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Abstract. In federated learning, malicious agents may exploit different types of
cyberattacks to manipulate the results of predictive models or to infer informa-
tion about the training data. To mitigate such risks, this paper presents Fed-DP-
PSO, a federated machine learning method that combines Swarm Intelligence
and Local Differential Privacy. The approach aims to protect distributed data
and hinder the extraction of sensitive information. The experiments conducted
indicate that Fed-DP-PSO is a promising solution for training models in fe-
derated contexts with differential privacy, as its performance proved superior
compared to the FedAvg method with DP-SGD.

Resumo. No aprendizado federado de redes neurais, agentes maliciosos po-
dem explorar diferentes tipos de ciberataques para manipular os resultados de
modelos preditivos ou para inferir sobre os dados de treinamento. Para mi-
tigar tais riscos, este artigo apresenta o Fed-DP-PSO, um método de apren-
dizado de mdquina federado que combina Swarm Intelligence e Privacidade
Diferencial Local. A abordagem visa proteger os dados distribuidos e dificultar
a extragdo de informagoes sensiveis. Os experimentos realizados indicam que o
Fed-DP-PSO ¢é promissor para o treinamento de modelos em contextos federa-
dos com privacidade diferencial, uma vez que seu resultado se mostrou superior
em relagdo ao método FedAvg com DP-SGD.

1. Introducao

Com o avango da inteligéncia artificial nos dltimos anos, impulsionado pela crescente de-
manda por processos automatizados, a preocupacao com a confidencialidade dos modelos
de redes neurais e dos dados de treinamento utilizados tornou-se cada vez mais relevante.
No trabalho de (Narayanan and Shmatikov 2008), demonstra-se que, mesmo em datasets
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amplamente anonimizados e com alta dimensionalidade, basta um pequeno conjunto de
informagdes auxiliares — por exemplo, 5 a 10 atributos — para reidentificar registros in-
dividuais com alta precisdo. Usando o caso do Netflix Prize, os autores evidenciam que
ataques de de-anonimizacao podem recuperar dados sensiveis, revelando a vulnerabili-
dade dos dados de treinamento e ressaltando a necessidade de mecanismos robustos para
protegé-los.

Além dos riscos associados a de-anonimizagao dos dados, a incorreta manutencao
de informagdes pessoais por grandes empresas tem gerado diversos casos de graves
violagdes de privacidade. Por exemplo, empresas como Quora, Google e Facebook
sofreram vazamentos que atingiram mais de 100 milhdes de usudrios, comprometendo
nomes, enderecos de e-mail e senhas criptografadas (Silveira et al. 2023). Além des-
ses casos, os hotéis Marriott tiveram os dados de 500 milhdes de clientes acessados por
hackers (Yu et al. 2022). Com isso, esses casos destacam ainda mais a importancia da
implementacdo de medidas de seguranca robustas que protejam informagdes sensiveis
contra acessos ndo autorizados e possiveis violagdes de privacidade em dados de treina-
mento de redes neurais.

Nesse cendrio, agentes mal-intencionados podem explorar diferentes tipos de ci-
berataques para manipular os resultados de modelos preditivos, provocar classificagdes
incorretas na fase de teste ou inferir informagdes privadas dos dados de treinamento
(Jagielski et al. 2018). Para mitigar tais riscos, diversas técnicas de prote¢do de privaci-
dade emergiram, entre elas o Aprendizado Federado (FL, do inglé€s Federated Learning)
(Nguyen et al. 2024; Luzoén et al. 2024) e a Privacidade Diferencial (DP, do inglés Diffe-
rential Privacy) (Pan et al. 2024).

O aprendizado de mdquina federado reduz a necessidade de compartilhamento di-
reto dos dados ao aproximar a computagdo das fontes de informagao. No entanto, embora
essa abordagem fortaleca a protecdo da privacidade, ela também amplia a superficie de
ataque, introduzindo novos pontos vulneraveis na comunicacdo entre os clientes (deten-
tores dos dados de treinamento) e o servidor central (responsdvel pelo modelo global).
Em FL, os pardmetros do modelo treinado localmente sdo transmitidos ao servidor, que
¢ assumido como confidvel, ou seja, incapaz de utilizar os parametros recebidos para in-
ferir informagdes privadas dos dados. Entretanto, tais parametros podem ser alvos de
ataques de inferéncia de pertencimento e ataques de reconstru¢do caso sejam intercepta-
dos. Por exemplo, em (Leite et al. 2024), por meio de uma versdo aprimorada do algo-
ritmo de vazamento profundo de gradientes (DLG-FB), os autores mostram ser possivel
reconstruir imagens a partir apenas de inferéncias iniciais bem-sucedidas, tornando os ata-
ques ainda mais assertivos. Adicionalmente, a técnica DP surge como um mecanismo de
protecdo adicional ao oferecer garantias matematicas e estatisticas de privacidade. Em-
bora sua aplicacdo tradicional possa limitar significativamente a utilidade dos dados de
treinamento (Tatarakis 2019), estudos recentes demonstram que, quando combinada com
algoritmos de otimizagdo por enxame, a perturbacdo introduzida pela DP pode ndo ape-
nas garantir privacidade, mas também melhorar a diversidade do enxame e evitar a con-
vergéncia prematura para 6timos locais (Zhang et al. 2024). Outras técnicas de protecao,
como encriptacdo e anonimizag¢do em nuvem, também sdo utilizadas, mas apresentam
desafios como alto custo computacional e possiveis alteracdes no contexto dos dados
(Silveira et al. 2023).
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Diante disso, (Sanh4 et al. 2024) propde a combinacao dos métodos FL, PSO (do
inglés, Particle Swarm Optimization) e SGD (do inglés, Stochastic Gradient Descent)
para o treinamento federado de redes neurais artificiais com dados distribuidos. Essa me-
todologia reduz significativamente o custo de compartilhamento de parametros durante
o treinamento e demonstra maior acurdcia em comparacdo a métodos federados tradici-
onais, como FedAvg (McMahan et al. 2017) e FedPSO (Park et al. 2021). No entanto,
apesar das melhorias no desempenho e na eficiéncia, o modelo ainda depende de um
unico mecanismo de protecdo de privacidade, deixando os clientes vulnerdveis a ataques
baseados em inferéncia e reconstrucdo de dados sensiveis, explorando os parametros do
modelo ou analisando seus padrdes de resposta.

