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Resumo. A fragmentação de versões do Android e as limitações de ferramen-
tas atuais para monitoração efetiva da execução de APKs dificultam a análise
de malware. Neste artigo apresenta-se ARTEMIS, uma plataforma baseada em
arquitetura de microsserviços capaz de orquestrar análises paralelas em instân-
cias heterogêneas, testada com 100 emuladores (Android 10–14) e dispositivos
físicos. Em estudo de caso com 12.466 APKs maliciosas, ARTEMIS alcançou
taxa de instalação de 98,7% (arquitetura adaptativa) e recuperação de 80,2%
dos APKs com falha por detecção de depuração (pipeline modular). ARTE-
MIS oferece análises em larga escala, histórico de execuções e estratégias anti-
evasão, essenciais para combater ameaças móveis modernas.
Palavras-chave: segurança móvel, análise dinâmica, malware Android, micros-
serviços, instrumentação multi-versão.

Abstract. The fragmentation of Android versions and the limitations of current
tools for effectively monitoring APK execution make malware analysis difficult.
This paper presents ARTEMIS, a microservices-based platform capable of or-
chestrating parallel analysis across heterogeneous instances, tested with 100
emulators (Android 10–14) and physical devices. In a case study with 12,466
malicious APKs, ARTEMIS achieved a 98.7% installation rate (adaptive archi-
tecture) and 80.2% recovery of failed APKs through debug detection (modular
pipeline). ARTEMIS provides large-scale analysis, execution history, and anti-
evasion strategies, essential for combating modern mobile threats.
Keywords: .

1. Introdução
O sistema operacional Android detém, há vários anos, a liderança no mercado global
de smartphones, com cerca de 70% de participação mundial [GlobalStats 2024]. Essa
popularidade faz da plataforma um alvo preferencial de cibercriminosos, que exploram
vulnerabilidades conhecidas e técnicas de evasão cada vez mais sofisticadas para distribuir
malware móvel [Lab 2024, Research 2024a]. Um dos principais obstáculos à análise de
malware Android é a intensa fragmentação do ecossistema: apesar dos ciclos regulares de
atualização promovidos pelo Google, grande parte dos dispositivos permanece operando
em versões sem suporte oficial (e.g., Android 10–12), expondo-se assim à falhas antigas
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por longos períodos [Developers 2024, Statista 2024]. Essa diversidade de níveis de API,
arquiteturas de CPU e forks de fabricantes compromete a representatividade e a cobertura
das plataformas tradicionais para análise dinâmica de malware Android.

Abordagens de análise dinâmica como CopperDroid [Tam et al. 2015], Cucko-
oDroid [Revivo et al. 2015] e MobSF [Zorz 2016] apresentam limitações críticas, tais
como cobertura restrita a poucas versões do Android, arquiteturas monolíticas que su-
portam baixo paralelismo e exigem recompilação para adicionar novos tracers ou instru-
mentadores, proteção insuficiente contra mecanismos anti-análise que resultam em aborto
precoce de execuções e ausência de histórico cumulativo de execuções, dificultando com-
parações longitudinais e triagem reversa de erros. Para superar tais desafios, este artigo
apresenta ARTEMIS (Android Runtime Tracing, Execution and Malware Investigation
System): um sistema que não é uma sandbox, mas uma plataforma de orquestração inte-
ligente de sandboxes, emuladores e ferramentas de análise em diversos níveis. Para tanto,
ARTEMIS foi idealizada por meio de uma arquitetura baseada em microsserviços, com
agendamento assíncrono de tarefas, configuração declarativa facilitada, suporte multi-
versão (Android 10 ao 14 e dispositivos físicos), e um pipeline modular de instrumentação
(e.g., Frida, strace, ftrace, tcpdump, Monkey, etc.) Com isso, ARTEMIS permite
coordenar centenas de instâncias de análise em paralelo, escalando conforme a infraes-
trutura disponível e garantindo alta cobertura comportamental e resistência a evasão.

