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5Laboratório FutureLab, Departamento de Ciência da Computação (DCC)
Universidade Federal de Minas Gerais (UFMG)
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Abstract. In federated learning, malicious agents may exploit different types of
cyberattacks to manipulate the results of predictive models or to infer informa-
tion about the training data. To mitigate such risks, this paper presents Fed-DP-
PSO, a federated machine learning method that combines Swarm Intelligence
and Local Differential Privacy. The approach aims to protect distributed data
and hinder the extraction of sensitive information. The experiments conducted
indicate that Fed-DP-PSO is a promising solution for training models in fe-
derated contexts with differential privacy, as its performance proved superior
compared to the FedAvg method with DP-SGD.

Resumo. No aprendizado federado de redes neurais, agentes maliciosos po-
dem explorar diferentes tipos de ciberataques para manipular os resultados de
modelos preditivos ou para inferir sobre os dados de treinamento. Para mi-
tigar tais riscos, este artigo apresenta o Fed-DP-PSO, um método de apren-
dizado de máquina federado que combina Swarm Intelligence e Privacidade
Diferencial Local. A abordagem visa proteger os dados distribuı́dos e dificultar
a extração de informações sensı́veis. Os experimentos realizados indicam que o
Fed-DP-PSO é promissor para o treinamento de modelos em contextos federa-
dos com privacidade diferencial, uma vez que seu resultado se mostrou superior
em relação ao método FedAvg com DP-SGD.

1. Introdução
Com o avanço da inteligência artificial nos últimos anos, impulsionado pela crescente de-
manda por processos automatizados, a preocupação com a confidencialidade dos modelos
de redes neurais e dos dados de treinamento utilizados tornou-se cada vez mais relevante.
No trabalho de (Narayanan and Shmatikov 2008), demonstra-se que, mesmo em datasets
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amplamente anonimizados e com alta dimensionalidade, basta um pequeno conjunto de
informações auxiliares – por exemplo, 5 a 10 atributos – para reidentificar registros in-
dividuais com alta precisão. Usando o caso do Netflix Prize, os autores evidenciam que
ataques de de-anonimização podem recuperar dados sensı́veis, revelando a vulnerabili-
dade dos dados de treinamento e ressaltando a necessidade de mecanismos robustos para
protegê-los.

Além dos riscos associados à de-anonimização dos dados, a incorreta manutenção
de informações pessoais por grandes empresas tem gerado diversos casos de graves
violações de privacidade. Por exemplo, empresas como Quora, Google e Facebook
sofreram vazamentos que atingiram mais de 100 milhões de usuários, comprometendo
nomes, endereços de e-mail e senhas criptografadas (Silveira et al. 2023). Além des-
ses casos, os hotéis Marriott tiveram os dados de 500 milhões de clientes acessados por
hackers (Yu et al. 2022). Com isso, esses casos destacam ainda mais a importância da
implementação de medidas de segurança robustas que protejam informações sensı́veis
contra acessos não autorizados e possı́veis violações de privacidade em dados de treina-
mento de redes neurais.

Nesse cenário, agentes mal-intencionados podem explorar diferentes tipos de ci-
berataques para manipular os resultados de modelos preditivos, provocar classificações
incorretas na fase de teste ou inferir informações privadas dos dados de treinamento
(Jagielski et al. 2018). Para mitigar tais riscos, diversas técnicas de proteção de privaci-
dade emergiram, entre elas o Aprendizado Federado (FL, do inglês Federated Learning)
(Nguyen et al. 2024; Luzón et al. 2024) e a Privacidade Diferencial (DP, do inglês Diffe-
rential Privacy) (Pan et al. 2024).

O aprendizado de máquina federado reduz a necessidade de compartilhamento di-
reto dos dados ao aproximar a computação das fontes de informação. No entanto, embora
essa abordagem fortaleça a proteção da privacidade, ela também amplia a superfı́cie de
ataque, introduzindo novos pontos vulneráveis na comunicação entre os clientes (deten-
tores dos dados de treinamento) e o servidor central (responsável pelo modelo global).
Em FL, os parâmetros do modelo treinado localmente são transmitidos ao servidor, que
é assumido como confiável, ou seja, incapaz de utilizar os parâmetros recebidos para in-
ferir informações privadas dos dados. Entretanto, tais parâmetros podem ser alvos de
ataques de inferência de pertencimento e ataques de reconstrução caso sejam intercepta-
dos. Por exemplo, em (Leite et al. 2024), por meio de uma versão aprimorada do algo-
ritmo de vazamento profundo de gradientes (DLG-FB), os autores mostram ser possı́vel
reconstruir imagens a partir apenas de inferências iniciais bem-sucedidas, tornando os ata-
ques ainda mais assertivos. Adicionalmente, a técnica DP surge como um mecanismo de
proteção adicional ao oferecer garantias matemáticas e estatı́sticas de privacidade. Em-
bora sua aplicação tradicional possa limitar significativamente a utilidade dos dados de
treinamento (Tatarakis 2019), estudos recentes demonstram que, quando combinada com
algoritmos de otimização por enxame, a perturbação introduzida pela DP pode não ape-
nas garantir privacidade, mas também melhorar a diversidade do enxame e evitar a con-
vergência prematura para ótimos locais (Zhang et al. 2024). Outras técnicas de proteção,
como encriptação e anonimização em nuvem, também são utilizadas, mas apresentam
desafios como alto custo computacional e possı́veis alterações no contexto dos dados
(Silveira et al. 2023).
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Diante disso, (Sanhá et al. 2024) propõe a combinação dos métodos FL, PSO (do
inglês, Particle Swarm Optimization) e SGD (do inglês, Stochastic Gradient Descent)
para o treinamento federado de redes neurais artificiais com dados distribuı́dos. Essa me-
todologia reduz significativamente o custo de compartilhamento de parâmetros durante
o treinamento e demonstra maior acurácia em comparação a métodos federados tradici-
onais, como FedAvg (McMahan et al. 2017) e FedPSO (Park et al. 2021). No entanto,
apesar das melhorias no desempenho e na eficiência, o modelo ainda depende de um
único mecanismo de proteção de privacidade, deixando os clientes vulneráveis a ataques
baseados em inferência e reconstrução de dados sensı́veis, explorando os parâmetros do
modelo ou analisando seus padrões de resposta.