Para abordar essa limitacao, o método proposto neste trabalho, denominado Fed-
DP-PSO, introduz uma camada adicional de protecao ao integrar a privacidade diferencial
diretamente nos clientes, combinando-a com o PSO e o SGD em aprendizado federado.
Dessa forma, os parametros enviados ao servidor sdo protegidos por privacidade dife-
rencial, dificultando a extragdo de informacdes sensiveis e fortalecendo a seguranga do
sistema como um todo.

O restante deste artigo estd organizado da seguinte forma: a Secdo 2 aborda a
fundamentagdo tedrica, enquanto a Sec¢do 3 descreve o método proposto. Em seguida, a
Secdo 4 apresenta os experimentos realizados e seus resultados. Por fim, a Secdo 5 traz
as conclusodes do trabalho.

2. Fundamentacao teorica

2.1. Aprendizado Federado

O Aprendizado Federado constitui uma abordagem descentralizada para o treinamento
de modelos de aprendizado de maquina, na qual multiplos dispositivos (também denomi-
nados usudrios, clientes ou participantes) colaboram no treinamento de um modelo sem
compartilhar seus dados com o servidor e uns com os outros, dessa forma aumentando o
nivel de privacidade para os participantes do processo. Esse paradigma surgiu como uma
solucdo para desafios relacionados a privacidade, custos computacionais e eficiéncia da
comunicacao em sistemas distribuidos (Luzoén et al. 2024).

O treinamento em FL segue um ciclo iterativo baseado em rodadas de aprendi-
zado. O método utiliza um modelo global centralizado e um conjunto de modelos locais
em cada cliente. Essa abordagem envolve N clientes (', ..., Cy, cada cliente C; possui
um conjunto de dados local D;, que ndo € compartilhado entre clientes ou com o servidor
central. Em cada rodada, os seguintes passos sdo executados:

1. O servidor central distribui um modelo inicial, representado por seu vetor de
parAmetros 6', para um subconjunto de clientes participantes, usando alguma es-
tratégia de selecao de clientes.

2. Cada cliente atualiza seu modelo local a partir do modelo recebido pelo servidor
e realiza o treinamento local em seus proprios dados, atualizando o modelo de
acordo com um algoritmo de otimizacao.

3. As atualizagdes dos clientes sdo enviadas ao servidor, onde sdo agregadas para
formar um novo modelo global.
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O treinamento se repete até que um critério de parada seja cumprido, que pode
ser um numero predeterminado de iteragdes ou a convergéncia de modelo. Desde
sua proposicao inicial por (McMahan et al. 2017) surgiram vdrios trabalhos sobre FL.
Destaca-se as referéncias a seguir para maiores detalhes e aplicacdes (Zhang et al. 2021;
Luzoén et al. 2024; Nguyen et al. 2024).

2.2. Privacidade Diferencial

O treinamento de modelos de aprendizado de maquina, especialmente redes neurais pro-
fundas, depende de grandes volumes de dados, muitas vezes sensiveis. Para garantir
que informacdes individuais dos dados de treinamento ndo sejam reveladas, € necessario
utilizar técnicas de protecdo da privacidade. Os modelos de privacidade baseados em
técnicas de anonimizacao de dados consideram a disponibilizacdo de um conjunto de da-
dos para outros atores que utilizardo esse conjunto para o treinamento de seus modelos
(Majeed and Lee 2021). Contudo, um adversario ainda pode utilizar informagdes de fon-
tes externas para reidentificar individuos, o que limita as garantias de privacidade dessas
técnicas (Majeed and Lee 2021).

As técnicas de DP tornam-se importantes ferramentas para garantir a protecao
da privacidade dos dados, isto é, faz alteragdes controladas nos resultados em forma de
adicao de ruidos, o que dificulta os ataques de inferéncia/reconstru¢do a0 mesmo tempo
afetando minimamente a utilidade dos resultados.

A premissa dessa técnica é que a presenca ou auséncia de um dado individual
tenha um impacto limitado sobre a saida do modelo, ou seja, que os dados, individual-
mente, ndo sejam diferencidveis. A Privacidade Diferencial € satisfeita por um algoritmo
aleatdrio, geralmente chamado de mecanismo. Este modelo foi projetado inicialmente em
um ambiente interativo, onde os usudrios submetem consultas a um conjunto de dados e
recebem respostas por meio de um mecanismo de anonimizacao.

Os conceitos fundamentais da Privacidade Diferencial relevantes para este estudo
sdo apresentados a seguir (Pan et al. 2024).

