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Abstract. This work investigates the generation of synthetic data for Advanced
Persistent Threats (APTs) using Generative Adversarial Networks (GANs)
adapted to the domain of time series. Given the stealthy and sequential nature
of APTs, traditional data generation methods that ignore temporal dynamics
are insufficient. To address this limitation, this study explores the Transformer
Time-Series Conditional GAN (TTS-CGAN) architecture, originally proposed
for biosignals, and proposes specific adaptations for the generation of malicious
network traffic flows. The process includes data modeling from the DAPT2020
dataset, architectural adjustments to enhance capacity and diversity, and
validation of the synthetic data through qualitative, quantitative metrics and the
performance evaluation of machine learning models trained on real, synthetic,
and semi-synthetic datasets. Results indicate that the synthetic data generated
by the TTS-CGAN can improve APT detection performance, demonstrating the
viability and benefits of the proposed approach.

Resumo. Este trabalho investiga a geração de dados sintéticos de Advanced
Persistent Threats (APTs) utilizando Redes Generativas Adversariais (GANs)
adaptadas para o domínio de séries temporais. Considerando a natureza
furtiva e sequencial das APTs, abordagens tradicionais de geração de dados
que ignoram as dinâmicas temporais tornam-se insuficientes. Para superar
essa limitação, este estudo explora a arquitetura Transformer Time-Series
Conditional GAN (TTS-CGAN), originalmente proposta para biosinais, e
propõe adaptações específicas para a geração de fluxos de rede maliciosos.
O processo inclui a modelagem de dados do dataset DAPT2020, ajustes
arquiteturais para aumento da capacidade e diversidade, além da validação
dos dados sintéticos por meio de métricas qualitativas, quantitativas e do
desempenho de modelos de Machine Learning (ML) treinados em conjuntos
reais, sintéticos e semi-sintéticos. Os resultados indicam que o uso de dados
sintéticos gerados pela TTS-CGAN pode aprimorar a detecção de APTs,
demonstrando a viabilidade e os benefícios da abordagem proposta.
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1. Introdução

Com o aumento da digitalização de serviços e a crescente dependência de sistemas
online, a cibersegurança tornou-se uma das áreas mais críticas da atualidade. Em
resposta a essa tendência, cibercriminosos têm desenvolvido ataques cada vez mais
sofisticados e difíceis de detectar. Entre as ameaças modernas, destacam-se especialmente
as Advanced Persistent Threats (APTs) [Alshamrani et al. 2019]. Diferentemente dos
ataques convencionais, as APTs são realizadas por agentes altamente qualificados e
com amplos recursos financeiros, utilizando ferramentas personalizadas e estratégias
planejadas para se infiltrar em sistemas sensíveis [Alshamrani et al. 2019].

APTs seguem uma estrutura em múltiplos estágios e são frequentemente
considerados uma evolução dos ataques multietapa tradicionais [Alshamrani et al. 2019,
Ghafir et al. 2018]. A principal característica das APTs é a sua natureza furtiva: são
silenciosos e prolongados, capazes de permanecer ocultas por longo período de tempo,
avançando discretamente até alcançar seus objetivos [Xiong et al. 2020]. Na literatura,
técnicas de Machine Learning (ML) têm sido aplicadas na detecção de APTs, incluindo
Support Vector Machines (SVMs) e Random Forests (RFs) [Xin et al. 2018]. Devido
à natureza sequencial desses ataques, abordagens que analisam séries temporais e a
correlação entre eventos maliciosos são especialmente relevantes [Myneni et al. 2020].
Por exemplo, arquiteturas baseadas em redes neurais profundas para dados sequenciais,
como as Long Short-Term Memory (LSTM) [Géron 2022], têm sido frequentemente
empregadas na análise de ataques multietapa [Liao et al. 2024, Zhou et al. 2021].
Contudo, a eficácia desses modelos depende da qualidade e representatividade dos dados
utilizados no treinamento, sendo escassas as fontes que contêm exemplos realistas de
APTs [Myneni et al. 2023].

A escassez e complexidade desses dados têm levado a comunidade de
cibersegurança a buscar alternativas para sua geração. Trabalhos recentes destacam
que Generative Adversarial Networks (GANs) [Chakraborty et al. 2024] são promissoras
na criação de dados sintéticos realistas para o treinamento de modelos de detecção
de ciberataques [Li et al. 2018, Alo et al. 2024]. As GANs têm encontrado aplicação
em várias áreas da cibersegurança, incluindo a geração de tráfego de rede
[Bianchi et al. 2025], criação de ataques sintéticos, balanceamento de conjuntos de dados
e até mesmo diretamente na detecção de ataques [Navidan et al. 2021]. Particularmente
na geração de tráfego malicioso, as GANs podem produzir diversos formatos de dados,
desde pacotes individuais até fluxos completos de rede. Apesar dessas aplicações serem
promissoras, a utilização de GANs para gerar dados sintéticos representativos de APTs
permanece uma área aberta, sem soluções amplamente consolidadas na literatura.

