
Trust, but Verify: Evaluating Developer Behavior in
Mitigating Security Vulnerabilities in Open-Source Software

Projects

Janislley Oliveira de Sousa1,2, Bruno Carvalho de Farias3,
Eddie Batista de Lima Filho2,4, Lucas Carvalho Cordeiro2,3

1Sidia Institute of Science and Technology, Manaus, Brazil

2Federal University of Amazonas (UFAM), Manaus, Brazil

3University of Manchester, Manchester, United Kingdom

4TPV Technology, Manaus, Brazil

janislley.sousa@sidia.com, bruno.farias@manchester.ac.uk,

eddie.filho@tpv-tech.com, lucascordeiro@ufam.edu.br

Abstract. This study investigates vulnerabilities in dependencies of sampled
open-source software (OSS) projects, the relationship between these and over-
all project security, and how developers’ behaviors and practices influence their
mitigation. Through analysis of OSS projects, we have identified common issues
in outdated or unmaintained dependencies, including pointer dereferences and
array bounds violations, that pose significant security risks. We have also exam-
ined developer responses to formal verifier reports, noting a tendency to dismiss
potential issues as false positives, which can lead to overlooked vulnerabili-
ties. Our results suggest that reducing the number of direct dependencies and
prioritizing well-established libraries with strong security records are effective
strategies for enhancing the software security landscape. Notably, four vulner-
abilities were fixed as a result of this study, demonstrating the effectiveness of
our mitigation strategies.

1. Introduction
As widely known, modern software development often employs extensive third-party
code from external libraries to save time, which usually comes from open-source soft-
ware projects and offers numerous advantages, such as transparency, flexibility, and cost-
effectiveness. Further analysis also reveals that developers frequently rely on these li-
braries even when carrying out simple tasks instead of writing their code [Tang et al.
2022], and their centralized repositories make download and integration tasks easier,
boosting productivity. However, they also present significant risks due to potential prob-
lems that can directly impact users [Plate et al. 2015].

Indeed, open-source third-party libraries may contain security vulnerabili-
ties [Kula et al. 2018, Pashchenko et al. 2020]. While developers usually review their
code for bugs and security issues using specialized tools, e.g., CPPCheck [Marjamäki
2013], IKOS [Brat et al. 2014], and ESBMC v7.4 [Menezes et al. 2024], they often skip
checking third-party libraries due to the extra effort involved in their evaluation [Kula

Anais do SBSeg 2024: Artigos Completos

1



et al. 2018]. Going deeper, since a software project may depend on several open-source
libraries, which may, in turn, depend on many other libraries in a complex package de-
pendency network, analysis of a software project’s entire dependency tree can become
very complex.

In addition, the C programming language, which is widely used to develop critical
open-source projects (e.g., operating systems, device drivers, and encryption libraries),
lacks protection mechanisms such as bound checking and memory safety [Lipp et al.
2022], leaving developers responsible for memory and resource management [Berger
et al. 2019]. This way, any lapse may result in undefined behavior, exposing a program
to security vulnerabilities. Consequently, developers must be aware of these risks and
ensure that pointers in subtraction, addition, and comparison belong to the same memory
segment to prevent adverse outcomes.

Toward this need, the National Cybersecurity Federally Funded Research and De-
velopment Center (NCF), operated by the MITRE Corporation, oversees the common vul-
nerabilities and exposures (CVE) system [CVE 2024], which regularly publishes newly
identified open-source vulnerabilities. These vulnerabilities are documented in a compre-
hensive database with over 237, 725 entries, spanning across different languages, project
types, and technologies.

Additionally, although security vulnerabilities, in an isolated manner, already con-
stitute a significant challenge when creating applications with open-source code, they may
also be boosted by other factors. Xiao et al. [Xiao et al. 2014] investigated several so-
cial factors impacting developers’ adoption decisions based on a multidisciplinary field of
study called diffusion of innovations [Wermke 2023]. Their results indicate that security
tools can compel developers to build more secure software by detecting and resolving vul-
nerabilities during the implementation and code review phases. However, it is essential
to emphasize the importance of integrating security considerations throughout the entire
software development lifecycle to ensure comprehensive protection. Moreover, condi-
tions such as concerning behavior and lack of understanding regarding the consequences
of security failures were identified in those whose primary activity is code writing [Assal
and Chiasson 2018]. furthermore, while most open-source software projects have large
communities contributing to their growth, some are not regularly maintained, which fa-
vors security issues [Wermke et al. 2022].

Regarding third-party libraries implemented in C language during open-source
projects, it is crucial to adopt a critical perspective: developers should thoroughly ex-
amine open-source software to identify any vulnerabilities and potential backdoors [Zou
et al. 2019]. Even when a project does not use specific vulnerable components directly, an
element bundled in some linked package (e.g., third-party library or module) may cause
problems and affect others by cascading effects defined as transitive dependency. In other
words, examining source code and its documentation is essential to finding software vul-
nerabilities [Almarimi et al. 2020]. However, although many developers are mindful of
secure-code best practices, there is no guarantee that they will follow all guidelines during
development phases or integrate them into software processes. Moreover, some problems
may still exist in the available code as it is challenging to detect security risks before
software deployment [Gueye et al. 2021].