Para abordar essa limitação, o método proposto neste trabalho, denominado Fed-
DP-PSO, introduz uma camada adicional de proteção ao integrar a privacidade diferencial
diretamente nos clientes, combinando-a com o PSO e o SGD em aprendizado federado.
Dessa forma, os parâmetros enviados ao servidor são protegidos por privacidade dife-
rencial, dificultando a extração de informações sensı́veis e fortalecendo a segurança do
sistema como um todo.

O restante deste artigo está organizado da seguinte forma: a Seção 2 aborda a
fundamentação teórica, enquanto a Seção 3 descreve o método proposto. Em seguida, a
Seção 4 apresenta os experimentos realizados e seus resultados. Por fim, a Seção 5 traz
as conclusões do trabalho.

2. Fundamentação teórica

2.1. Aprendizado Federado

O Aprendizado Federado constitui uma abordagem descentralizada para o treinamento
de modelos de aprendizado de máquina, na qual múltiplos dispositivos (também denomi-
nados usuários, clientes ou participantes) colaboram no treinamento de um modelo sem
compartilhar seus dados com o servidor e uns com os outros, dessa forma aumentando o
nı́vel de privacidade para os participantes do processo. Esse paradigma surgiu como uma
solução para desafios relacionados à privacidade, custos computacionais e eficiência da
comunicação em sistemas distribuı́dos (Luzón et al. 2024).

O treinamento em FL segue um ciclo iterativo baseado em rodadas de aprendi-
zado. O método utiliza um modelo global centralizado e um conjunto de modelos locais
em cada cliente. Essa abordagem envolve N clientes C1, . . . , CN , cada cliente Ci possui
um conjunto de dados local Di, que não é compartilhado entre clientes ou com o servidor
central. Em cada rodada, os seguintes passos são executados:

1. O servidor central distribui um modelo inicial, representado por seu vetor de
parâmetros θt, para um subconjunto de clientes participantes, usando alguma es-
tratégia de seleção de clientes.

2. Cada cliente atualiza seu modelo local a partir do modelo recebido pelo servidor
e realiza o treinamento local em seus próprios dados, atualizando o modelo de
acordo com um algoritmo de otimização.

3. As atualizações dos clientes são enviadas ao servidor, onde são agregadas para
formar um novo modelo global.
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O treinamento se repete até que um critério de parada seja cumprido, que pode
ser um número predeterminado de iterações ou a convergência de modelo. Desde
sua proposição inicial por (McMahan et al. 2017) surgiram vários trabalhos sobre FL.
Destaca-se as referências a seguir para maiores detalhes e aplicações (Zhang et al. 2021;
Luzón et al. 2024; Nguyen et al. 2024).

2.2. Privacidade Diferencial
O treinamento de modelos de aprendizado de máquina, especialmente redes neurais pro-
fundas, depende de grandes volumes de dados, muitas vezes sensı́veis. Para garantir
que informações individuais dos dados de treinamento não sejam reveladas, é necessário
utilizar técnicas de proteção da privacidade. Os modelos de privacidade baseados em
técnicas de anonimização de dados consideram a disponibilização de um conjunto de da-
dos para outros atores que utilizarão esse conjunto para o treinamento de seus modelos
(Majeed and Lee 2021). Contudo, um adversário ainda pode utilizar informações de fon-
tes externas para reidentificar indivı́duos, o que limita as garantias de privacidade dessas
técnicas (Majeed and Lee 2021).

As técnicas de DP tornam-se importantes ferramentas para garantir a proteção
da privacidade dos dados, isto é, faz alterações controladas nos resultados em forma de
adição de ruı́dos, o que dificulta os ataques de inferência/reconstrução ao mesmo tempo
afetando minimamente a utilidade dos resultados.

A premissa dessa técnica é que a presença ou ausência de um dado individual
tenha um impacto limitado sobre a saı́da do modelo, ou seja, que os dados, individual-
mente, não sejam diferenciáveis. A Privacidade Diferencial é satisfeita por um algoritmo
aleatório, geralmente chamado de mecanismo. Este modelo foi projetado inicialmente em
um ambiente interativo, onde os usuários submetem consultas a um conjunto de dados e
recebem respostas por meio de um mecanismo de anonimização.