O objetivo deste trabalho é investigar a aplicação das GANs para gerar dados
sintéticos representativos de APTs, visando aprimorar o desempenho dos modelos de ML
usados na detecção dessas ameaças. Para isso, considerando as características sequenciais
das APTs, a pesquisa explora a arquitetura Transformer Time-Series Conditional GAN
(TTS-CGAN) [Li et al. 2022]. Originalmente proposto na área da saúde, o modelo TTS-
CGAN emprega mecanismos de auto-atenção baseados em Transformers para capturar
dependências temporais complexas, possibilitando a geração de dados sintéticos que
refletem os padrões sequenciais presentes em séries temporais reais. Neste trabalho, este
modelo é explorado na captura de correlações entre diferentes fluxos de rede e a dinâmica
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temporal típica desses ataques.

Entre as principais contribuições deste trabalho, destacam-se:

1. A adaptação e aprimoramento da arquitetura TTS-CGAN, originalmente proposta
para a área da saúde, ao domínio da cibersegurança. Foram adicionados
camadas de normalização de batch e MiniBatch para aumentar a diversidade dos
batches gerados e mitigar a possibilidade de mode collapse, além de ajustes de
hiperparâmetros, considerando a maior variabilidade e complexidade dos dados
de cibersegurança;

2. A validação qualitativa e quantitativa da geração de dados sintéticos com a
arquitetura, utilizando PCA, t-SNE e Dynamic Time Warping (DTW) para
evidenciar a proximidade estatística entre os dados sintéticos e reais;

3. A avaliação do impacto dos dados sintéticos na detecção de APTs, por meio de
modelos de Machine Learning — Random Forest, SVM, LSTM e Transformer
Encoder —, demonstrando que todos os modelos treinados com dados semi-
sintéticos obtiveram melhor desempenho.

2. Fundamentação Teórica

Atualmente, há poucas fontes de dados disponíveis para o estudo de APTs
[Navarro et al. 2018]. Um dos datasets mais utilizados em pesquisas sobre APTs é o
DARPA 2000 [Lippmann et al. 2000], que inclui dois cenários desse tipo: (i) LLDOS
1.0, um ataque simples e de curta duração; e (ii) LLDOS 2.0.2, um ataque mais longo,
furtivo e sofisticado. Apesar de amplamente explorado, esse dataset é bastante antigo e
não reflete mais as características dos APTs modernos, visto que os cenários de ataque
foram construídos em um ambiente simulado, com ferramentas e técnicas da época, como
escaneamento com Nmap e ataques de negação de serviço do tipo mstream, o que limita
sua representatividade frente aos vetores de ataque atuais.

Alguns datasets populares, como CICIDS2018 [Sharafaldin et al. ], ISCX
[Shiravi et al. 2012] e UNSW-NB15 [Moustafa e Slay 2015], são empregados em estudos
sobre ataques multietapa e APTs. Contudo, a diferença entre tráfego benigno e tráfego
de ataque nesses datasets é trivial [Liao et al. 2024, Myneni et al. 2020], uma vez que
modelos de Machine Learning básicos podem alcançar alta precisão em tarefas de
classificação simplesmente analisando amostras individuais desses datasets, o que não
reflete a natureza sequencial e furtiva de uma APT.

Datasets modernos voltados especificamente para APTs são o DAPT2020
[Myneni et al. 2020] e o Unraveled [Myneni et al. 2023]. Como nosso objetivo é gerar
dados sintéticos, o Unraveled, que é um dataset semi-sintético, torna-se inadequado para
o nosso estudo. Dessa forma, neste trabalho, optou-se por utilizar o DAPT2020 como
fonte de dados para investigar o emprego da TTS-CGAN na geração de dados sintéticos
para APTs.

O DAPT2020 segue a estrutura descrita por [Alshamrani et al. 2019],
contemplando quatro estágios de ataque: Reconnaissance, Foothold Establishment,
Lateral Movement e Data Exfiltration, além de tráfego benigno, que representa atividade
não maliciosa. Esses estágios ocorrem na ordem especificada, simulando múltiplos
ataques intercalados. Este dataset foi utilizado no treinamento e execução de modelos
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de classificação de APTs, explorando combinações dos dados originais com os dados
sintéticos gerados pelos modelos de Machine Learning investigados.