Anais do SBSeg 2024: Artigos Completos

2



As initial and general perceptions, integrating third-party libraries in open-source
projects has become a standard practice to expedite development and leverage existing
solutions [Massacci and Pashchenko 2021]. However, this approach introduces signif-
icant security challenges [Tang et al. 2022]. On the one hand, while static analyzers
often produce false positives, they can also identify genuine issues that will likely be
overlooked during manual code reviews. For instance, in this scenario, Fortify source
code analyzer (SCA) [Fortify 2024] excels in detecting vulnerabilities like buffer over-
flows and structured query language (SQL) injections, while Coverity [Coverity 2024], a
static application security testing (SAST) tool, can identify critical bugs such as memory
leaks and concurrency issues. Although both tools may flag non-critical issues, their thor-
ough analysis helps catch significant security flaws that manual review procedures might
miss, improving software security and reliability. On the other hand, formal verifiers,
supported by mathematical proofs, produce significantly fewer false positives compared
to static analysis tools [Švejda et al. 2020]. This ensures a higher level of accuracy in
identifying vulnerabilities. Therefore, developers should balance dismissing all analyzer
reports and addressing every single one.

Ultimately, the primary goal of software quality phases is to ensure software in-
tegrity and protect project results from potential threats, regardless of their origin, which
includes avoiding risks related to bad practices and common assumptions. We exam-
ined various aspects related to the characteristics of the discovered vulnerabilities in the
sampled projects’ open-source dependencies. Our analysis revealed that developers’ be-
haviors and practices significantly influence the mitigation of security vulnerabilities in
third-party libraries within open-source software (OSS) projects. Consequently, this study
aims to answer the following research questions:

• RQ1: What are the Common Types and Prevalence of Dependency Vulnerabilities
in Open-Source Software Projects?

• RQ2: How do developers’ behaviors and practices influence the mitigation of
security vulnerabilities?

• RQ3: What is the most effective strategy for mitigating risks from dependency
vulnerabilities in open-source software projects?

The remainder of this article is organized as follows: Section 2 describes the key
concepts used in this study, including the tools and techniques employed for vulnerabil-
ity detection and analysis. Next, Section 3 shows the methodology defined to execute
the experiments. Section 4 provides a detailed analysis of the identified vulnerabilities
in various OSS projects, discusses how these vulnerabilities are managed by develop-
ers, and presents the outcomes of the remediation efforts, including the specific fixes
applied. Lastly, Section 5 summarizes our findings, discusses the implications of devel-
oper behaviors on security practices, and offers recommendations for mitigating security
vulnerabilities in OSS projects.

2. Background
Software developers frequently use open-source libraries to speed up development cycles,
but these libraries can contain security vulnerabilities, leading to high-profile incidents.
Besides, as the use of open-source libraries grows, managing and mitigating these de-
pendency vulnerabilities becomes increasingly important [Prana et al. 2021]. In that

Anais do SBSeg 2024: Artigos Completos

3



sense, testing is inevitable. However, it is important to understand that software quality
protocols are not simple evaluation sessions. Indeed, the complete process for software
verification usually includes vulnerability identification, confirmation, code analysis, and
code repair (e.g., patch application and merge requests), which may even be extended
(e.g., robustness improvements). Moreover, the entire chain begins with the vulnerabil-
ity identification step, which undoubtedly employs specialized tools, given that manual
evaluation is impracticable for large projects.

This section presents the key concepts and technologies related to LSVerifier, an
automated approach for software project evaluation. We focus on its structure and imple-
mentation to analyze security vulnerabilities in open-source codebases.

2.1. Bounded Model Checking Technique

Bounded model checking (BMC) is a formal verification technique that detects errors up
to a specified depth k, using Boolean Satisfiability (SAT) or Satisfiability Modulo Theo-
ries (SMT). Consequently, without a known upper bound for k, BMC cannot guarantee
complete system correctness. In addition, as it only explores a limited state space by
unwinding loops and recursive functions to a maximum depth, the state-explosion prob-
lem is inherently alleviated. In summary, this bounded nature makes BMC effective for
uncovering fundamental errors in applications [Clarke et al. 2004, Gadelha et al. 2019].
Properties under verification are defined by

BMCΦ(k) = I(s1) ∧

(
k−1∧
i=1

T (si, si+1)

)
∧

(
k∨

i=1

¬ϕ(si)

)
, (1)

where I(s1) is the set of initial states for a system,
∧k−1

i=1 T (si, si+1) is the transition rela-
tion between time steps i and i+1, encompassing the evolution of the system over k steps,
and

∨k
i=1 ¬ϕ(si) represents the negation the property ϕ at state si, indicating its violation

within a bound k. Together, these components formulate a problem that is satisfiable
if and only if a counterexample of length k or less exists, which includes the necessary
information for its reproducibility.

2.2. LSVerifier Tool

The LSVerifier tool [de Sousa et al. 2023a, de Sousa et al. 2023b] provides compre-
hensive support for the entire C11 standard, the current version of the C programming
language. Moreover, unlike other tools based on SAST, such as Fortify SCA and Cover-
ity, it can handle entire software projects and not only main entry functions, presenting
high flexibility and coverage. It identifies software vulnerabilities by simulating a finite
program execution prefix that includes all possible defined inputs, explicitly generating
one symbolic execution per interleaving [Cordeiro and Fischer 2011].

LSVerifier supports the detection of various vulnerabilities, including buffer over-
flows, arithmetic overflows, invalid pointer access, improper buffer access, null pointer
dereferences, double frees, division by zero, array bounds violations, pointer arithmetic
violations, and user-defined assertions. The verification process is illustrated in Figure 1,
which requires specifying the source code directory and configurations, such as the solver,
encoding, and verification methods.