Os conceitos fundamentais da Privacidade Diferencial relevantes para este estudo
são apresentados a seguir (Pan et al. 2024).
Definição 2.1 (ε-DP). Um algoritmo aleatório (mecanismo) M satisfaz ε-DP se para
quaisquer dois conjuntos de dados adjacentes D e D′ que diferem em no máximo um
registro, e para qualquer subconjunto da saı́da S do algoritmo M , temos:

P [M(D) ∈ S] ≤ eε · P [M(D′) ∈ S], (1)

onde ε denota o orçamento de privacidade, que reflete o nı́vel de preservação de priva-
cidade que o algoritmo M pode fornecer. Um valor menor de ε significa proteção mais
forte da privacidade.

Uma versão relaxada da privacidade diferencial pura consiste em admitir um va-
zamento de privacidade com uma probabilidade pequena δ.
Definição 2.2 (Privacidade diferencial aproximada). Um algoritmo aleatório (meca-
nismo) M satisfaz (ε, δ)-DP se para quaisquer dois conjuntos de dados adjacentes D e
D′ que diferem em no máximo um registro, e para qualquer subconjunto da saı́da S do
algoritmo M , temos:

P [M(D) ∈ S] ≤ eε · P [M(D′) ∈ S] + δ, (2)

onde δ é um fator de relaxação.
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Nessas definições, ε representa o orçamento de privacidade, que determina a quan-
tidade de ruı́do adicionado às amostras, e δ é um parâmetro que permite uma pequena
flexibilização da garantia de privacidade. O ajuste do δ influencia diretamente o grau de
acurácia do modelo, permitindo um equilı́brio controlado entre o risco mı́nimo de vaza-
mento de informação e um treinamento mais preciso.

Definição 2.3 (Mecanismo Gaussiano). Seja um conjunto de dados D e uma função
f : D 7→ Rd. Um algoritmo aleatório do tipo mecanismo gaussiano, definido mate-
maticamente por M(D) = f(D) +N (0, σ2I), satisfaz (ε, δ)-DP se:

σ ≥ ∆2

ε

√
2 ln(1.25/δ) (3)

em que:
∆2 = max

D,D′
∥f(D)− f(D′)∥2 (4)

denota a sensibilidade L2 da função para alterações de um registro no conjunto de dados.
N (0, σ2) expressa uma variável aleatória que segue a distribuição gaussiana com média
0 e desvio padrão σ.

Observe que, a partir da Definição 2.3, se a sensibilidade ∆2 for alta, maior deverá
ser o ruı́do adicionado para proteger a privacidade dos dados. Da mesma forma, quanto
menor ε, maior deverá ser o ruı́do adicionado.

Na privacidade diferencial, a composição sequencial estabelece que, se um con-
junto de mecanismos M = {M1, . . . ,Mk} for aplicado sequencialmente sobre um mesmo
conjunto de dados, e cada Mi garantir εi-DP, então a composição resultante terá pri-
vacidade diferencial de (

∑k
i=1 εi)-DP. Isso significa que o orçamento de privacidade se

acumula aditivamente, podendo degradar a proteção dos dados ao longo de múltiplas
operações (Tatarakis, 2021).

Já a composição paralela ocorre quando os dados são divididos em subconjuntos
disjuntos Di, processados por mecanismos Mi independentes. Nesse caso, a privacidade
diferencial global da composição é dada por (maxi εi)-DP, evitando o crescimento exces-
sivo do orçamento de privacidade (Tatarakis, 2021).

Além disso, o teorema do pós-processamento garante que, se um algoritmo M1

já satisfaz ε-DP sobre um conjunto de dados D, qualquer processamento adicional
M2(M1(D)) mantém essa garantia, sem aumentar o orçamento de privacidade (Zhang,
Zhu e Xie, 2024).

2.3. Otimização por Enxame de Partı́culas
A computação evolucionária tem se destacado como uma abordagem eficaz para a
resolução de problemas complexos, em razão da simplicidade e flexibilidade dos seus
algoritmos. Dentro dessa área, os métodos baseados em inteligência de enxame (Swarm
Intelligence) são particularmente notáveis, pois se inspiram em comportamentos cole-
tivos observados na natureza, como os de bandos de pássaros ou cardumes de peixes
(Freitas et al. 2020).

Nesse contexto, (Kennedy and Eberhart 1995) desenvolveram o algoritmo Parti-
cle Swarm Optimization (PSO), que se tornou um dos principais representantes dos al-
goritmos de Swarm Intelligence. Inspirado na dinâmica de um bando de pássaros, o
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algoritmo estabelece uma dinâmica complexa a partir da interação entre agentes seguindo
regras simples localmente. Cada partı́cula se move em um espaço de busca seguindo uma
equação de atualização da posição que considera informações sobre as melhores posições
já alcançadas, de forma que cada partı́cula ajusta sua trajetória tanto com base em sua
experiência individual quanto na melhor posição encontrada pelo grupo.

A dinâmica do algoritmo é formalizada por duas equações fundamentais. Seja
L(θ) ∈ R uma função de perda (Loss function) ou função de custo a ser minimizada no
vetor de parâmetros θ ∈ Rd. A atualização da velocidade e posição de uma partı́cula é
dada por:

vt+1
i = ω · vti + c1r1(p

t
best,i − θti) + c2r2(g

t
best − θti) (5)

θt+1
i = θti + vt+1

i (6)

onde: ω é o fator de inércia das partı́culas, que controla a influência da velocidade anterior;
vti e xt

i representam, respectivamente, os vetores da velocidade e a posição da partı́cula i na
iteração t; c1 e c2 são coeficientes de aceleração, regulando a influência das componentes
cognitiva (melhor posição individual) e social (melhor posição global), respectivamente;
r1 e r2 são valores aleatórios no intervalo [0,1]; ptbest,i é a melhor posição individual da
partı́cula i na iteração t, e gtbest representa a melhor posição global encontrada pelo grupo
na iteração t.