2.1. Machine Learning na Detecção de APTs
Técnicas de Machine Learning têm sido utilizadas para detectar diferentes APTs. Em
[Ghafir et al. 2018], os autores desenvolveram uma framework que utiliza detectores
clássicos de eventos suspeitos na rede, os quais eram posteriormente agrupados em
diferentes clusters, representando possíveis instâncias de APTs. Cada um desses clusters
serve como entrada para modelos de Machine Learning, como Support Vector Machines
(SVM) e Random Forests (RF), que estimam a probabilidade de alertas corresponderem
a uma APT completa. No trabalho [Ghafir et al. 2019], os mesmos autores mantiveram
o sistema de clusterização, mas introduziram o uso de Hidden Markov Models (HMMs)
para organizar os alertas em uma possível sequência de estágios de um ataque. Com base
nessa sequência, eles aplicaram um algoritmo desenvolvido especificamente para prever
o próximo estágio da APT, alcançando uma acurácia de predição de 93,91%.

Em [Liao et al. 2024], os autores propuseram uma Graph Neural Network (GNN)
com mecanismos de atenção baseados em transformers, denominada Graph Attention
Network (GAT). Essa arquitetura recebe como entrada a topologia da rede, reconstruída a
partir de endereços IP e portas, e realiza a correlação entre os nós do grafo (representando
combinações de IPs e portas). Paralelamente, o tráfego de rede é processado por uma
rede LSTM, com o objetivo de capturar os padrões temporais presentes na comunicação.
As saídas dessas duas arquiteturas são, então, concatenadas e passadas por uma camada
linear de neurônios (sem função de ativação) para reduzir a dimensão. Por fim, o
resultado é inserido em um algoritmo desenvolvido responsável por classificar o estágio
do ataque APT. O artigo utiliza o mesmo conjunto de dados adotado no presente trabalho,
o DAPT2020, no qual o modelo proposto é comparado com dois algoritmos clássicos —
Support Vector Machines e Regressão Logística — além de diversos modelos de Deep
Learning, como LSTM, MLP, CNN e outras variações.

2.2. GANs e Dados Temporais Sintéticos
A geração de dados sequenciais por meio da integração de GANs com LSTMs é um
tema de pesquisa recente. Por exemplo, em [Zhu et al. 2019b], é proposto um modelo
LSTM-GAN para a detecção de anomalias em séries temporais, que é aplicado em
dados de ECG e tráfego de táxis de Nova York. De maneira semelhante, o trabalho
em [Harada et al. 2019] emprega modelos de GANs recorrentes baseados em LSTM para
gerar biossinais multiclasse, permitindo o controle das características dos dados sintéticos
por meio da análise de variáveis latentes.

A proposta em [Hazra e Byun 2020] consiste no modelo SynSigGAN, que
combina LSTMs no gerador com redes convolucionais (CNNs) no discriminador para
produzir sinais biomédicos sintéticos a partir de um conjunto limitado de dados reais.
Seguindo essa abordagem, os autores em [Zhu et al. 2019a] propõem o modelo BiLSTM-
CNN GAN, projetado para gerar dados sintéticos de eletrocardiogramas com alta
fidelidade, demonstrando a eficácia da combinação entre LSTMs bidirecionais e CNNs
na síntese de sinais fisiológicos.

Em [Vaswani et al. 2017], foi proposto o mecanismo de self-attention,
introduzindo o modelo transformer, capaz de capturar relações complexas em sequências

Anais do SBSeg 2025: Artigos Completos

4



com desempenho superior às arquiteturas anteriores baseadas em LSTM. A TransGAN
[Jiang et al. 2021] foi a primeira rede generativa adversarial construída inteiramente com
transformers para a geração de imagens sintéticas, utilizando o Vision Transformer (ViT)
[Dosovitskiy et al. 2020] no discriminador. O ViT tem um propósito semelhante ao de
camadas convolucionais, buscando extrair características relevantes das imagens, porém
apresenta, em geral, maior capacidade para capturar padrões globais.

A TTS-CGAN [Li et al. 2022] também é uma arquitetura de GAN baseada
exclusivamente em transformers, mas voltada à geração de dados temporais,
originalmente projetada para tratar problemas de geração de dados sintéticos na área
da saúde. A estrutura da TTS-GAN faz uso de Vision Transformers (ViT), mas trata
séries temporais como imagens com altura de um único pixel. Tanto o gerador quanto o
discriminador utilizam camadas lineares e de convolução (sem função de ativação) para
alinhar os dados com a entrada de um único Transformer multi-head. Baseado neste
modelo, a TTS-CGAN [Li et al. 2022] foi proposta como uma evolução da TTS-GAN,
com a capacidade adicional de lidar com dados rotulados. O trabalho explorou técnicas
para a incorporação de rótulos nesta arquitetura. Como resultado, uma modificação no
discriminador foi adotada, passando a contar com duas cabeças de classificação: uma
responsável por distinguir dados reais de sintéticos e outra para a predição das classes dos
dados.