Anais do SBSeg 2024: Artigos Completos

4



Figure 1. The LSVerifier’s verification process involves specifying source-code
directory and configurations, including solver, encoding, and verification meth-
ods. Violations are categorized and reported in a detailed summary output.

LSVerifier conducts a comprehensive verification process by specifying the target
source-code directory and the required configuration, including solver, encoding, and ver-
ification methods. Subsequently, all .c files inside the input directory are listed and exam-
ined using the Efficient SMT-based Context-Bounded Model Checker (ESBMC) [Gadelha
et al. 2021], leading to the creation of a report summarizing the obtained results.

The core BMC methodology employed by ESBMC involves unfolding a target
system for a limited number of iterations and formulating a verification condition (VC).
If the latter is satisfiable, it indicates a counterexample for a given property at a specific
depth. ESBMC, in turn, is a robust and publicly available formal software verifier selected
as our BMC module for formal verification. ESBMC employs state-of-the-art incremental
BMC techniques and k-induction proof-rule algorithms based on abstract interpretation,
constraint programming (CP), and SMT solvers, whose effectiveness has already been
demonstrated in various contexts [Beyer 2024]. The ESBMC’s architecture is illustrated
in Figure 2. Its core detection mechanism relies on BMC, which converts source code
into formal logical representations. These formulae encode a program’s behavior and
the associated properties to be verified, such as the memory-safety ones. The resulting
encoded logic is then passed to an SMT solver, which systematically explores a program’s
state space.

Figure 2. ESBMC verifier approach. White rectangles represent input and output
and gray rectangles represent the verification steps [Gadelha et al. 2021].

Anais do SBSeg 2024: Artigos Completos

5



ESBMC employs several key components during its verification process. The
Control-flow Graph (CFG) Generator handles C++ programs by including type-checking
and static analysis, creating an Intermediate Representation (IR) for GOTO program gen-
eration. At the same time, ANSI-C converts Abstract Syntax Trees (AST) into GOTO
programs with additional checks and simplifications. The Symbolic Execution Engine
symbolically executes the GOTO program, unrolling loops, generating Static Single As-
signments (SSA) forms, and deriving safety properties for SMT solvers, including pointer
safety checks. The SMT Back-end supports multiple solvers, encoding the SSA form into
a formula to check satisfiability and generate counterexamples if a bug is detected.

Any property violations found during a verification procedure are informed and
categorized by LSVerifier via a detailed report. For example, if a buffer overflow is de-
tected, it flags the problematic function, highlighting the violated bounds, and generates
a detailed report with the corresponding counterexample, which aids developers in un-
derstanding root causes. It includes a sequence of states and transitions, showing how a
system evolves from an initial state to a condition where a property is violated. Indeed,
this trace provides critical information for debugging as it pinpoints the exact sequence
of operations leading to an error. Consequently, by analyzing a counterexample, devel-
opers can understand what causes a violation and then take corrective actions to fix its
underlying issue.

3. Methodology
In this section, we present an overview of the verification methodology employed in this
research, along with the experimental setup used to validate our approach.

3.1. Vulnerability Detection Process
In this section, we introduce the principles of our approach to detect the presence of vul-
nerabilities, based on the concepts previously introduced in our work. The verification
procedure using LSVerifier is displayed in Figure 3, where a formal verification process
begins with a thorough analysis using specialized tools to ensure compliance with speci-
fied security properties. This way, violations are identified and categorized based on their
nature and severity. Next, the associated potential vulnerabilities are assessed to confirm
whether they represent real security threats. If a valid vulnerability is identified, an issue is
opened in the respective OSS project’s repository, providing detailed information about it.
This process continues with discussions between the project’s developers and maintainers
to explore potential fixes and solutions for the identified issue, collaboratively.

Figure 3. Verification methodology using LSVerifier.

The data collected from this verification methodology is used to address the re-
search questions. To answer RQ1, this study begins by identifying and detailing the

Anais do SBSeg 2024: Artigos Completos

6



vulnerability types commonly found in OSS projects and also their prevalence, laying the
foundation for understanding the nature of a property violation that leads to a possible
software vulnerability. For RQ2, we explore how developers’ actions, i.e., response to
issues, maintenance of dependencies, and overall security practice, influence vulnerabil-
ity mitigation, connecting human factors to security challenges. Finally, to address RQ3,
we present the most effective strategies for mitigating risks from dependency vulnera-
bilities, offering actionable insights and solutions based on the identified problems and
developers’ behaviors.

3.2. Experiment Setup

All experiments described in this study were conducted on a system equipped with an
Intel(R) Core(TM) i7-9750H computer processing unit (CPU) operating at 2.60 GHz,
using 32 GB of RAM, and running Ubuntu 22.04. For benchmarking purposes, we cu-
rated a dataset comprising ten widely used software modules written in C: VideoLAN
Client (VLC) in version 3.0.18, VI improved (VIM) in version 9.0.1672, terminal multi-
plexer (Tmux) in version 3.3a, reliable USB formatting utility (RUFUS) in version 4.1,
OpenBSD secure shell (OpenSSH) in version 9.3, cross-platform make (CMake) in ver-
sion 3.27.0-rc4, network data (Netdata) in version 1.40.1, Wireshark in version 4.0.6,
Open Secure Sockets Layer (OpenSSL) in version 3.1.1, PuTTY in version 0.78, struc-
tured query language lightweight (SQLite) in version 3.42.0, and remote dictionary server
(Redis) in version 7.0.11. All open-source software utilized in this research was dis-
tributed under open-source licenses, including GNU GPL, Apache, and MIT.