Definicao 2.1 (¢-DP). Um algoritmo aleatério (mecanismo) M satisfaz ¢-DP se para
quaisquer dois conjuntos de dados adjacentes D e D’ que diferem em no maximo um
registro, e para qualquer subconjunto da saida S do algoritmo M, temos:

P[M(D) € S] < ¢ - PIM(D') € 8], (1)

onde ¢ denota o orcamento de privacidade, que reflete o nivel de preservacdo de priva-
cidade que o algoritmo M pode fornecer. Um valor menor de ¢ significa protecao mais
forte da privacidade.

Uma versao relaxada da privacidade diferencial pura consiste em admitir um va-
zamento de privacidade com uma probabilidade pequena §.

Definicao 2.2 (Privacidade diferencial aproximada). Um algoritmo aleatério (meca-
nismo) M satisfaz (£, d)-DP se para quaisquer dois conjuntos de dados adjacentes D e
D’ que diferem em no maximo um registro, e para qualquer subconjunto da saida S do
algoritmo M, temos:

P[M(D) € S] < ¢ - PIM(D') € S] + 6, )

onde ¢ é um fator de relaxacdo.
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Nessas defini¢des, € representa o orcamento de privacidade, que determina a quan-
tidade de ruido adicionado as amostras, e 0 é um parimetro que permite uma pequena
flexibilizagdo da garantia de privacidade. O ajuste do § influencia diretamente o grau de
acuricia do modelo, permitindo um equilibrio controlado entre o risco minimo de vaza-
mento de informacdo e um treinamento mais preciso.

Definicao 2.3 (Mecanismo Gaussiano). Seja um conjunto de dados D e uma fungdo
f : D — R Um algoritmo aleatério do tipo mecanismo gaussiano, definido mate-
maticamente por M (D) = f(D) + N (0, 0I), satisfaz (¢, §)-DP se:

o> % 21n(1.25/9) (3)

em que:
Ao = max || f(D) = f(D)], )

denota a sensibilidade L, da fungdo para alteragdes de um registro no conjunto de dados.
N (0, 0?%) expressa uma varidvel aleatéria que segue a distribuicdo gaussiana com média
0 e desvio padrdo o.

Observe que, a partir da Defini¢do 2.3, se a sensibilidade A, for alta, maior devera
ser o ruido adicionado para proteger a privacidade dos dados. Da mesma forma, quanto
menor £, maior devera ser o ruido adicionado.

Na privacidade diferencial, a composi¢ao sequencial estabelece que, se um con-
junto de mecanismos M = {M;, ..., M} for aplicado sequencialmente sobre um mesmo
conjunto de dados, e cada M, garantir ¢;-DP, entdo a composi¢do resultante terd pri-
vacidade diferencial de (Zle ¢;)-DP. Isso significa que o orgamento de privacidade se
acumula aditivamente, podendo degradar a protecdo dos dados ao longo de mudltiplas
operacoes (Tatarakis, 2021).

J4 a composic¢ao paralela ocorre quando os dados sdo divididos em subconjuntos
disjuntos D;, processados por mecanismos M; independentes. Nesse caso, a privacidade
diferencial global da composi¢do é dada por (max; €;)-DP, evitando o crescimento exces-
sivo do or¢camento de privacidade (Tatarakis, 2021).

Além disso, o teorema do pOs-processamento garante que, se um algoritmo M;
ja satisfaz £-DP sobre um conjunto de dados D, qualquer processamento adicional
My (M, (D)) mantém essa garantia, sem aumentar o orcamento de privacidade (Zhang,
Zhu e Xie, 2024).

2.3. Otimizacao por Enxame de Particulas

A computacdo evoluciondria tem se destacado como uma abordagem eficaz para a
resolucdo de problemas complexos, em razdo da simplicidade e flexibilidade dos seus
algoritmos. Dentro dessa area, os métodos baseados em inteligéncia de enxame (Swarm
Intelligence) sdo particularmente notdveis, pois se inspiram em comportamentos cole-
tivos observados na natureza, como os de bandos de pdssaros ou cardumes de peixes
(Freitas et al. 2020).

Nesse contexto, (Kennedy and Eberhart 1995) desenvolveram o algoritmo Parti-
cle Swarm Optimization (PSO), que se tornou um dos principais representantes dos al-
goritmos de Swarm Intelligence. Inspirado na dindmica de um bando de passaros, o
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algoritmo estabelece uma dinamica complexa a partir da interacao entre agentes seguindo
regras simples localmente. Cada particula se move em um espaco de busca seguindo uma
equagdo de atualizacao da posicdo que considera informagdes sobre as melhores posicoes
ja alcancadas, de forma que cada particula ajusta sua trajetéria tanto com base em sua
experiéncia individual quanto na melhor posi¢ao encontrada pelo grupo.

A dinamica do algoritmo € formalizada por duas equacdes fundamentais. Seja
L(6) € R uma fungao de perda (Loss function) ou func¢ao de custo a ser minimizada no
vetor de pardmetros § € R?. A atualiza¢io da velocidade e posi¢io de uma particula é
dada por:

’Uerl =w- ,Uf +car (pZest,i - 6;) + Cara (gliest - ef) (5)

G — gf 4 ot ©6)

onde: w € o fator de inércia das particulas, que controla a influéncia da velocidade anterior;
v} e 2! representam, respectivamente, os vetores da velocidade e a posi¢éo da particula i na
iteracdo t; c¢; e ¢y sdo coeficientes de aceleracdo, regulando a influéncia das componentes
cognitiva (melhor posi¢do individual) e social (melhor posi¢ao global), respectivamente;
71 € T3 830 valores aleatdrios no intervalo [0,1]; pj,, ; ¢ a melhor posigdo individual da
particula ¢ na iteragdo ¢, e g}, representa a melhor posi¢do global encontrada pelo grupo
na iteragao t.