O ajuste cuidadoso dos hiperparâmetros c1, c2 e ω é fundamental para o
bom desempenho do PSO, pois sua configuração determina o equilı́brio entre a
exploração do espaço de busca (capacidade de varrer amplamente possı́veis soluções) e a
exploração intensiva em regiões promissoras (refinamento das soluções já identificadas)
(Freitas et al. 2020).

3. Proposta de Treinamento Federado com Privacidade Diferencial Local
O algoritmo proposto, denominado Fed-DP-PSO, baseado no algoritmo PSO de forma co-
laborativa entre os clientes, busca reduzir a quantidade de comunicação de modo a reduzir
a probabilidade de que informações sensı́veis sejam vazadas. Ao mesmo tempo, utiliza
a privacidade diferencial como uma solução na qual cada comunicação de parâmetros de
modelo entre cliente-servidor é ofuscada por ruı́do. Se a magnitude do ruı́do adicionado
não for muito grande, então uma boa precisão do modelo global ainda pode ser alcançada.

A Figura 1 sintetiza o fluxo de comunicação entre os clientes e o servidor no
processo federado do algoritmo Fed-DP-PSO. Cada cliente transmite ao servidor o valor
da função de perda associado à sua melhor partı́cula. O servidor identifica a partı́cula
com o menor erro dentre todas e requisita os parâmetros correspondentes. Em seguida,
esses parâmetros são definidos como a nova posição global ótima (gbest) e distribuı́dos
a todos os clientes, promovendo uma otimização colaborativa orientada pelas melhores
soluções locais. O processo é detalhado nas subseções seguintes, explicitando o algoritmo
executado nos clientes e a atualização do modelo global no servidor. Assumimos um
sistema de aprendizado federado com N clientes C1, . . . , CN , cada cliente Ci possui um
conjunto de dados local Di, de tal forma que

D =
N⋃
i=1

Di, (7)
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Figura 1. Algoritmo Fed-DP-PSO. Cada cliente envia seu erro L(θi,j) (setas laran-
jas) ao servidor. O cliente escolhido entre os três com melhor desempenho
envia seus parâmetros θ∗ (seta verde). O servidor então atualiza o modelo
global e distribui os parâmetros atualizados para os clientes (setas roxas).

em que Di = {x1, . . . , xmi
} é uma coleção de amostras ou observações de dados em Ci e

mi = |Di|. O objetivo é minimizar uma função global:

min
θ∈Rd

L(D, θ) (8)

em um ambiente distribuı́do no qual muitos clientes têm seus próprios conjuntos de dados
locais e o problema de minimização de soma finita é sobre a união de todos os conjuntos
de dados locais.

3.1. Treinamento local
Cada cliente executa um método de treinamento hı́brido combinando o algoritmo PSO
com o método de descida do gradiente estocástico (SGD), mais especificamente o algo-
ritmo Adam, usando mini-lotes do seu respectivo conjunto de dados Di.

Além disso, para implementar DP no processo de treinamento local, adicionamos
uma perturbação aleatória no gradiente calculado pelo método Adam, definindo dessa
forma um mecanismo Gaussiano durante a otimização de parâmetros.

Seja L(Di, θ
t) a função de perda no treinamento do modelo local. Considerando

uma amostra xj ∈ Di, temos um estimador estocástico do gradiente da função de perda
∇L(Di, θ

t) como sendo dado por ∇L(xj, θ
t) ou sua versão de mini-lote dada por:

∇L(Bk, θ
t) =

1

|Bk|
∑
xi∈Bk

∇L(xi, θ
t) (9)

em que Bk ⊂ Di é um mini-lote (mini-batch) do conjunto de dados no cliente.
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A atualização dos parâmetros por meio do algoritmo Adam se dá por:

θt+1 = θt − η
(
λθt +∇L(bk, θ

t)
)

(10)

onde η é a taxa de aprendizado e λ é um parâmetro relacionado aos momentos do gradi-
ente.

Cada cliente utiliza um conjunto de partı́culas Θi = {θi,j}, em que θi,j ∈ Rd

representa uma partı́cula j no cliente Ci. A atualização da velocidade e posição de cada
partı́cula é uma combinação das equações do PSO com a atualização do gradiente dado
pelo método Adam:

vt+1
j = ω · vtj + c1r1(p

t
best,j − θti,j) + c2r2(g

t
best − θti,j) (11)

θt+1
i,j = θti,j + vt+1

j − η
(
λθti,j +∇L(Bk, θ

t
i,j)

)
(12)

Durante a otimização com Adam, a biblioteca Opacus1 aplica três mecanismos
principais para garantir a privacidade diferencial: clipagem dos gradientes, adição de
ruı́do gaussiano e rastreio do orçamento de privacidade. Primeiro, a clipagem limita a
norma dos gradientes, impedindo que contribuições individuais tenham um impacto des-
proporcional na atualização do modelo. Em seguida, o ruı́do gaussiano é adicionado aos
gradientes para mascarar informações sensı́veis. Por fim, um contador de privacidade ba-
seado em Renyi Differential Privacy (RDP) rastreia o orçamento de privacidade ao longo
das iterações, garantindo que o modelo permaneça dentro dos limites de privacidade es-
tabelecidos.