2.3. Trabalhos Relacionados

Em [Li et al. 2019, Li et al. 2018], uma GAN foi treinada com dados temporais de
um sistema de tratamento de água para detectar ataques por meio da identificação de
anomalias. Após o treinamento, o próprio discriminador foi reutilizado para classificar
sequências temporais: se uma sequência fosse considerada falsa, ela era interpretada
como uma possível anomalia e, portanto, um potencial ataque ao sistema.

Com o mesmo intuito de utilizar o discriminador na detecção de ataques em
tráfego de rede, os autores em [Zeeshan e Maasooma 2024] empregaram uma arquitetura
de GAN baseada em transformers e redes neurais feed-forward para detectar ataques
em tráfego de rede. O trabalho foi realizado nos datasets UNSW-NB15, NSL-KDD e
CIC-IDS 2017, modelando o tráfego no formato de fluxos e considerando os rótulos dos
ataques e não utilizando o discriminador treinado com outros métodos de detecção de
anomalias.

O GANsformer [Hudson e Zitnick 2021] foi uma das primeiras implementações
de transformers em um contexto de aprendizado adversarial, utilizando atenção
bipartida em uma arquitetura híbrida entre transformers e redes convolucionais (CNNs)
para a geração de imagens. Posteriormente, essa arquitetura foi empregada em
[Alzahem et al. 2022] com o objetivo de balancear o dataset de malware CLaMP
[Kumar et al. 2019], gerando dados sintéticos para aprimorar a performance de modelos
de detecção. Como o GANsformer foi originalmente projetado para imagens, os autores
converteram os cabeçalhos binários dos malwares em representações bidimensionais,
possibilitando seu uso na GAN. Para validar os dados gerados, foram utilizados diferentes
modelos baseados em CNNs, e todos apresentaram melhorias na detecção dos malwares
ao serem treinados com o dataset balanceado. No entanto, o estudo não explora outros
métodos clássicos de Machine Learning, como Random Forests, Support Vector Machines
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ou quaisquer outros, que, inclusive, são abordados no próprio dataset utilizado em
[Kumar et al. 2019].

O trabalho em [Alo et al. 2024] investiga a baixa representatividade de certos
tipos de ataques nos datasets atuais, como APTs e zero-day. O estudo propõe o uso de
GANs para gerar dados sintéticos e aumentar essa representatividade a fim de aprimorar o
desempenho de modelos de Machine Learning. A proposta foi validada nos conjuntos de
dados UNSW-NB15 e CICIDS2017, utilizando uma arquitetura original de GAN simples,
baseada em camadas convolucionais. Embora o estudo não detalhe como os dados
sintéticos foram integrados aos dados reais, os dados semi-sintéticos foram utilizados para
treinar um modelo de Deep Learning composto por camadas convolucionais e recorrentes.
Esse modelo foi então comparado com algoritmos clássicos —Random Forests, Suport
Vector Machines, Naive Bayes (NB) e K-Nearest Neighbors (KNN). O modelo de Deep
Learning obteve a maior acurácia entre os avaliados, alcançando 95,8%. O artigo,
contudo, não testou o desempenho do modelo de Deep Learning treinado com os dados
originais e nem dos outros modelos com os dados sintéticos.

Observa-se que os trabalhos analisados utilizam conjuntos de dados de
cibersegurança com representações simplificadas de APTs, como discutido na Seção ??.
Além disso, as comparações entre modelos treinados com e sem dados sintéticos são,
em geral, insuficientes e raramente são avaliadas de forma sistemática em diferentes
algoritmos, o que dificulta a mensuração real do impacto dos dados gerados. Em
contraste, este trabalho utiliza um dataset mais sofisticado e realista, e realiza uma análise
comparativa completa, evidenciando de forma quantitativa o efeito da geração de tráfego
sintético de APTs no desempenho de múltiplos modelos de Machine Learning.

3. Geração de Dados Temporais Sintéticos de APTs Usando a Arquitetura
TTS-CGAN

Esta seção descreve a metodologia adotada para a geração de dados sintéticos de APTs
baseada na arquitetura TTS-CGAN.

3.1. Pré-processamento e Modelagem de Dados

O DAPT2020 contém aproximadamente 86 mil fluxos de rede coletados ao longo de cinco
dias. Cada fluxo representa uma série de pacotes trocados entre cliente e servidor, sendo
descrito por 81 colunas, cada uma correspondente a uma característica distinta do tráfego.
Dessa forma, é necessário realizar um processamento sobre os dados originais para filtrar
as informações mais relevantes dos fluxos de rede e realinhar os dados para o formato de
entrada da GAN.