The following command was used to run LSVerifier on the entire set of OSS
projects to analyze the codebase and identify potential vulnerabilities:

"$ lsverifier -r -f -l dep.txt".

The parameter -l dep.txt specifies a file containing paths for including header files
from dependencies, ensuring that all necessary resources are considered. The param-
eter -f enables function verification, verifying individual functions within a codebase.
Finally, the parameter -r enables recursive verification, ensuring that the verification
process includes all nested functions and dependencies.

4. Empirical Study Results
This section presents the investigation results on vulnerabilities in OSS project dependen-
cies and their impact on overall project security, highlighting how developers’ behaviors
and practices influence vulnerability mitigation.

4.1. OSS Projects Exploitation

The issues reported in this study were based on the counterexample traces provided by
LSVerifier during its analysis procedures. In this context, OSS projects were assessed
according to the methodology outlined in Section 3.

Therefore, Table 1 provides an overview of the issues reported, analyzed, and
fixed in the chosen OSS projects. It is worth noticing that such issues were discussed with
the respective developers and maintainers of the chosen OSS projects, which enabled us
to evaluate and confirm many of them.

Anais do SBSeg 2024: Artigos Completos

7



Table 1. Issues reported to the open-source software project repositories.
OSS project Issues reported Issues fixed
VLC Issue 1a 1
VIM Issue 1b 0
RUFUS Issue 1c, Issue 2d 1
OpenSSH Issue 1e, Issue 2f 0
CMake Issue 1g 1
Netdata Issue 1h, Issue 2i 0
Wireshark Issue 1j 1
OpenSSL Issue 1k 0
SQLite Issue 1l, Issue 2m 0
Redis Issue 1n, Issue 2o 0

ahttps://code.videolan.org/videolan/vlc/-/pipelines/227531
bhttps://github.com/vim/vim/issues/9571
chttps://github.com/pbatard/rufus/issues/1856
dhttps://github.com/kokke/tiny-regex-c/issues/76
ehttps://bugzilla.mindrot.org/show_bug.cgi?id=3452
fhttps://bugzilla.mindrot.org/show_bug.cgi?id=3382
ghttps://gitlab.kitware.com/cmake/cmake/-/issues/23132
hhttps://github.com/netdata/netdata/issues/13219
ihttps://www.sqlite.org/forum/forumpost/3ffffb11d0
jhttps://gitlab.com/wireshark/wireshark/-/issues/17897
khttps://github.com/openssl/openssl/issues/17560
lhttps://sqlite.org/forum/forumpost/ac645ab114

mhttps://www.sqlite.org/forum/forumpost/a2d232d413
nhttps://github.com/janislley/lsverifier_final_results/blob/main/redis-7.0.11/out/

issue1.pdf
ohttps://github.com/janislley/lsverifier_final_results/blob/main/redis-7.0.11/out/

issue2.pdf

4.2. RQ1: What are the Common Types and Prevalence of Dependency
Vulnerabilities in Open-Source Software Projects?

Our evaluation of developer behavior in mitigating security vulnerabilities in OSS projects
revealed crucial insights into current practices and their broader implications for fostering
a trustworthy software ecosystem.

In the VLC project, a pointer dereference issue was identified in the framebuffer
third-party library. A double-free error was identified as its cause, a vulnerability related
to CWE-415 [MITRE 2024]. Consequently, the respective maintainers decided to remove
the Linux fbdev subsystem, which has been deprecated for over a decade, as superior
alternatives are now available. This proactive approach led to an immediate impact on
mitigating such vulnerabilities.

In our analysis of RUFUS, we identified property violations such as array bounds,
division by zero, and invalid pointers. Each issue highlights specific code errors and their
implications, providing insights into the root causes and potential fixes for the identified
vulnerabilities in RUFUS’s software structure. However, when writing the present paper,
we received only one bug fix for the library tiny-regex-c to address an out-of-bounds
violation related to CWE-787 [MITRE 2024]. Indeed, such behavior implies careless
maintenance, a key aspect that can cause higher future impacts on system availability and
reliability.

Anais do SBSeg 2024: Artigos Completos

8

https://code.videolan.org/videolan/vlc/-/pipelines/227531
https://github.com/vim/vim/issues/9571
https://github.com/pbatard/rufus/issues/1856
https://github.com/kokke/tiny-regex-c/issues/76
https://bugzilla.mindrot.org/show_bug.cgi?id=3452
https://bugzilla.mindrot.org/show_bug.cgi?id=3382
https://gitlab.kitware.com/cmake/cmake/-/issues/23132
https://github.com/netdata/netdata/issues/13219
https://www.sqlite.org/forum/forumpost/3ffffb11d0
https://gitlab.com/wireshark/wireshark/-/issues/17897
https://github.com/openssl/openssl/issues/17560
https://sqlite.org/forum/forumpost/ac645ab114
https://www.sqlite.org/forum/forumpost/a2d232d413
https://github.com/janislley/lsverifier_final_results/blob/main/redis-7.0.11/out/issue1.pdf
https://github.com/janislley/lsverifier_final_results/blob/main/redis-7.0.11/out/issue1.pdf
https://github.com/janislley/lsverifier_final_results/blob/main/redis-7.0.11/out/issue2.pdf
https://github.com/janislley/lsverifier_final_results/blob/main/redis-7.0.11/out/issue2.pdf


In the case of CMake, developers promptly addressed a pointer dereferencing is-
sue in the source code by adding a verification step before pointer usage, which was
caused by an invalid pointer related to CWE-824 [MITRE 2024]. This result highlights
the importance of developers being aware of potential memory management issues and
adopting defensive programming practices, such as boundary-checking on memory ac-
cess operations. By prioritizing secure memory management practices, developers can
mitigate serious security vulnerabilities in their projects.