O Algoritmo 1 descreve o procedimento de treinamento local realizado por cada
cliente em um cenário de aprendizado federado com otimização baseada em enxame de
partı́culas (PSO). Na primeira rodada (linha 1), é realizada a inicialização aleatória do
conjunto de partı́culas Θi no cliente i. As linhas 3 a 7 correspondem à fase de avaliação
local, na qual cada partı́cula tem sua função de perda L(Di, θi,j) computada. A melhor
posição individual (pbest,j) é atualizada sempre que uma nova solução apresenta desempe-
nho superior. O menor erro local entre todas as partı́culas, L(Di, θi,best), é então enviado
ao servidor central. Caso o servidor solicite, o modelo correspondente a essa solução é
transmitido; caso contrário, o cliente aguarda o recebimento da melhor posição global
(gbest). A partir da linha 16, com gbest definido, realiza-se a atualização da velocidade e da
posição de cada partı́cula, conforme a dinâmica clássica do PSO, incorporando os com-
ponentes inerciais, cognitivos e sociais. Por fim (linhas 28 a 32), o modelo associado à
melhor partı́cula local é refinado via otimização com o algoritmo Adam incluindo privaci-
dade diferencial. Durante este refinamento, os gradientes são calculados em mini-batches,
submetidos ao clipping e à adição de ruı́do gaussiano para garantir privacidade diferen-
cial. A atualização dos parâmetros ocorre então por meio de retropropagação estocástica,
assegurando tanto eficiência quanto preservação da privacidade dos dados locais.

3.2. Atualização do modelo global no servidor

Em cada rodada de comunicação, todos os clientes executam o Algoritmo 1. Em seguida,
o servidor classifica os erros L(θ) dos N clientes em ordem crescente e seleciona os três

1https://opacus.ai

Anais do SBSeg 2025: Artigos Completos

8



Data: Conjunto de dados local Di, número de partı́culas no swarm S.
1 if round = 1 then
2 Crie e inicialize um swarm Θi = {θi,j , . . . , θi,S};
3 foreach partı́cula j = 1, . . . , S do
4 Avalie L(Di, θi,j);
5 // Atualize a melhor posição da partı́cula
6 if L(Di, θi,j) < L(Di, pbest,j) then pbest,j = θi,j ;
7 end
8 end
9 Envie o menor erro L(Di, θi,best) para o servidor;

10 if servidor solicita modelo local then
11 // Envie os parâmetros da melhor partı́cula
12 Envie θi,best para o servidor;
13 else
14 Recebe gbest do servidor;
15 end
16 foreach partı́cula j = 1, . . . , S do
17 r1, r2 ∼ U(0, 1);
18 // Atualize a velocidade das partı́culas

19 vt+1
j = ω · vtj + c1r1(p

t
best,j − θti,j) + c2r2(g

t
best − θti,j);

20 // Atualize a posição das partı́culas

21 θt+1
i,j = θti,j + vt+1

j ;
22 end
23 foreach partı́cula j = 1, . . . , S do
24 Avalie L(Di, θi,j);
25 if L(Di, θi,j) < L(Di, pbest,j) then pbest,j = θi,j ;
26 end
27 // Refine a melhor partı́cula com DP-Adam:
28 for e = 1, . . . , E do
29 foreach mini-batch Bk do
30 Calcule ∇L(Bk, θ

t
i,best) ;

31 θt+1
i,best = θti,best − η

{
λθti,best +

⌈
∇L(Bk, θ

t
i,best)

⌉
+N (0, σI)

}
;

32 end
33 end

Algorithm 1: Algoritmo DP-PSO-Adam.

menores valores. Dentre esses três melhores clientes, um é escolhido aleatoriamente,
conforme definido nas Equações 13 e 14:

Lθ(1) ≤ Lθ(2) ≤ Lθ(3) ≤ · · · ≤ Lθ(N)
(13)

Lmin = Lθ(k) (14)

onde k ∈ {1, 2, 3} é escolhido aleatoriamente.

Essa seleção aleatória dos três melhores clientes garante que a atualização do mo-
delo global seja diversificada, reduzindo o impacto excessivo de qualquer cliente indivi-
dual na atualização do modelo. Após a escolha do Lmin, o servidor solicita os parâmetros
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θ∗(k) do cliente correspondente, que os envia para o servidor.

Por fim, o modelo global é atualizado usando gbest = θ∗(k), que por sua vez é
distribuı́do a todos os clientes, garantindo a continuidade do treinamento colaborativo.
Veja que o novo gbest enviado pelo servidor aos clientes influenciará o treinamento local
em todos os clientes, por meio das equações de atualização das partı́culas no cliente.
Isso faz com que o treinamento distribuı́do em todos os clientes esteja de alguma forma
conectado e direcionado por aqueles que possuem os menores erros de treinamento. A
dinâmica dessa comunicação entre clientes e servidor está ilustrada na Figura 1.

O Algoritmo 2 descreve a lógica executada pelo servidor central durante o trei-
namento no Fed-DP-PSO. A cada rodada de comunicação, o servidor solicita a todos os
clientes o menor valor de perda L(θ) associado às melhores posições pessoais encontradas
localmente (linhas 2 a 4). Em seguida, esses valores são ordenados de forma crescente,
e o servidor seleciona aleatoriamente um dos três clientes com os menores erros (linhas
5 a 7). O modelo correspondente, identificado por seus parâmetros θ∗, é requisitado ao
cliente selecionado (linha 8). Por fim, o parâmetro global ótimo gbest é atualizado com θ∗

e transmitido a todos os clientes, assegurando a continuidade e a coesão do processo de
otimização colaborativa (linha 9).