Inicialmente, como o foco deste trabalho é a análise de dados temporais, os
endereços IP foram removidos do conjunto pois não é um atributo que depende do
tempo. A única coluna categórica presente era o rótulo do tráfego. Essa coluna foi
padronizada para letras minúsculas e, em seguida, codificada numericamente, atribuindo-
se um valor inteiro único para cada tipo de tráfego. Por exemplo, todos os fluxos com
rótulo "benign" receberam o valor "0", os com rótulo "exfiltration" receberam o valor "1",
"establish foothold" receberam o valor "2", "lateral movement" receberam o valor "3"e
por fim "reconnaissance" receberam o valor "4". Esta conversão é relevante para permitir
interpretar cada classe como estágios 1, 2, etc.
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Com o objetivo de identificar os atributos mais relevantes para a caracterização
do tipo de tráfego (benigno ou ataque), foi calculada a correlação de Pearson entre cada
atributo e a coluna de rótulo. Os modelos construídos neste trabalho foram baseados nos
atributos que apresentaram correlação positiva com o rótulo, conforme ilustrado na Figura
1. Apenas os atributos com correlação positiva forma considerados neste trabalho para
permitir a GAN trabalhar com um número menor de variáveis com influência direta sobre
o estágio do ataque. Os demais atributos contidos no conjunto de dados foram removidos.

Figura 1. Atributos do DAPT2020 com maior correlação com o tipo de tráfego.

Considerando que o dataset representa uma longa sequência de fluxos de pacotes,
foi necessário segmentá-lo em subsequências utilizáveis durante o treinamento. Para
isso, calcularam-se os comprimentos de todas as sequências contínuas de amostras
pertencentes à mesma classe. Após desconsiderar sequências muito curtas (com menos de
10 amostras), observou-se que a maioria continha pouco mais de 30 amostras. Com base
nessa análise, definiu-se um comprimento fixo de 30 fluxos por subsequência. O dataset
resultante foi, então, dividido em pequenas sequências, que serviram como entrada para
a GAN, conforme ilustrado na Figura 2, totalizando, ao final, 2889 sequências, cada uma
com 8 canais (colunas).

3.2. Arquitetura Adaptada da TTS-CGAN para Dados de APTs

A TTS-CGAN, proposta originalmente em [Li et al. 2022], concatena os rótulos com
um vetor de números aleatórios amostrados de uma distribuição Gaussiana, o que é
denominado espaço latente em arquiteturas de GANs, e utiliza camadas lineares e
convolucionais para alinhar o resultado com a entrada da camada de transformers,
composta por três blocos multi-head em sequência. No artigo original, houve uma forte
preocupação com o model collapse, resultando em um discriminador significativamente
mais complexo do que o gerador e em um alto dropout de 0,5.

Em contraste, este trabalho adapta essa arquitetura para a geração de ataques no
formato de fluxos de rede, um domínio com muito maior variabilidade entre as amostras.
Devido a essa diferença, os hiperparâmetros da arquitetura foram ajustados com o objetivo
de aumentar a capacidade da GAN em compreender e gerar dados com alta variabilidade.
Para isso, foram testadas diferentes configurações para aumentar a complexidade da
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Figura 2. Processamento do dataset e geração dos dados sintéticos e semi-
sintéticos.

arquitetura de modo a manter a estabilidade do treinamento. Dessa forma, a dimensão
de entrada (embedding) do gerador foi aumentada de 10 para 32, e a do discriminador,
de 50 para 96. A dimensão dos rótulos (label embedding) foi expandida de 10 para 32,
e o número de cabeças de atenção do gerador foi ampliado para o mesmo número do
discriminador: de 5 para 8. Por fim, foi adicionada uma nova camada de transformer no
discriminador, indo de 3 para 4.
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Camada Linear

Transformer
Encoder

Dados Sintéticos
Dados Reais e

Sintéticos

Positional Encoding

Transformer
Encoder

Classificação
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Gerador Discriminador

(a) TTS-CGAN original

Espaço Latente Rótulo

Concatenação

Camada Linear

Transformer
Encoder

Dados Sintéticos
Dados Reais e

Sintéticos

Positional Encoding

Transformer
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Classificação
Adversárias
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Categórica

Real / Falso? Rótulo

Gerador Discriminador

Normalização De Batch

Normalização De Batch

MiniBatch

(b) TTS-CGAN explorada neste trabalho

Figura 3. Arquiteturas de GANs para tratamento de dados com características
temporais.

Com o objetivo de aumentar a diversidade dos dados gerados e mitigar o risco
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de mode collapse, práticas comuns em ML foram adotadas: adição de duas camadas
de normalização em batch no gerador, uma antes e outra depois da camada de multi-
head attention do transformer. Além disso, foi inserida uma camada de MiniBatch
Discrimination na cabeça do discriminador responsável por classificar os dados entre
reais ou sintéticos. Essa camada calcula as características estatísticas do lote de entrada,
como o desvio padrão, e incorpora essas informações como novos canais nos dados de
entrada. O objetivo dessas modificações é permitir que o discriminador identifique lotes
com baixa diversidade, facilitando a diferenciação entre dados reais e gerados. Com isso,
o gerador é incentivado a produzir amostras mais diversas, reduzindo significativamente
a probabilidade de mode collapse. Essas alterações podem ser observadas na Figura 3.