In our investigation of Wireshark, we uncovered common types of dependency
vulnerabilities, including array access violations related to CWE-125 [MITRE 2024], and
invalid and null pointers related to CWE-824 and CWE-476 [MITRE 2024], respectively.
These vulnerabilities were identified in the CMake and network programming language
(NPL) libraries, which are critical project dependencies. The issues stemmed from deref-
erence failures caused by out-of-bounds access and null pointer occurrences. Notably,
the library NPL has not been actively maintained as its last significant update occurred
approximately nine years ago. Besides, the most recent commit log reference dates back
eight years. This lack of maintenance highlights the prevalence and risk of dependency
vulnerabilities in OSS projects. To mitigate such problems and ensure the robustness and
security of Wireshark, the development team decided to remove the library NPL, which
is a significant result.

Finding 1

Based on the vulnerabilities identified and mitigated in this study, common types of
dependency vulnerabilities in open-source software projects include pointer deref-
erence issues, such as the double-free errors (CWE-415) found in VLC; array ac-
cess violations, including out-of-bounds violations (CWE-787) in RUFUS; invalid
pointers detected in CMake and Wireshark (CWE-824); and null pointer derefer-
ences identified in Wireshark (CWE-476). These findings demonstrate that such
vulnerabilities are not isolated incidents but recurring issues in dependency man-
agement, confirming the need for more systematic and proactive mitigation strate-
gies to ensure OSS project security.

The widespread occurrence of these vulnerabilities highlights the significant secu-
rity risks posed by faulty dependencies in OSS projects. It also emphasizes the importance
of proactive and consistent management of third-party libraries to safeguard OSS security
and stability.

Finding 2

Our findings highlight the recurring security challenges in OSS projects, partic-
ularly in managing third-party libraries. Developers’ actions, such as removing
deprecated subsystems and adding verification steps, demonstrate the critical role
of proactive maintenance in mitigating security vulnerabilities. Indeed, such as-
pects underscore that continuous monitoring and management of dependencies are
not merely best practices. They are also essential measures required to maintain
the integrity and security of OSS projects.

Anais do SBSeg 2024: Artigos Completos

9



4.3. RQ2: How do developers’ behaviors and practices influence the mitigation of
security vulnerabilities?

Understanding how developers’ behaviors and practices influence security vulnerability
mitigation is crucial for enhancing OSS project security. Developer responses to the iden-
tified vulnerabilities, their approach to maintaining dependencies, and their willingness to
adopt proactive security measures play a significant role in mitigating risks.

Diligent maintenance is crucial in OSS projects, as it ensures the timely addressing
vulnerabilities, bug fixes, and compatibility updates. Neglecting these responsibilities can
lead to unaddressed security flaws, reduced system performance, and increased risk of
system failures. Consistent maintenance practices are essential to sustain OSS projects’
security and reliability, ensuring they remain robust and dependable for users.

The SQLite project’s response to identified violations underscores a prevalent
challenge in the software development community: the inclination to dismiss static ana-
lyzer or formal verifiers results as “false positives”. This practice stems from the belief
that static analyzers often produce inaccurate results, causing unnecessary alarms and po-
tentially wasting development resources. The SQLite team highlighted that they usually
disregard these reports without concrete evidence, such as an SQL script or specific code
reproducing the issue. While pragmatic and aimed at preventing undue alarm, this stance
carries significant risk. By dismissing these warnings, the team may overlook potential
vulnerabilities that have not yet manifested and could be avoided. Indeed, it reveals the
usual paradigm: corrections only arrive after a real problem, which shows a lack of proac-
tivity and leads to higher losses.

The reliance on historical codebase performance further exacerbates this issue.
During our discussions, the SQLite team noted their confidence in their codebase’s his-
torical stability, which they believe confuses static analyzers. This over-reliance can lead
to complacency, resulting in missed opportunities to address latent issues before they be-
come significant security threats. By not investigating potential false positives, in their
opinion, developers may inadvertently leave their software susceptible to vulnerabilities
that are initially difficult to detect but could have severe implications if exploited.

Besides, such an approach highlights a critical gap in development processes: the
need for a balanced view of static analysis results. On the one hand, while it is true that not
all warnings require immediate action, completely disregarding them without thorough
investigation can undermine the overall security of a given software system. Thus, a more
nuanced approach, where static analyzers’ findings are carefully evaluated and verified,
can help identify genuine issues early, thus enhancing software security and robustness.

Finding 3

Our analysis reveals a gap in the development process related to the interpreta-
tion of static analysis results. Although static analyzers may generate false posi-
tives, they often identify legitimate issues that may be missed during manual code
reviews. In contrast, formal verifiers, supported by mathematical proofs, ensure
higher accuracy. Thus, developers must integrate both tools, balancing skepticism
and due diligence, to enhance software systems’ overall security and reliability.