1 for round = 1, ..., R do
2 for cada cliente Ci do
3 Solicita menor Lθ = L(Di, θ) do cliente Ci;
4 end
5 Ordena os erros Lθ dos N clientes
6 Escolhe aleatoriamente k ∈ {1, 2, 3} ;
7 Lmin = Lθ(k) ;
8 θ∗ = solicita parâmetros θ(k) do cliente escolhido;
9 Atualiza o gbest de todos os clientes com θ∗;

10 end
Algorithm 2: Algoritmo executado no servidor.

4. Experimentos Computacionais

4.1. Dados e configuração dos modelos

Os experimentos realizados para a validação do algoritmo Fed-DP-PSO proposto foram
conduzidos utilizando três conjuntos de dados distintos: MNIST2, Fashion MNIST3 e
PathMNIST4. O conjunto MNIST é composto por 60.000 imagens de treinamento e
10.000 imagens de teste, representando dı́gitos manuscritos entre 0 e 9, com resolução
de 28 × 28 pixels em escala de cinza. O Fashion MNIST possui a mesma estrutura do
MNIST em relação à quantidade de amostras e resolução das imagens, mas com clas-
ses que representam peças de vestuário, como camisetas, calçados e bolsas. Por fim, o
PathMNIST, da base de dados MedMNIST, contém 107.180 imagens coloridas de lâminas
histopatológicas do cólon, com resolução de 28×28 pixels e classificadas em 9 categorias

2https://www.kaggle.com/datasets/hojjatk/mnist-dataset
3https://www.kaggle.com/datasets/zalando-research/fashionmnist
4Disponı́vel em https://medmnist.com
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distintas. As imagens estão divididas em 89.996 para treinamento, 10.004 para validação
e 7.180 para teste.

A arquitetura utilizada para os conjuntos MNIST e Fashion MNIST foi uma rede
Multi-Layer Perceptron (MLP) composta por três camadas totalmente conectadas, sendo
duas camadas ocultas com 256 neurônios cada e uma camada de saı́da com 10 neurônios.
A função de ativação ReLU foi aplicada após cada camada oculta, e a camada de saı́da uti-
liza a função softmax. O objetivo do modelo era classificar corretamente o maior número
possı́vel de imagens nas dez classes disponı́veis, assegurando simultaneamente a priva-
cidade e integridade dos dados de cada cliente.

Devido à sua maior complexidade em relação aos demais datasets, apenas o con-
junto PathMNIST foi processado utilizando uma arquitetura baseada em Convolutional
Neural Network (CNN), especificamente em uma variação da LeNet-5. A arquitetura uti-
lizada processa imagens coloridas (3 canais) e é composta por duas camadas convolucio-
nais seguidas de operações de pooling e três camadas totalmente conectadas. As camadas
convolucionais utilizam filtros de tamanho 5 × 5, com 6 e 16 canais de saı́da, respecti-
vamente. Após o segundo pooling, os mapas de ativação são achatados e processados
pelas camadas lineares com 120, 84 e, por fim, 9 neurônios na camada de saı́da, corres-
pondendo ao número de classes do PathMNIST. A função de ativação ReLU é utilizada
entre as camadas convolucionais e ocultas. Neste caso, o objetivo do modelo era identifi-
car corretamente os diferentes tipos de tecidos presentes em imagens histopatológicas, ao
mesmo tempo que promovia a preservação da privacidade dos dados de treinamento.

Diferentes configurações de hiperparâmetros foram adotadas para os treinamentos
com MLP e CNN, definidas empiricamente a partir do melhor desempenho observado em
cada cenário. A principal diferença entre as arquiteturas reside na taxa de aprendizado,
que foi reduzida na CNN devido à sua maior profundidade e complexidade estrutural.
Essa escolha visa promover atualizações mais estáveis durante a otimização, contribuindo
para uma convergência mais precisa e menos suscetı́vel a oscilações.

Tais ajustes possibilitaram atenuar parcialmente a degradação de desempenho e
aprimorar a eficiência do modelo frente às restrições impostas, especialmente nos cenários
com aplicação de privacidade diferencial.

Hiperparâmetros para MLP:

• Número de épocas: 10
• Número de partı́culas (PSO) em cada cliente: 5
• Inércia, c1 e c2: 0.7, 1.4, 1.4
• Taxa de aprendizado η: 0.005
• Número de clientes N : 5

Hiperparâmetros para CNN:

• Número de épocas: 10
• Número de partı́culas (PSO) em cada cliente: 5
• Inércia, c1 e c2: 0.7, 1.4, 1.4
• Taxa de aprendizado η: 0.001
• Número de clientes N : 5
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4.2. Resultados e Discussões

A apresentação e discussão dos resultados estão organizadas em três subseções princi-
pais. A Seção 4.2.1 aborda os experimentos conduzidos com o algoritmo sem a aplicação
de privacidade diferencial (DP). A Seção 4.2.2 trata dos experimentos realizados sob o
mesmo protocolo, porém com a inclusão de mecanismos de privacidade diferencial. Por
fim, a Seção 4.2.3 apresenta a análise comparativa do algoritmo com o Método FedAvg-
DP-SGD.