O ajuste cuidadoso dos hiperparametros c;, c; e w é fundamental para o
bom desempenho do PSO, pois sua configuragdo determina o equilibrio entre a
exploracdo do espacgo de busca (capacidade de varrer amplamente possiveis solucoes) e a
exploragdo intensiva em regides promissoras (refinamento das solugdes ja identificadas)
(Freitas et al. 2020).

3. Proposta de Treinamento Federado com Privacidade Diferencial Local

O algoritmo proposto, denominado Fed-DP-PSO, baseado no algoritmo PSO de forma co-
laborativa entre os clientes, busca reduzir a quantidade de comunicac¢io de modo a reduzir
a probabilidade de que informacgdes sensiveis sejam vazadas. Ao mesmo tempo, utiliza
a privacidade diferencial como uma solu¢ao na qual cada comunicagao de parametros de
modelo entre cliente-servidor é ofuscada por ruido. Se a magnitude do ruido adicionado
nao for muito grande, entdo uma boa precisao do modelo global ainda pode ser alcancada.

A Figura 1 sintetiza o fluxo de comunicacdo entre os clientes € o servidor no
processo federado do algoritmo Fed-DP-PSO. Cada cliente transmite ao servidor o valor
da funcdo de perda associado a sua melhor particula. O servidor identifica a particula
com o menor erro dentre todas e requisita os parametros correspondentes. Em seguida,
esses parametros sdo definidos como a nova posicao global 6tima (gp.s;) € distribuidos
a todos os clientes, promovendo uma otimizagdo colaborativa orientada pelas melhores
solugdes locais. O processo € detalhado nas subsecdes seguintes, explicitando o algoritmo
executado nos clientes e a atualizacdo do modelo global no servidor. Assumimos um
sistema de aprendizado federado com N clientes C', ..., Cy, cada cliente C; possui um
conjunto de dados local D;, de tal forma que

D:Um, (7
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Figura 1. Algoritmo Fed-DP-PSO. Cada cliente envia seu erro L(0; ;) (setas laran-
jas) ao servidor. O cliente escolhido entre os trés com melhor desempenho
envia seus parametros * (seta verde). O servidor entao atualiza o modelo
global e distribui os parametros atualizados para os clientes (setas roxas).

em que D; = {x1,...,Zy, } € uma cole¢do de amostras ou observagdes de dados em C; e
m; = |D;|. O objetivo é minimizar uma fung¢do global:

min L(D, 0) 8)

OcRd

em um ambiente distribuido no qual muitos clientes t€m seus proprios conjuntos de dados
locais e o problema de minimizac¢do de soma finita é sobre a unido de todos os conjuntos
de dados locais.

3.1. Treinamento local

Cada cliente executa um método de treinamento hibrido combinando o algoritmo PSO
com o método de descida do gradiente estocastico (SGD), mais especificamente o algo-
ritmo Adam, usando mini-lotes do seu respectivo conjunto de dados D,;.

Além disso, para implementar DP no processo de treinamento local, adicionamos
uma perturbagdo aleatoria no gradiente calculado pelo método Adam, definindo dessa
forma um mecanismo Gaussiano durante a otimiza¢ao de parametros.

Seja L(D;, ") a fungdo de perda no treinamento do modelo local. Considerando
uma amostra z; € D;, temos um estimador estocastico do gradiente da fun¢do de perda
V L(D;, 6") como sendo dado por V L(z;, ") ou sua versdo de mini-lote dada por:

VLB, 0") = = Y VL(z;,0") )

em que By, C D; ¢ um mini-lote (mini-batch) do conjunto de dados no cliente.

7
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A atualizagdo dos parametros por meio do algoritmo Adam se d4 por:
0"+ = 0" —n (M + VL(by, 0")) (10)

onde 7 € a taxa de aprendizado e A é um parametro relacionado aos momentos do gradi-
ente.

Cada cliente utiliza um conjunto de particulas ©; = {6;;}, em que 6,; € R?
representa uma particula j no cliente C;. A atualizacio da velocidade e posi¢ao de cada
particula € uma combinacdo das equacdes do PSO com a atualizacdo do gradiente dado
pelo método Adam:

U§+1 =w- U; +ar (pzest,j - ef,j) + 62T2(g£est - ezt,j) (11)
0t =0;; + vt —n (M0} + VL(By, 0; ;) (12)

Durante a otimizagdo com Adam, a biblioteca Opacus' aplica trés mecanismos
principais para garantir a privacidade diferencial: clipagem dos gradientes, adi¢do de
ruido gaussiano e rastreio do or¢camento de privacidade. Primeiro, a clipagem limita a
norma dos gradientes, impedindo que contribuicdes individuais tenham um impacto des-
proporcional na atualizacdo do modelo. Em seguida, o ruido gaussiano é adicionado aos
gradientes para mascarar informagdes sensiveis. Por fim, um contador de privacidade ba-
seado em Renyi Differential Privacy (RDP) rastreia o orcamento de privacidade ao longo
das iteragdes, garantindo que o modelo permaneca dentro dos limites de privacidade es-
tabelecidos.

