; complex structure files like XML take
more time to parse and separate into blocks. We analyzed the performance details using
different parameters in our implementation of Sperner sets and polynomial constructions;
this led us to take some techniques to soften CFF construction, such as caching. Finally,
we present a novel approach to using MTSS, where we ensure partial data integrity and
authenticity of a single block without access to the whole signed message m, using an
iterative protocol between a client C and a server S.

We leave as a future work incorporating efficient implementations of CFFs with
d ≥ 2 within MTSS. Also, it is important to explore how to properly divide more complex
and common files into blocks, such as PDF or hierarchical documents in different data
structures. A general performance overview of our new protocol over the MTSS framework
would be advisable, validating it in a real-life example.

Anais do SBSeg 2024: Artigos Completos

14



References
Bernstein, D. J., Duif, N., Lange, T., Schwabe, P., and Yang, B.-Y. (2012). High-speed

high-security signatures. Journal of cryptographic engineering, 2(2):77–89.

Bilzhause, A., Pöhls, H. C., and Samelin, K. (2017). Position paper: the past, present, and
future of sanitizable and redactable signatures. In Proceedings of the 12th International
Conference on Availability, Reliability and Security, pages 1–9.

Bshouty, N. H. (2015). Linear Time Constructions of Some d-Restriction Problems. In
Algorithms and Complexity. CIAC 2015. Lecture Notes in Computer Science, volume
9079, pages 74–88.

Cao, Y.-y. and Fu, C. (2008). An efficient implementation of rsa digital signature algo-
rithm. In 2008 International Conference on Intelligent Computation Technology and
Automation (ICICTA), volume 2, pages 100–103.

De Bonis, A. and Di Crescenzo, G. (2011a). Combinatorial group testing for corruption
localizing hashing. In Computing and Combinatorics: 17th Annual International
Conference, COCOON 2011, Dallas, TX, USA, August 14-16, 2011. Proceedings 17,
pages 579–591. Springer.

De Bonis, A. and Di Crescenzo, G. (2011b). A group testing approach to improved
corruption localizing hashing. Cryptology ePrint Archive.

Di Crescenzo, G., Ge, R., and Arce, G. R. (2004). Design and analysis of dbmac, an
error localizing message authentication code. In IEEE Global Telecommunications
Conference, 2004. GLOBECOM’04., volume 4, pages 2224–2228. IEEE.
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