Para garantir uma avaliação robusta da abordagem proposta, os experimentos fo-
ram realizados com três datasets distintos: MNIST, FashionMNIST e PathMNIST. Os
dois primeiros foram utilizados nas seções 4.2.1 e 4.2.2 e o último foi abordado na seção
4.2.3. Além disso, é importante destacar que os dois primeiros conjuntos de dados foram
utilizados com uma arquitetura MLP, enquanto o último utilizou uma CNN baseada na
LeNet-5, devido à maior complexidade das imagens presentes nesse conjunto.

A distribuição dos dados entre os clientes foi realizada de duas formas: IID (do
inglês, Independent and Identically Distributed), representando uma divisão uniforme e
homogênea, e não-IID, modelada com a estratégia Dirichlet. Para tal, foram adotados os
particionadores IID Partitioner e Dirichlet Partitioner, disponibilizados pela biblioteca
Flower5, especializada em aprendizado federado.

No particionamento IID, cada cliente recebe subconjuntos de dados com
distribuição semelhante à global, o que favorece a convergência e o desempenho dos
algoritmos. Já no particionamento Dirichlet, a distribuição dos dados é controlada por
uma variável contı́nua α > 0, que atua como parâmetro de concentração da distribuição
Dirichlet(α) utilizada para amostrar a proporção de rótulos que cada cliente recebe. Valo-
res menores de α resultam em vetores de proporção mais esparsos, concentrando os dados
de cada cliente em poucas classes, o que induz maior heterogeneidade entre os clientes.
Por outro lado, valores maiores de α geram distribuições mais balanceadas e próximas
do regime IID, pois cada cliente tende a receber dados de todas as classes em proporções
similares.

4.2.1. Cenário base: resultados obtidos com a ausência de privacidade diferencial

Nesta seção, são descritos os resultados no cenário base com os conjuntos de dados
MNIST e FashionMNIST, que foram utilizados tanto em distribuição IID, quanto em
não-IID.

O algoritmo proposto obteve as seguintes acurácias médias:

• Utilizando o dataset MNIST:
– 88,69% ± 3,53 pp, com distribuição desbalanceada e α = 0.3;
– 94,85% ± 0,91 pp com distribuição desbalanceada e α = 1;
– 96,41% ± 0,23 pp, com distribuição balanceada.

• Utilizando o dataset FashionMNIST:
– 69,82% ± 7,53 pp, com distribuição desbalanceada e α = 0.3;
– 81,86% ± 1,70 pp com distribuição desbalanceada e α = 1;

5Flower A Friendly Federated AI Framework: https://flower.ai
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– 85,66% ± 0,99 pp, com distribuição balanceada.
A queda de desempenho observada entre os cenários balanceado e desbalanceados

era esperada, dado que a disponibilidade limitada de certas classes em alguns clientes
compromete a representatividade local e, consequentemente, a qualidade do aprendizado
federado. No entanto, é notável que a diferença entre os resultados não é acentuada,
mesmo nos casos de maior assimetria de dados (quando α é menor), o que demonstra a
robustez e adaptabilidade do algoritmo proposto em ambientes não homogêneos.

O PSO, ao operar de maneira colaborativa e global, contribui para mitigar os efei-
tos adversos da propriedade não-IID dos dados, favorecendo a convergência do modelo
global.

4.2.2. Análise dos Resultados com Privacidade Diferencial

Nesta subseção, apresentamos os resultados obtidos sob o algoritmo (ε, δ)-DP desenvol-
vido, onde definimos δ = 10−5 e variamos ε ∈ {5, 8, 10,∞} e α ∈ {0.3, 1}, a fim de
verificarmos a eficiência do método proposto em regimes distintos de privacidade e de
distribuição de dados e quantificar o trade-off entre a privacidade e a utilidade do modelo.

Foram aplicados os experimentos tanto ao treinamento com dados balanceados
quanto ao treinamento com dados desbalanceados, com o intuito de não apenas verificar
a eficiência do modelo, mas também sua resiliência frente a distribuições de dados rea-
listas, onde o desbalanceamento é frequente. As Tabelas 1 e 2 apresentam os resultados
da variação dos valores de ε e α no treinamento com dados balanceados e com dados
desbalanceados para os datasets MNIST e FashionMNIST, respectivamente.

Tabela 1. Resultados de acurácia para diferentes valores de ε em treinamento
com dados balanceados e desbalanceados do dataset MNIST.

ε
Dados não IID Dados IID

α = 0,3 α = 1
5 72,31% ± 5,78 pp 85,08% ± 1,12 pp 88,12% ± 0,78 pp
8 74,61% ± 5,12 pp 86,54% ± 1,62 pp 89,21% ± 0,33 pp

10 76,24% ± 3,97 pp 87,89% ± 1,09 pp 89,59% ± 0,58 pp
∞ 88,69% ± 3,53 pp 94,85% ± 0,91 pp 96,41% ± 0,23 pp

Tabela 2. Resultados de acurácia para diferentes valores de ε em treinamento
com dados balanceados e desbalanceados do dataset Fashion MNIST.