Anais do SBSeg 2024: Artigos Completos

10



Similarly, the developers acknowledged an issue reported in OpenSSL involving
an invalid pointer dereference related to CWE-476 [MITRE 2024], but not classified as a
vulnerability. It happened because many OpenSSL APIs crash if a null pointer is passed
However, this perspective reveals a problematic practice: developers frequently assume
that certain conditions will never occur, dismissing potential vulnerabilities, which can
be dangerous. If an attacker manipulates parameters or code to create these conditions,
even using regular code contribution tools, the identified problem could lead to severe
consequences, including system crashes or security breaches.

This example highlights the importance of changing the usual behavior of de-
velopers to make them address all identified issues, regardless of associated perceived
likelihood. By not considering these scenarios as potential vulnerabilities, it is clear that
developers leave their code open to exploitation. Addressing seemingly unlikely issues
can prevent attackers from leveraging them to compromise the system. Besides, encour-
aging a proactive approach to vulnerability management, where all identified issues are
investigated and resolved, is essential for maintaining robust security.

Moreover, this practice underscores the need for developers to anticipate and mit-
igate even rare scenarios. This shift in behavior involves recognizing that assumptions
about the improbability of certain conditions can lead to significant security gaps. A
comprehensive approach to security should include evaluating and addressing all poten-
tial issues and ensuring that a software structure is resilient against a wide range of attacks.
In conclusion, fostering a culture of thorough investigation and resolution of all identified
vulnerabilities is crucial for the security and integrity of OSS projects.

Finding 4

Our findings show that dismissing potential issues, such as buffer overflows and
dereference failures identified by static analysis or formal verification (e.g., model-
checking) tools, without proper investigation, leaves software vulnerable to real
threats. Such results emphasize the importance of adopting a balanced approach
that integrates both manual testing and static analysis to ensure robust security in
open-source C projects.

4.4. RQ3: What is the most effective strategy for mitigating risks from dependency
vulnerabilities in open-source software projects?

As our analysis indicates, the most effective strategy for mitigating risks from dependency
vulnerabilities, in OSS projects, is to reduce the number of direct dependencies. It can
be achieved by carefully selecting and substituting multiple small libraries with a single
and well-established element known for its strong security track record. This approach
simplifies dependency management and leverages widely used and reputable open-source
libraries’ security practices and community support. Although it does not dismiss thor-
ough analysis and careful evaluation, as previously suggested, it may reduce risks and
also the revision workload.

The analysis of Redis revealed multiple violations, including array bound viola-
tions, related to CWE-787, invalid pointer dereferences, related to CWE-476 [MITRE
2024], null pointer dereferences, related to CWE-476 [MITRE 2024], and out-of-bounds

Anais do SBSeg 2024: Artigos Completos

11



object access, related to CWE-119 [MITRE 2024]. While some of these were confirmed
as false positives, a significant oversight was identified: inadequate null pointer checks.
Indeed, this oversight could lead to undefined behavior if a function is called with a null
pointer. Even so, the Redis developers dismissed this issue, claiming that the function or
method would never be invoked in a problematic way. This is a dangerous assumption,
as attackers could potentially exploit such scenarios. In addition, it is worth noticing that
these issues were not false positives but problems dismissed by wrong assumptions made
during the development or verification process.

Finding 5

This finding highlights the critical need for thorough verification of false positives,
as dismissing them without adequate investigation can lead to overlooked vulnera-
bilities that impact the security of the software. Ensuring that potential false pos-
itives are rigorously checked and validated is essential to prevent security weak-
nesses from being inadvertently introduced into the codebase.

These oversights could have critical consequences, particularly in C programs,
which often lack robust memory management and are more susceptible to vulnerabilities
such as buffer overflows, null pointer dereferences, and memory leaks. Failing to identify
and address these overlooked vulnerabilities leaves the system exposed to exploitation,
where attackers can manipulate these memory issues to compromise security. Strength-
ening overall system security requires a meticulous approach to detecting and resolving
these potential weaknesses in memory handling.

Finding 6

Our analysis indicates that functions from dependency libraries, especially in C
programs, where pointers are frequently used to access arrays, pose serious security
risks if not carefully verified. It highlights the inherent vulnerability in passing
pointers as function arguments, which can lead to significant security concerns
when not properly addressed during development processes.

Results indicate that managing dependency vulnerabilities in OSS projects is more
effective when reducing direct dependencies rather than expanding development teams.
This can be achieved in OSS projects by carefully selecting and replacing multiple smaller
libraries with a single and well-established library known for its robust security track
record. Such an approach simplifies dependency management and leverages widely used
and reputable open-source libraries’ security practices and community support.

Finding 7

Our results demonstrate that effective library management plays a more crucial
role in mitigating dependency vulnerabilities in OSS projects than increasing the
number of contributors, project activity, or overall project size. The associated
analysis reveals that reducing the number of direct dependencies, such as replacing
several smaller libraries with a single and well-established element with a strong
security record, is a critical factor in enhancing software security.

Anais do SBSeg 2024: Artigos Completos

12



By prioritizing the integration of libraries that have a proven track record of secu-
rity, reliability, and consistent updates, developers can significantly reduce the risk of in-
troducing vulnerabilities into their software. These well-vetted libraries typically undergo
extensive peer review and real-world testing, making them more resilient to attacks.

Furthermore, selecting libraries with active maintenance ensures that any newly
discovered security flaws are promptly addressed through patches and updates, minimiz-
ing exposure to potential threats. Incorporating such trusted libraries into the develop-
ment process also allows developers to focus more on their core application logic rather
than spending excessive time identifying and fixing third-party code vulnerabilities. This
approach not only mitigates common security risks but also ensures that the software
remains resilient against emerging threats in an ever-evolving threat landscape.