O Algoritmo 1 descreve o procedimento de treinamento local realizado por cada
cliente em um cendrio de aprendizado federado com otimiza¢do baseada em enxame de
particulas (PSO). Na primeira rodada (linha 1), é realizada a inicializacdo aleatéria do
conjunto de particulas ©; no cliente ¢. As linhas 3 a 7 correspondem a fase de avaliag@o
local, na qual cada particula tem sua fungdo de perda L(D;,0; ;) computada. A melhor
posicdo individual (pys:, ;) € atualizada sempre que uma nova solucdo apresenta desempe-
nho superior. O menor erro local entre todas as particulas, L(D;, 6; yest), € entdo enviado
ao servidor central. Caso o servidor solicite, o modelo correspondente a essa solucdo é
transmitido; caso contrdrio, o cliente aguarda o recebimento da melhor posi¢do global
(gpest)- A partir da linha 16, com g, definido, realiza-se a atualizagc@o da velocidade e da
posicao de cada particula, conforme a dindmica classica do PSO, incorporando os com-
ponentes inerciais, cognitivos e sociais. Por fim (linhas 28 a 32), o modelo associado a
melhor particula local € refinado via otimizacao com o algoritmo Adam incluindo privaci-
dade diferencial. Durante este refinamento, os gradientes sdo calculados em mini-batches,
submetidos ao clipping e a adicao de ruido gaussiano para garantir privacidade diferen-
cial. A atualizacdo dos parametros ocorre entdo por meio de retropropagacao estocastica,
assegurando tanto eficiéncia quanto preservacdo da privacidade dos dados locais.

3.2. Atualizacao do modelo global no servidor

Em cada rodada de comunicagao, todos os clientes executam o Algoritmo 1. Em seguida,
o servidor classifica os erros L(#) dos N clientes em ordem crescente e seleciona os trés

"https://opacus.ai
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Data: Conjunto de dados local D;, nimero de particulas no swarm S.
if round = 1 then
Crie e inicialize um swarm ©; = {6; ;,...,6; s};
foreach particula j =1,...,5 do
Avalie L(D;, 6; ;);
// Atualize a melhor posigdo da particula
if L(Dy,0; ) < L(Di, Drest,;) then pyess j = 0;; ;
end

end

Envie o menor erro L(D;, 8; pest) para o servidor;

if servidor solicita modelo local then
// Envie os pardmetros da melhor particula
Envie 0; pe¢ para o servidor;

else

‘ Recebe gpes: do servidor;

end

foreach particula j =1,...,5 do

r1,T9 ~ U(O, 1);

// Atualize a velocidade das particulas

U;H_l =w- U; + Clrl(piest,j B ef,j) + CQTQ(gZest - Hf,j);

// Atualize a posicdo das particulas

0 = 0!+ olt

LI - 7 T N I SR

DO e e e e e e e e e
S o 0 N QNN R W N o

IS
—_

end

foreach particula j = 1,...,5 do

Avalie L(D;, 6; ;);

if L(D;,0; ;) < L(D;, prest,j) then pyeg j = 0; 55

NN
[V O

end
// Refine a melhor particula com DP-Adam:
fore=1,...,FEdo
foreach mini-batch B;, do
Calcule VL (B, 92'?71)65,5) ;

31 0 =0 ey — 7 {)‘ef,best T {VL(B"” eébestﬂ + N, JI)} ;

i,best %

NN NN
%\om\la\

32 end
33 end

Algorithm 1: Algoritmo DP-PSO-Adam.

menores valores. Dentre esses trés melhores clientes, um é escolhido aleatoriamente,
conforme definido nas Equacgdes 13 e 14:

Lo, < Loy, < Loy, < -+ < Loy, (13)
Lmin = LO(k) (14)
onde k € {1, 2,3} é escolhido aleatoriamente.

Essa selecdo aleatdria dos trés melhores clientes garante que a atualizacao do mo-
delo global seja diversificada, reduzindo o impacto excessivo de qualquer cliente indivi-
dual na atualizacdo do modelo. Apds a escolha do L, 0 servidor solicita os parametros

9
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(k) do cliente correspondente, que os envia para o servidor.

Por fim, o modelo global é atualizado usando gp.s; = 9&), que por sua vez €
distribuido a todos os clientes, garantindo a continuidade do treinamento colaborativo.
Veja que o novo gp.s; enviado pelo servidor aos clientes influenciard o treinamento local
em todos os clientes, por meio das equagdes de atualizacdo das particulas no cliente.
Isso faz com que o treinamento distribuido em todos os clientes esteja de alguma forma
conectado e direcionado por aqueles que possuem 0s menores erros de treinamento. A
dindmica dessa comunicagdo entre clientes e servidor estd ilustrada na Figura 1.

O Algoritmo 2 descreve a légica executada pelo servidor central durante o trei-
namento no Fed-DP-PSO. A cada rodada de comunicacdo, o servidor solicita a todos os
clientes o menor valor de perda L(6) associado as melhores posi¢des pessoais encontradas
localmente (linhas 2 a 4). Em seguida, esses valores sdo ordenados de forma crescente,
e o servidor seleciona aleatoriamente um dos trés clientes com os menores erros (linhas
5 a 7). O modelo correspondente, identificado por seus parametros 6*, é requisitado ao
cliente selecionado (linha 8). Por fim, o pardmetro global 6timo g, € atualizado com 6*
e transmitido a todos os clientes, assegurando a continuidade e a coesdo do processo de
otimizacao colaborativa (linha 9).

for round =1, ..., Rdo
for cada cliente C; do
| Solicita menor Ly = L(D;, ) do cliente C;;
end
Ordena os erros Ly dos N clientes
Escolhe aleatoriamente k € {1,2,3} ;
Lmin = LG(k) >
* = solicita pardmetros 6 do cliente escolhido;
Atualiza 0 gp.s; de todos os clientes com 6*;
10 end

=T RN - L7 I "N SR SR

Algorithm 2: Algoritmo executado no servidor.