ε
Dados não IID Dados IID

α = 0,3 α = 1
5 58,92% ± 6,6 pp 76,12% ± 1,19 pp 81,34% ± 0,41 pp
8 61,18% ± 7,58 pp 76,93% ± 1,22 pp 81,83% ± 0,35 pp

10 62,06% ± 6,73 pp 77,20% ± 1,24 pp 82,06% ± 0,43 pp
∞ 69,82% ± 7,53 pp 81,86% ± 1,70 pp 85,66% ± 0,99 pp

A introdução da privacidade diferencial no algoritmo proposto teve impacto direto
sobre os resultados de acurácia, conforme esperado, em decorrência do ruı́do introduzido
nas atualizações dos modelos locais.
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No dataset MNIST, observou-se uma queda moderada na acurácia com dados não
IID, em relação aos dados IID. Além disso, conforme apresentado na Figura 2, nota-
se ainda que, em contextos IID, a acurácia atinge valores próximos do máximo já nas
primeiras quatro rodadas de treinamento.

A mesma tendência é observada no FashionMNIST, com resultados que seguem
um comportamento coerente, embora apresentem acurácias, em média, inferiores, tendo
em vista a maior complexidade desse conjunto de dados em relação ao anterior.

Verifica-se também que, à medida que o valor de ε diminui, observa-se uma
tendência de redução na acurácia do modelo, o que demonstra a existência de um compro-
misso entre a preservação da privacidade e o desempenho preditivo. Ademais, no cenário
não-IID, a acurácia decresce com a redução de α, devido ao aumento da desigualdade
entre os dados locais, enquanto um valor maior de α resulta em acurácia mais próxima do
cenário IID, bem como esperado.

Figura 2. Comparação entre a acurácia e o épsilon (ε) ao longo das rodadas.

4.2.3. Análise Comparativa com o Método FedAvg-DP-SGD

Além dos experimentos anteriores, também avaliamos os resultados obtidos com a
aplicação do método DP-SGD (Abadi et al. 2016) no treinamento local, em conjunto com
a estratégia de agregação Federated Averaging (FedAvg) (McMahan et al. 2017) no ser-
vidor central. Essa abordagem foi utilizada como base comparativa para os resultados
obtidos com o método proposto Fed-DP-PSO, permitindo uma análise mais abrangente
do desempenho e da eficácia do algoritmo quando aplicado ao dataset PathMNIST.

O gráfico da Figura 3 apresenta uma comparação dos resultados obtidos com o
método Fed-DP-PSO e o FedAvg-DP-SGD:

Os resultados experimentais indicam que o algoritmo proposto, Fed-DP-PSO,
apresentou desempenho equivalente ao método tradicional FedAvg utilizando DP-SGD

Anais do SBSeg 2025: Artigos Completos

14



Figura 3. Comparação das acurácias obtidas com os métodos Fed-DP-PSO e
FedAvg-DP-SGD com o dataset PathMNIST.

em todos os cenários analisados. Além disso, de acordo com (Sanhá 2024), algoritmos
de aprendizado federado baseados em PSO reduzem em aproximadamente 90% a quanti-
dade de dados transmitidos dos clientes para o servidor por rodada de treinamento, quando
comparado ao FedAvg, no contexto de redes neurais convolucionais (CNNs). Isso repre-
senta uma vantagem significativa em termos de economia de recursos computacionais e
segurança, uma vez que a redução de parâmetros compartilhados com o servidor diminui
a superfı́cie de exposição a ataques de membership inference e outros ataques de privaci-
dade.

5. Conclusão

Este artigo propôs o método Fed-DP-PSO, que combina o treinamento federado com
a aplicação de privacidade diferencial em enxames de partı́culas, todos alocados nos
próprios clientes. Os testes foram realizados utilizando os conjuntos de dados MNIST,
FashionMNIST e PathMNIST, considerando cenários de distribuição balanceada e des-
balanceada, com o objetivo de simular tanto condições ideais quanto realistas, em que a
colaboração entre os clientes é essencial para alcançar boa cobertura do espaço amostral.
A combinação das abordagens resultou em desempenho satisfatório, com acurácia muito
próxima à obtida por métodos como o FedAvg-DP-SGD, evidenciando a eficácia do Fed-
DP-PSO em contextos de treinamento distribuı́do com proteção à privacidade. Destaca-
se, ainda, a redução nos custos de comunicação e na frequência de troca de informações
entre clientes e servidor, fatores que favorecem tanto a eficiência do modelo quanto o
reforço à proteção dos dados. Além disso, observou-se que o uso da privacidade diferen-
cial integrada ao PSO não apenas fortalece a proteção dos dados, mas também favorece a
diversidade e a robustez do processo de otimização.

A abordagem proposta neste trabalho abre espaço para a identificação de melho-
rias e para a exploração de novos contextos de aplicação. Em particular, destaca-se como
limitação a dificuldade de realizar múltiplos ciclos de refinamento com o algoritmo Adam,
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devido ao acúmulo do orçamento de privacidade ao longo das iterações, o que impõe
restrições ao número de épocas viáveis no cenário com privacidade diferencial. Entre os
trabalhos futuros, pretende-se investigar alternativas para incorporar DP de forma mais
eficiente, buscando reduzir o custo computacional sem comprometer a segurança, além
de investigar estratégias para aprimorar a acurácia do modelo.
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tado de Minas Gerais (FAPEMIG).

Parcialmente financiado por Instituto Kunumi e Embrapii, projeto PDCC-
2412.0030. Parcialmente financiado pelo acordo de PDI entre a UFMG e a Fundep –
Fundação de Desenvolvimento da Pesquisa: “Programa Federado de Aprendizado de
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