5. Conclusion

Our findings emphasize the need for developers to adopt a more rigorous approach to
security, particularly regarding third-party libraries. Despite their potential for false posi-
tives, static analyzers (SAST an SCA) play a crucial role in identifying genuine issues that
may be missed during manual reviews. The formal verification approach implemented by
LSVerifier provides detailed reports with counterexamples, which can help developers en-
sure code safety and improve the security and resilience for their software systems. Devel-
opers must also balance addressing these reports with a collaborative approach, working
with security researchers and tool developers to validate and fix potential vulnerabilities.
By fostering a culture that prioritizes security and encourages thorough examination of
all potential risks, the open-source community can enhance software projects’ overall in-
tegrity and robustness.

This study demonstrated the effectiveness of the proposed mitigation strategies,
leading to the successful resolution of four vulnerabilities in the OSS projects VLC, RU-
FUS, CMake, and Wireshark. Such results underscore the critical role of proactive de-
pendency management in enhancing software security. By addressing our three research
questions, we have identified key best practices that developers and the OSS community
can adopt to strengthen security measures significantly, as follows:

• providing comprehensive dependency management;
• integrating formal verification tools;
• fostering a security-first culture;
• using well-established libraries;
• enforcing regular security audits and reviews.

This study emphasizes the importance of actively managing project dependencies
to prevent security risks. Indeed, developers should focus on minimizing the number of
direct dependencies and thoroughly auditing both direct and transitive dependencies. In
addition, our results highlight the need for integrating static analysis and formal verifica-
tion tools into development processes. By using tools based on formal verification that
can detect deeper issues, such as memory management flaws, comprehensive security
can be assured, complementing traditional static analysis methods. Also, in this context,
Maintaining robust security in OSS projects requires a culture that prioritizes security
throughout the entire development lifecycle.

Anais do SBSeg 2024: Artigos Completos

13



Therefore, developers must collaborate with security experts to efficiently detect
and resolve vulnerabilities, and the OSS community can better protect against emerging
threats by encouraging security-first practices. Moreover, developers and maintainers can
significantly mitigate risks by focusing on well-established libraries with strong security
records. So, reducing reliance on poorly maintained or obscure libraries helps minimize
vulnerabilities and improve project security, as demonstrated by the successful resolu-
tion of issues in major OSS projects. Finally, Regular security audits and rigorous code
reviews are essential for maintaining a strong security posture in OSS projects. Conse-
quently, this study reinforces the importance of adopting a zero-trust culture to ensure that
all issues are thoroughly analyzed and addressed.

Maintaining robust security in OSS projects requires a multifaceted approach that
combines static analysis, formal verification, and collaborative efforts with security ex-
perts. Developers can significantly lower security risks by reducing unnecessary depen-
dencies, selecting well-vetted libraries, and continuously monitoring and managing de-
pendencies. The OSS community must prioritize security by adopting best practices,
enforcing regular updates, and remaining vigilant against emerging threats, given that
analysis emphasizes the critical importance of diligent maintenance.

Besides, OSS projects can evolve into more resilient and trustworthy software
ecosystems by adopting integrated approaches where security, testing, evaluation, and
analysis are regarded with the same importance as development activities. Neglecting reg-
ular updates and vulnerability management can lead to severe consequences. Therefore,
incorporating agile strategies with thorough testing, evaluation, and analysis throughout
development lifecycles will improve the robustness and dependability of OSS projects. In
summary, fostering a security-conscious mindset and embedding best practices into the
development process is essential for ensuring the security and longevity of OSS projects.

Acknowledgment
The authors are grateful for the support offered by the SIDIA R&D Institute in the SE-
ICO project. Samsung partially supported this work, using Informatics Law resources
for Western Amazon (Federal Law No. 8.387/1991). Therefore, the present work dis-
closure is in accordance as foreseen in article No. 39 of number decree 10.521/2020.
The work in this paper is also partially funded by the Engineering and Physical Sciences
Research Council (EPSRC) grants EP/T026995/1, EP/V000497/1, EP/X037290/1, and
Soteria project awarded by the UK Research and Innovation for the Digital Security by
Design (DSbD) Programme.

References
[Almarimi et al. 2020] Almarimi, N., Ouni, A., and Mkaouer, M. W. (2020). Learning to

detect community smells in open source software projects. Knowledge-Based Systems,
204:106201.

[Assal and Chiasson 2018] Assal, H. and Chiasson, S. (2018). Security in the software de-
velopment lifecycle. In SOUPS, pages 281–296.

[Berger et al. 2019] Berger, E. D., Hollenbeck, C., Maj, P., Vitek, O., and Vitek, J. (2019).
On the impact of programming languages on code quality: A reproduction study. ACM
TOPLAS, 41(4):1–24.

Anais do SBSeg 2024: Artigos Completos

14



[Beyer 2024] Beyer, D. (2024). State of the art in software verification and witness valida-
tion: Sv-comp 2024. In TACAS, pages 299–329. Springer.

[Brat et al. 2014] Brat, G., Navas, J. A., Shi, N., and Venet, A. (2014). Ikos: A framework
for static analysis based on abstract interpretation. In SEFM, pages 271–277. Springer.

[Clarke et al. 2004] Clarke, E., Kroening, D., and Lerda, F. (2004). A tool for checking
ansi-c programs. Lecture Notes in Computer Science, 2988:168–176.