4. Experimentos Computacionais

4.1. Dados e configuracao dos modelos

Os experimentos realizados para a validag¢ao do algoritmo Fed-DP-PSO proposto foram
conduzidos utilizando trés conjuntos de dados distintos: MNIST?, Fashion MNIST? e
PathMNIST*. O conjunto MNIST é composto por 60.000 imagens de treinamento e
10.000 imagens de teste, representando digitos manuscritos entre 0 € 9, com resolugado
de 28 x 28 pixels em escala de cinza. O Fashion MNIST possui a mesma estrutura do
MNIST em relacdo a quantidade de amostras e resolucdo das imagens, mas com clas-
ses que representam pegas de vestudrio, como camisetas, calcados e bolsas. Por fim, o
PathMNIST, da base de dados MedMNIST, contém 107.180 imagens coloridas de laminas
histopatoldgicas do colon, com resolugdo de 28 x 28 pixels e classificadas em 9 categorias

’https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://www.kaggle.com/datasets/zalando-research/fashionmnist
“Disponivel em https://medmnist .com
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distintas. As imagens estdo divididas em 89.996 para treinamento, 10.004 para validacao
e 7.180 para teste.

A arquitetura utilizada para os conjuntos MNIST e Fashion MNIST foi uma rede
Multi-Layer Perceptron (MLP) composta por trés camadas totalmente conectadas, sendo
duas camadas ocultas com 256 neur6nios cada e uma camada de saida com 10 neurdnios.
A funcdo de ativac@o ReLU foi aplicada apds cada camada oculta, e a camada de saida uti-
liza a func¢do softmax. O objetivo do modelo era classificar corretamente 0 maior nimero
possivel de imagens nas dez classes disponiveis, assegurando simultaneamente a priva-
cidade e integridade dos dados de cada cliente.

Devido a sua maior complexidade em relacao aos demais datasets, apenas o con-
junto PathMNIST foi processado utilizando uma arquitetura baseada em Convolutional
Neural Network (CNN), especificamente em uma variagao da LeNet-5. A arquitetura uti-
lizada processa imagens coloridas (3 canais) e € composta por duas camadas convolucio-
nais seguidas de operagdes de pooling e trés camadas totalmente conectadas. As camadas
convolucionais utilizam filtros de tamanho 5 X 5, com 6 e 16 canais de saida, respecti-
vamente. Apods o segundo pooling, os mapas de ativacao sao achatados e processados
pelas camadas lineares com 120, 84 e, por fim, 9 neur6nios na camada de saida, corres-
pondendo ao nimero de classes do PathMNIST. A func¢do de ativagdo ReLU ¢ utilizada
entre as camadas convolucionais e ocultas. Neste caso, o objetivo do modelo era identifi-
car corretamente os diferentes tipos de tecidos presentes em imagens histopatoldgicas, ao
mesmo tempo que promovia a preservacao da privacidade dos dados de treinamento.

Diferentes configuragdes de hiperparametros foram adotadas para os treinamentos
com MLP e CNN, definidas empiricamente a partir do melhor desempenho observado em
cada cenario. A principal diferenca entre as arquiteturas reside na taxa de aprendizado,
que foi reduzida na CNN devido a sua maior profundidade e complexidade estrutural.
Essa escolha visa promover atualizagdes mais estaveis durante a otimizacao, contribuindo
para uma convergéncia mais precisa e menos suscetivel a oscilagdes.

Tais ajustes possibilitaram atenuar parcialmente a degrada¢do de desempenho e
aprimorar a eficiéncia do modelo frente as restricdes impostas, especialmente nos cendrios
com aplicacdo de privacidade diferencial.

Hiperparametros para MLP:

* Numero de épocas: 10

* Nuamero de particulas (PSO) em cada cliente: 5
e Inércia, c; e cp: 0.7, 1.4, 1.4

* Taxa de aprendizado n: 0.005

* Numero de clientes N: 5

Hiperparametros para CNN:

* Namero de épocas: 10

* Nuamero de particulas (PSO) em cada cliente: 5
e Inércia, ciecy: 0.7,14,1.4

* Taxa de aprendizado n: 0.001

¢ Numero de clientes /V: 5

11
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4.2. Resultados e Discussoes

A apresentacdo e discussdo dos resultados estdo organizadas em trés subsecoes princi-
pais. A Secdo 4.2.1 aborda os experimentos conduzidos com o algoritmo sem a aplicacdo
de privacidade diferencial (DP). A Se¢ao 4.2.2 trata dos experimentos realizados sob o
mesmo protocolo, porém com a inclusdo de mecanismos de privacidade diferencial. Por
fim, a Secdo 4.2.3 apresenta a analise comparativa do algoritmo com o Método FedAvg-
DP-SGD.

Para garantir uma avaliagdo robusta da abordagem proposta, os experimentos fo-
ram realizados com trés datasets distintos: MNIST, FashionMNIST e PathMNIST. Os
dois primeiros foram utilizados nas secoes 4.2.1 e 4.2.2 e o ultimo foi abordado na se¢do
4.2.3. Além disso, € importante destacar que os dois primeiros conjuntos de dados foram
utilizados com uma arquitetura MLP, enquanto o ultimo utilizou uma CNN baseada na
LeNet-5, devido a maior complexidade das imagens presentes nesse conjunto.