Devido às modificações propostas na arquitetura e à alta variabilidade dos dados,
o risco de overfitting torna-se menos provável. Dessa forma, a taxa de dropout no gerador
foi reduzida de 0,5 para 0,1, e no discriminador, de 0,5 para 0,0.

O treinamento da arquitetura foi realizado ao longo de 70 épocas, com batches
de tamanho 30. Para a atualização dos pesos da GAN, foram adotados os mesmos
hiperparâmetros descritos em [Li et al. 2022]: o otimizador Adam, com β1 = 0,9 e
β2 = 0,999; uma função de perda adversarial baseada na distância de Wasserstein; e
o uso de uma média móvel exponencial (EMA) para suavizar as funções de perda ao
longo do treinamento. O dataset original foi embaralhado e dividido na proporção de
70% para treino e 30% para teste. O treinamento e geração dos dados foi feito em uma
GPU NVIDIA RTX 3060, CPU Intel i5-12400F 6 cores e 32 GB RAM, usando PyTorch
2.1.

3.3. Geração dos Dados Sintéticos e Semi-Sintéticos para APTs
Uma das principais vantagens do uso de GANs é a flexibilidade na geração de dados
personalizados conforme a necessidade. Com base nisso, foram criados dois conjuntos de
dados distintos: um voltado para a avaliação da similaridade com os dados reais e outro
com o objetivo de enriquecer o conjunto original, conforme descrito a seguir:

Sintético Puro: Conjunto de dados totalmente sintético, gerado para replicar
as amostras utilizadas durante o treinamento da GAN. O gerador recebe como entrada
a classe alvo (rótulo) e um vetor amostrado do espaço latente correspondente. Esse
conjunto é utilizado principalmente para medir a similaridade entre os dados reais e os
dados gerados, já que busca reproduzir o comportamento das amostras originais.

Semi-Sintético: Conjunto baseado nos dados reais utilizados no treinamento, com
adição de amostras sintéticas exclusivamente nas classes de ataque. Como o conjunto
original é fortemente desbalanceado, a GAN foi empregada para gerar novas instâncias
de cada estágio de uma APT, buscando tornar o conjunto mais balanceado. Ao todo,
foram geradas 1300 sequências de ataque: 800 de exfiltration, 145 de establish foothold,
326 de lateral movement e 43 de reconnaissance.

4. Experimentos e Resultados
Este trabalho avalia a capacidade da TTS-CGAN de gerar ataques APT sintéticos no
formato de séries temporais e de melhorar a performance de modelos de Machine
Learning, respeitando os diferentes rótulos presentes no conjunto de dados DAPT2020.
Para alcançar esse propósito, foram definidas as seguintes perguntas a serem respondidas
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nos experimentos: a) Qual a similaridade entre os dados sintéticos e os dados originais
do DAPT2020? b) As melhorias na arquitetura propostas na Seção 3.2 contribuem para
melhorar a qualidade dos dados? e c) Como modelos de Machine Learning para a
detecção de APTs se comportam ao serem treinados em dados puramente sintéticos e
semi-sintéticos?

4.1. Análise Estatística das Distribuições Geradas

As duas primeiras perguntas de pesquisa foram avaliadas por meio da análise das
distribuições estatísticas dos dados sintéticos gerados no Grupo 1. Esses dados foram
produzidos por duas versões da arquitetura TTS-CGAN, ambas configuradas com os
mesmos hiperparâmetros: uma versão original e outra com as modificações propostas
neste trabalho.

Para uma análise qualitativa da distribuição dos dados no espaço latente,
utilizamos as técnicas Principal Component Analysis (PCA) e t-distributed Stochastic
Neighbor Embedding (t-SNE) [Géron 2022]. O PCA é uma técnica linear de redução de
dimensionalidade que preserva a variância dos dados, enquanto o t-SNE é uma técnica não
linear que busca preservar as relações locais entre amostras, sendo particularmente eficaz
para a visualização de agrupamentos em dados de alta dimensão. Ambas as técnicas foram
aplicadas neste trabalho para projetar as séries temporais em duas dimensões, permitindo
uma avaliação qualitativa da sobreposição entre os dados reais e os sintéticos.

Figura 4 apresenta os resultados dessas projeções. Em ambas as arquiteturas,
os dados sintéticos seguem um padrão de distribuição semelhante ao dos dados reais,
ocupando regiões próximas no espaço projetado. Na arquitetura aprimorada neste
trabalho, os dados estão mais uniformemente distribuídos e apresentam maior dispersão.
Isso é um indicativo de aumento na variabilidade e na capacidade de generalização do
modelo gerador.