[Cordeiro and Fischer 2011] Cordeiro, L. and Fischer, B. (2011). Verifying multi-threaded
software using smt-based context-bounded model checking. In ICSE, pages 331–340.

[Coverity 2024] Coverity (2024). Static application security testing. http://www.
coverity.com. Accessed 16 Aug 2024.

[CVE 2024] CVE, M. (2024). Cve list. https://cve.org/. Accessed 16 June 2024.

[de Sousa et al. 2023a] de Sousa, J. O., de Farias, B. C., da Silva, T. A., Cordeiro, L. C.,
et al. (2023a). Finding software vulnerabilities in open-source c projects via bounded
model checking. arXiv preprint arXiv:2311.05281.

[de Sousa et al. 2023b] de Sousa, J. O., de Farias, B. C., da Silva, T. A., de Lima Filho,
E. B., and Cordeiro, L. C. (2023b). Lsverifier: A bmc approach to identify security
vulnerabilities in c open-source software projects. In XXIII SBSeg, pages 17–24. SBC.

[Fortify 2024] Fortify (2024). Source code analyzer. http://www.fortify.com. Ac-
cessed 16 Aug 2024.

[Gadelha et al. 2019] Gadelha, M., Monteiro, F., Cordeiro, L., and Nicole, D. (2019). ES-
BMC v6.0: Verifying C Programs Using k-Induction and Invariant Inference. In
TACAS.

[Gadelha et al. 2021] Gadelha, M. R., Menezes, R. S., and Cordeiro, L. C. (2021). Esbmc
6.1: automated test case generation using bounded model checking. STTT, 23(6):857–
861.

[Gueye et al. 2021] Gueye, A., Galhardo, C. E., Bojanova, I., and Mell, P. (2021). A decade
of reoccurring software weaknesses. IEEE Security & Privacy, 19(6):74–82.

[Kula et al. 2018] Kula, R. G., German, D. M., Ouni, A., Ishio, T., and Inoue, K. (2018).
Do developers update their library dependencies? an empirical study on the impact of
security advisories on library migration. Empirical Software Engineering, 23:384–417.

[Lipp et al. 2022] Lipp, S., Banescu, S., and Pretschner, A. (2022). An empirical study on
the effectiveness of static c code analyzers for vulnerability detection. In 31st ACM
SIGSOFT, pages 544–555.

[Marjamäki 2013] Marjamäki, D. (2013). Cppcheck: a tool for static c/c++ code analysis.
URL: https://cppcheck. sourceforge. io.

[Massacci and Pashchenko 2021] Massacci, F. and Pashchenko, I. (2021). Technical lever-
age in a software ecosystem: Development opportunities and security risks. In
IEEE/ACM ICSE, pages 1386–1397. IEEE.

[Menezes et al. 2024] Menezes, R. S., Aldughaim, M., Farias, B., Li, X., Manino, E.,
Shmarov, F., Song, K., Brauße, F., Gadelha, M. R., Tihanyi, N., et al. (2024). Es-

Anais do SBSeg 2024: Artigos Completos

15

http://www.coverity.com
http://www.coverity.com
https://cve.org/
http://www.fortify.com


bmc v7. 4: Harnessing the power of intervals: (competition contribution). In TACAS,
pages 376–380. Springer.

[MITRE 2024] MITRE (2024). Common weakness enumeration (cwe). Accessed 16 June
2024.

[Pashchenko et al. 2020] Pashchenko, I., Vu, D.-L., and Massacci, F. (2020). A qualitative
study of dependency management and its security implications. In ACM SIGSAC,
pages 1513–1531.

[Plate et al. 2015] Plate, H., Ponta, S. E., and Sabetta, A. (2015). Impact assessment for
vulnerabilities in open-source software libraries. In ICSME, pages 411–420. IEEE.

[Prana et al. 2021] Prana, G. A. A., Sharma, A., Shar, L. K., Foo, D., Santosa, A. E.,
Sharma, A., and Lo, D. (2021). Out of sight, out of mind? how vulnerable depen-
dencies affect open-source projects. Empirical Software Engineering, 26:1–34.

[Švejda et al. 2020] Švejda, J., Berger, P., and Katoen, J.-P. (2020). Interpretation-based
violation witness validation for c: Nitwit. In TACAS, pages 40–57. Springer.

[Tang et al. 2022] Tang, W., Xu, Z., Liu, C., Wu, J., Yang, S., Li, Y., Luo, P., and Liu, Y.
(2022). Towards understanding third-party library dependency in c/c++ ecosystem. In
37th IEEE/ACM ASE, pages 1–12.

[Wermke 2023] Wermke, D. (2023). Security considerations in the open source software
ecosystem.

[Wermke et al. 2022] Wermke, D., Wöhler, N., Klemmer, J. H., Fourné, M., Acar, Y., and
Fahl, S. (2022). Committed to trust: A qualitative study on security & trust in open
source software projects. In IEEE SP, pages 1880–1896. IEEE.

[Xiao et al. 2014] Xiao, S., Witschey, J., and Murphy-Hill, E. (2014). Social influences on
secure development tool adoption: why security tools spread. In 17th ACM CSCW,
pages 1095–1106.

[Zou et al. 2019] Zou, J., Zeng, W., Zhao, Y., Liang, R., and CSAI, A. (2019). Research on
secure stereoscopic self-checking scheme for open source software. pages 158–162.

Anais do SBSeg 2024: Artigos Completos

16