A distribui¢dao dos dados entre os clientes foi realizada de duas formas: IID (do
inglés, Independent and Identically Distributed), representando uma divisdo uniforme e
homogénea, e nao-IID, modelada com a estratégia Dirichlet. Para tal, foram adotados os
particionadores IID Partitioner € Dirichlet Partitioner, disponibilizados pela biblioteca
Flower’, especializada em aprendizado federado.

No particionamento IID, cada cliente recebe subconjuntos de dados com
distribuicdo semelhante a global, o que favorece a convergéncia e o desempenho dos
algoritmos. Ja no particionamento Dirichlet, a distribui¢cdo dos dados é controlada por
uma variavel continua & > 0, que atua como parametro de concentracio da distribui¢dao
Dirichlet(«) utilizada para amostrar a propor¢ao de rétulos que cada cliente recebe. Valo-
res menores de « resultam em vetores de propor¢cao mais esparsos, concentrando os dados
de cada cliente em poucas classes, o que induz maior heterogeneidade entre os clientes.
Por outro lado, valores maiores de o geram distribui¢cdes mais balanceadas e proximas
do regime IID, pois cada cliente tende a receber dados de todas as classes em proporcdes
similares.

4.2.1. Cenario base: resultados obtidos com a auséncia de privacidade diferencial

Nesta secdo, sdo descritos os resultados no cendrio base com os conjuntos de dados
MNIST e FashionMNIST, que foram utilizados tanto em distribui¢dao IID, quanto em
nao-IID.

O algoritmo proposto obteve as seguintes acurdacias médias:

 Utilizando o dataset MNIST:
— 88,69% + 3,53 pp, com distribuicao desbalanceada e o = 0.3;
- 94,85% =+ 0,91 pp com distribuicdo desbalanceada e o = 1;
- 96,41% =+ 0,23 pp, com distribuicao balanceada.

 Utilizando o dataset FashionMNIST:
- 69,82% =+ 7,53 pp, com distribuicio desbalanceada e o = 0.3;
- 81,86% =+ 1,70 pp com distribuicdo desbalanceada e o = 1;

SFlower A Friendly Federated Al Framework: https://flower.ai
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- 85,66% =+ 0,99 pp, com distribuicao balanceada.

A queda de desempenho observada entre os cendrios balanceado e desbalanceados
era esperada, dado que a disponibilidade limitada de certas classes em alguns clientes
compromete a representatividade local e, consequentemente, a qualidade do aprendizado
federado. No entanto, é notdvel que a diferenca entre os resultados ndo € acentuada,
mesmo nos casos de maior assimetria de dados (quando « € menor), o que demonstra a
robustez e adaptabilidade do algoritmo proposto em ambientes nao homogéneos.

O PSO, ao operar de maneira colaborativa e global, contribui para mitigar os efei-
tos adversos da propriedade nao-1ID dos dados, favorecendo a convergéncia do modelo
global.

4.2.2. Analise dos Resultados com Privacidade Diferencial

Nesta subsegdo, apresentamos os resultados obtidos sob o algoritmo (e, §)-DP desenvol-
vido, onde definimos ¢ = 107" e variamos € € {5, 8, 10,00} € « € {0.3,1}, a fim de
verificarmos a eficiéncia do método proposto em regimes distintos de privacidade e de
distribui¢do de dados e quantificar o trade-off entre a privacidade e a utilidade do modelo.

Foram aplicados os experimentos tanto ao treinamento com dados balanceados
quanto ao treinamento com dados desbalanceados, com o intuito de ndo apenas verificar
a eficiéncia do modelo, mas também sua resili€ncia frente a distribuicdes de dados rea-
listas, onde o desbalanceamento € frequente. As Tabelas 1 e 2 apresentam os resultados
da variacao dos valores de € e o no treinamento com dados balanceados e com dados
desbalanceados para os datasets MNIST e FashionMNIST, respectivamente.

Tabela 1. Resultados de acuracia para diferentes valores de « em treinamento
com dados balanceados e desbalanceados do dataset MNIST.

- - O713)ados nao IIDa - Dados IID

S 172,31% £ 5,78 pp | 85,08% = 1,12 pp | 88,12% £ 0,78 pp
8 | 74,61% 5,12 pp | 86,54% + 1,62 pp | 89,21% + 0,33 pp
10 | 76,24% + 3,97 pp | 87,89% %= 1,09 pp | 89,59% + 0,58 pp
oo | 88,69% £+ 3,53 pp | 94,85% £ 0,91 pp | 96,41% + 0,23 pp

Tabela 2. Resultados de acuracia para diferentes valores de = em treinamento
com dados balanceados e desbalanceados do dataset Fashion MNIST.

Dados ndo 11D

€ Dados 11D
a=0,3 a=1

5 | 58,92% 6,6 pp | 76,12% = 1,19 pp | 81,34% + 0,41 pp

8 | 61,18% 7,58 pp | 76,93% + 1,22 pp | 81,83% + 0,35 pp

10 | 62,06% = 6,73 pp | 77,20% + 1,24 pp | 82,06% + 0,43 pp

oo | 69,82% £+ 7,53 pp | 81,86% £ 1,70 pp | 85,66% =+ 0,99 pp

A introdugdo da privacidade diferencial no algoritmo proposto teve impacto direto
sobre os resultados de acuricia, conforme esperado, em decorréncia do ruido introduzido
nas atualizagdes dos modelos locais.
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No dataset MNIST, observou-se uma queda moderada na acurdcia com dados nao
IID, em relacdo aos dados IID. Além disso, conforme apresentado na Figura 2, nota-
se ainda que, em contextos IID, a acuricia atinge valores proximos do maximo ja nas
primeiras quatro rodadas de treinamento.