Para complementar a análise qualitativa, foi calculada a média da métrica
Dynamic Time Warping (DTW) para cada classe. A DTW é uma métrica consolidada
para avaliar a similaridade entre séries temporais, especialmente útil em contextos com
alta variabilidade nos dados [Brophy et al. 2023]. Foram comparadas as distâncias entre
sequências reais, entre sequências reais e sintéticas geradas pela arquitetura original, e
entre sequências reais e sintéticas da versão aprimorada. Quanto mais próximos os dados
sintéticos estiverem dos valores dos dados reais, maior a fidelidade dos dados gerados
pela arquitetura.

Os resultados, apresentados na Tabela 1, indicam que, com exceção da classe
benign, a arquitetura aprimorada obteve melhorias significativas, especialmente na classe
establish foothold, reforçando a eficácia das modificações realizadas. Como o objetivo
do trabalho é gerar fluxos de ataques APT para melhorar a representatividade dos dados
originais, o desempenho da classe benign não impactará a performance dos modelos de
machine learning testados com o dataset semi-sintético.

4.2. Análise de Dados Sintéticos em Modelos de Classificação de Machine Learning

Para responder à última pergunta, sobre como os modelos de Machine Learning reagem
aos dados sintéticos, e para reforçar o quão semelhantes são os dados sintéticos em
relação aos reais, este trabalho avaliou o desempenho de algoritmos de Machine Learning
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Classe Real TTS-CGAN TTS-CGAN
Aprimorada

reconnaissance 14,014 14,666 13,502
benign 10,939 10,454 9,855
establish foothold 15,613 22,651 16,128
lateral movement 13,315 11,910 13,431
exfiltration 8,602 11,677 11,592

Tabela 1. Dynamic Time Warping entre os dados reais e sintéticos.

na tarefa de classificação dos diferentes estágios de um ataque APT presentes no
dataset DAPT2020: Reconnaissance, Foothold Establishment, Lateral Movement, Data
Exfiltration e tráfego benigno.

Para essa validação, utilizamos três protocolos distintos de avaliação dos modelos
de classificação: (i) Train on Real, Test on Real (TRTR), em que os modelos são
treinados e testados exclusivamente com dados reais, servindo como linha de base
para comparação; (ii) Train on Synthetic, Test on Real (TSTR), no qual os modelos
são treinados com nossos dados puramente sintéticos e testados com os dados reais,
com o objetivo de avaliar o quanto os dados sintéticos conseguem aproximar-se do
comportamento real; e (iii) Train on Real and Synthetic, Test on Real (TRSTR), em
que o modelo é treinado em nosso conjunto semi-sintético e testado com dados reais,
determinando se a geração de novas amostras de ataques pode melhorar o desempenho
dos modelos. Esta validação foi realizada sobre os 30% dos dados reais previamente
separados para teste, sendo que o TRTR foi treinado exatamente sobre os mesmos 70%
utilizados no treinamento da GAN.

Os testes descritos utilizaram quatro modelos preditivos distintos de Machine
Learning:

• Random Forest (RF): utiliza a implementação da biblioteca Scikit-learn, com 50
estimadores (árvores) e profundidade máxima indefinida;

• Transformer Encoder: utiliza um modelo baseado em transformer encoder,
também implementado em PyTorch, com dimensionalidade de entrada de 64,
oito cabeças no mecanismo de atenção multi-head e dropout de 0,3. Os demais
hiperparâmetros seguiram os padrões da biblioteca;

• LSTM: utiliza uma rede recorrente simples utilizando a biblioteca PyTorch,
contendo uma camada LSTM com 64 unidades, dropout 0.1 e uma camada linear
de saída com a mesma dimensionalidade. Os demais hiperparâmetros utilizam os
valores padrão da biblioteca;

• Support Vector Machine (SVM): utiliza a implementação padrão da SVM da
biblioteca Scikit-learn, com os hiperparâmetros padrão e kernel com a Radial
Basis Function (RBF).

As métricas utilizadas para avaliação do desempenho dos modelos foram a
acurácia, precisão e F1-score.
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(a) TTS-CGAN original

(b) TTS-CGAN com melhorias

Figura 4. Comparação entre os dados reais e sintéticos de APTs: projeções via
PCA e t-SNE, para as arquiteturas de GANs analisadas neste trabalho.

Modelos de Machine Learning, quando aplicados a datasets tradicionais de
cibersegurança, podem alcançar altos resultados de precisão quando modelos de
classificação binários de detecção de ataques são utilizados. No entanto, esse não é
o caso do DAPT2020, especialmente ao considerarmos o desafio adicional de tratar o
problema como uma tarefa de classificação multiclasse. Nesse contexto, o objetivo dos
testes realizados neste trabalho não é apenas identificar a ocorrência de um ataque, mas
também determinar em qual estágio da cadeia de APT ele se encontra.