A mesma tendéncia é observada no FashionMNIST, com resultados que seguem
um comportamento coerente, embora apresentem acuracias, em média, inferiores, tendo
em vista a maior complexidade desse conjunto de dados em relagc@o ao anterior.

Verifica-se também que, a medida que o valor de ¢ diminui, observa-se uma
tendéncia de reducao na acurdcia do modelo, o que demonstra a existéncia de um compro-
misso entre a preservagdo da privacidade e o desempenho preditivo. Ademais, no cendrio
nao-IID, a acuricia decresce com a reducdo de «, devido ao aumento da desigualdade
entre os dados locais, enquanto um valor maior de « resulta em acurdcia mais proxima do
cendrio IID, bem como esperado.

Comparacéo da Acuracia (em %) e do Epsilon (g) ao Longo das Rodadas
Para 3 Tipos de Balanceamento de Dados do dataset MNIST

N&o-IID (a = 0.3) Nao-IID (a = 1.0)
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9 r8s
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Figura 2. Comparacao entre a acuracia e o épsilon (c) ao longo das rodadas.

4.2.3. Analise Comparativa com o0 Método FedAvg-DP-SGD

Além dos experimentos anteriores, também avaliamos os resultados obtidos com a
aplicacao do método DP-SGD (Abadi et al. 2016) no treinamento local, em conjunto com
a estratégia de agregacdo Federated Averaging (FedAvg) (McMahan et al. 2017) no ser-
vidor central. Essa abordagem foi utilizada como base comparativa para os resultados
obtidos com o método proposto Fed-DP-PSO, permitindo uma andlise mais abrangente
do desempenho e da eficacia do algoritmo quando aplicado ao dataset PathMNIST.

O gréfico da Figura 3 apresenta uma comparagio dos resultados obtidos com o
método Fed-DP-PSO e o FedAvg-DP-SGD:

Os resultados experimentais indicam que o algoritmo proposto, Fed-DP-PSO,
apresentou desempenho equivalente ao método tradicional FedAvg utilizando DP-SGD
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Comparacao de Acuracia com variacao do nivel de privacidade
em um contexto balanceado

100
I Fed-DP-PSO
90 | EEE FedAvg-DP-SGD

80

63.8% 64.6%

61.3% 62.6% +4.0

70 A 59.4% +4.2 +3.3 +3.4
P 59.0%

60 -

Acuracia (%)
3

5 8 10
Epsilon ()

Figura 3. Comparagao das acuracias obtidas com os métodos Fed-DP-PSO e
FedAvg-DP-SGD com o dataset PathMNIST.

em todos os cendrios analisados. Além disso, de acordo com (Sanhd 2024), algoritmos
de aprendizado federado baseados em PSO reduzem em aproximadamente 90% a quanti-
dade de dados transmitidos dos clientes para o servidor por rodada de treinamento, quando
comparado ao FedAvg, no contexto de redes neurais convolucionais (CNNs). Isso repre-
senta uma vantagem significativa em termos de economia de recursos computacionais e
seguranca, uma vez que a reducao de parametros compartilhados com o servidor diminui

a superficie de exposicdo a ataques de membership inference e outros ataques de privaci-
dade.

5. Conclusao

Este artigo propds o método Fed-DP-PSO, que combina o treinamento federado com
a aplicacdo de privacidade diferencial em enxames de particulas, todos alocados nos
proprios clientes. Os testes foram realizados utilizando os conjuntos de dados MNIST,
FashionMNIST e PathMNIST, considerando cendrios de distribui¢do balanceada e des-
balanceada, com o objetivo de simular tanto condi¢des ideais quanto realistas, em que a
colaboracdo entre os clientes € essencial para alcancar boa cobertura do espaco amostral.
A combinagdo das abordagens resultou em desempenho satisfatério, com acurdcia muito
proxima a obtida por métodos como o FedAvg-DP-SGD, evidenciando a eficécia do Fed-
DP-PSO em contextos de treinamento distribuido com protecao a privacidade. Destaca-
se, ainda, a reducdo nos custos de comunicagao e na frequéncia de troca de informacdes
entre clientes e servidor, fatores que favorecem tanto a eficiéncia do modelo quanto o
refor¢o a protecao dos dados. Além disso, observou-se que o uso da privacidade diferen-
cial integrada ao PSO n@o apenas fortalece a protecdo dos dados, mas também favorece a
diversidade e a robustez do processo de otimizagao.

A abordagem proposta neste trabalho abre espaco para a identificacdo de melho-
rias e para a exploracdo de novos contextos de aplicagdo. Em particular, destaca-se como
limitacdo a dificuldade de realizar multiplos ciclos de refinamento com o algoritmo Adam,
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devido ao acimulo do or¢amento de privacidade ao longo das iteracdes, o que impde
restricdes ao niumero de épocas viaveis no cendrio com privacidade diferencial. Entre os
trabalhos futuros, pretende-se investigar alternativas para incorporar DP de forma mais
eficiente, buscando reduzir o custo computacional sem comprometer a seguranga, além
de investigar estratégias para aprimorar a acuracia do modelo.
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