Em relação aos dados gerados, os resultados apresentados na Tabela 2 indicam
que todos os modelos treinados exclusivamente com dados sintéticos puros gerados com
as técnicas investigadas neste trabalho obtiveram desempenho inferior ao alcançado com
o dataset original. Esse comportamento é amplamente esperado, como demonstra a
literatura [Esteban et al. 2017, Yoon et al. 2019], uma vez que dados sintéticos, por mais
realistas que sejam, dificilmente capturam todas as nuances dos dados reais. Ainda
assim, os resultados obtidos evidenciam a similaridade entre os modelos treinados com
dados gerados e com dados reais. Por outro lado, os dados semi-sintéticos permitiram
melhorar o desempenho de todos os modelos avaliados. Enquanto os modelos SVM e
LSTM apresentaram ganhos modestos, o modelo baseado em transformers apresentou
uma melhoria significativa. A Random Forest, por sua vez, destacou-se como o modelo
com o maior ganho de desempenho, além de alcançar a melhor pontuação geral.
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Modelo Dados de Treino Acurácia Precisão Recall F1-score

Random Forest
Real 0.8646 0.8689 0.8280 0.8480
Sintético 0.7056 0.6938 0.6978 0.6958
Semi-Sintético 0.8770 0.8812 0.8447 0.8626

Transformer (8 heads, 64 dim)
Real 0.8311 0.8258 0.8136 0.8197
Sintético 0.6994 0.7290 0.6804 0.7039
Semi-Sintético 0.8323 0.8247 0.8287 0.8267

LSTM (64 dim)
Real 0.8261 0.7740 0.8254 0.7989
Sintético 0.7267 0.7173 0.7215 0.7194
Semi-Sintético 0.8124 0.7989 0.8057 0.8023

SVM (RBF)
Real 0.8373 0.8434 0.7841 0.8127
Sintético 0.6745 0.7118 0.6533 0.6813
Semi-Sintético 0.8373 0.8163 0.8107 0.8135

Tabela 2. Resultados dos modelos treinados com diferentes conjuntos de dados.

Em [Liao et al. 2024], os autores também utilizaram modelos baseados em SVMs
e LSTMs para classificar estágios de APTs dentro do DAPT2020. O artigo apresenta os
hiperparâmetros utilizados para a LSTM, que coincidem com os da arquitetura empregada
neste trabalho — exceto as dimensões de entrada e saída, que variam em função
das diferentes estratégias de pré-processamento adotadas, refletindo objetivos distintos
entre os estudos. Apesar dessas divergências, os autores relatam valores de acurácia,
precisão e F1-score próximos de 0,80, resultados compatíveis com os obtidos nos nossos
experimentos com dados reais. No caso da SVM, os autores em [Liao et al. 2024]
reportam métricas superiores às obtidas neste trabalho. Entretanto, como o artigo não
detalha os hiperparâmetros utilizados no experimento, torna-se inviável realizar uma
comparação direta entre os resultados.

5. Conclusão

Este trabalho explorou o uso de dados sintéticos de APTs, gerados por redes generativas
adversariais, para aprimorar o desempenho de modelos de detecção. Para isso, a
arquitetura Transformer Time-Series Conditional GAN (TTS-CGAN), originalmente
voltada à área da saúde, foi adaptada ao domínio de fluxos de rede maliciosos. As
adaptações incluíram o aumento da capacidade dos módulos gerador e discriminador,
além da adição de camadas de normalização e discriminação por batch. A arquitetura
resultante foi treinada e avaliada utilizando o confiável dataset DAPT2020.

Demonstrando as vantagens de customização da GAN, foram gerados dois
conjuntos de dados: sintéticos puros e semi-sintéticos, utilizados tanto em avaliações
qualitativas quanto quantitativas. A análise estatística por meio de PCA, t-SNE e Dynamic
Time Warping evidenciou a proximidade entre os dados gerados e os dados reais. Além
disso, os experimentos de detecção mostraram que a utilização de dados semi-sintéticos
proporciona ganhos consistentes no desempenho de diferentes modelos de Machine
Learning, incluindo Random Forests, SVMs, LSTMs e Transformers.

Como possibilidades para trabalhos futuros, destaca-se a integração de outras
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fontes de dados relacionados a ataques APTs reais, bem como a utilização de datasets
com características distintas, visando ampliar a generalização do modelo. Além disso,
a investigação de arquiteturas generativas mais avançadas, como variações de GANs,
modelos de difusão ou autoencoders baseados em transformers, representa um caminho
interessante para aprimorar mais a qualidade e diversidade dos dados sintéticos. O uso
de outros tipos de classificadores para a detecção dos estágios de APTs também é um
caminho a ser investigado.
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