Com o objetivo principal de ser um bloco básico na construção de sistemas de
análise de aplicações móveis, as contribuições da plataforma ARTEMIS são as seguin-
tes: (i) provisão de um pipeline totalmente declarativo em YAML para definir tracers,
estímulos de UI e parâmetros de emulador sem recompilar o sistema, com base em arqui-
tetura de microsserviços capaz de orquestrar análises simultâneas em múltiplas versões
do Android (10–14) e em dispositivos reais, escalando conforme a infraestrutura dispo-
nível e mecanismos adaptativos de fallback — por exemplo, alternância automática entre
emulador x86_64 e dispositivos ARM64 ao detectar erro de ABI (Application Binary
Interface); (ii) armazenamento e visualização de um histórico cumulativo das execuções
de artefatos na plataforma, com registro completo destes (logs, PCAP, capturas de tela,
metadados) para comparações longitudinais e triagem reversa de erros; (iii) suporte a múl-
tiplas técnicas de monitoramento, tais como Virtual Machine Introspection (VMI), para
monitoramento externo ao sistema convidado diretamente no hipervisor para coleta de
chamadas de sistemas (syscalls), rastreamento interno do kernel Android, usando pon-
tos de instrumentação nativos para capturar funções e eventos do kernel, Hooks in-guest
via Frida e strace com injeção retardada para mitigar detecções baseadas em depuração
(anti-debug).

2. Literatura e Tecnologias

Nesta seção, as principais iniciativas de análise dinâmica de malware para Android são
revistas cronologicamente sob a ótica de sua evolução técnica. Além disso, as tecno-
logias por trás dos conceitos que fundamentam o projeto da plataforma ARTEMIS são
apresentadas, agrupados em cinco pilares: técnicas de instrumentação, coleta de artefatos
comportamentais, simulação de entrada, estratégias anti-evasão e suporte multi-versão.
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2.1. Trabalhos Relacionados
Primeiros esforços (2010–2013). Em 2010, o AASandbox inaugurou a análise compor-
tamental de APKs [Bläsing et al. 2010], enquanto o TaintDroid introduziu rastreamento
de fluxo de informação em tempo real na VM Dalvik [Enck et al. 2010]. Em 2012, o
DroidScope combinou introspecção de máquina virtual (VMI) para traçar código nativo e
Dalvik simultaneamente [Yan and Yin 2012], e o DroidBox uniu o TaintDroid a ganchos
no framework Java para registrar vazamento de dados, SMS e rede [Lantz 2012].

Avanços (2014–2018). Andrubis (2014) integrou sandboxing, TaintDroid e tcpdump em
um emulador Android 4.2 [Fratantonio et al. 2014]. Já ANANAS propôs uma arquitetura
modular com monitor de syscalls no kernel [Neuner et al. 2014]. Por fim, CopperDroid
(2015) aperfeiçoou a VMI para reconstruir operações de arquivo, IPC e rede em Android
2.3 [Tam et al. 2015].

Soluções Open Source e Industriais (2015–2022). O CuckooDroid estendeu o Cuckoo
Sandbox para APKs, usando Xposed em Android 4.1.2 [Revivo et al. 2015]. O MobSF
(2016–) adicionou Frida e mitmproxy, suportando Android 4.1–12 em emuladores e dispo-
sitivos reais [Zorz 2016]. O BareDroid avaliou amostras em hardware físico, reduzindo
artefatos de emulação [Mutti et al. 2015]. Embora pioneiras, essas ferramentas exigem
automação manual de inputs ou infraestrutura física onerosa; o ARTEMIS combina co-
bertura multi-versão, orquestração declarativa em YAML e fallback inteligente, habili-
tando escalabilidade horizontal sem grandes fricções.

Plataformas Recentes (2018–2025). Serviços comerciais como o VirusTotal Zenbox
(instrumentação Frida no Android 13) e o Joe Sandbox Mobile fornecem relatórios
detalhados e mapeamento MITRE ATT&CK [(VirusTotal) 2023, LLC 2024]. Prove-
dores como ANY.RUN Android e Hatching Triage oferecem ambientes ARM interati-
vos para análise em tempo real [ANY.RUN 2025, Hatching 2024]. Novas iniciativas,
como o DroidHook e o DroidDungeon, focam em anti-evasão e suporte multi-versão
[ResearchGate 2023, Research 2024b]. Entretanto, a maior parte é fechada ou limita a
customização, enquanto ARTEMIS provê um ecossistema extensível e open-source.

Apesar dos avanços ao longo do tempo, as soluções existentes para análise de
malware Android geralmente apresentam limitações persistentes: (i) cobertura de ver-
sões restrita: suporte apenas a releases antigas ou recentes, deixando lacunas em sistemas
legados [Tam et al. 2015, Revivo et al. 2015]; (ii) pipelines pouco flexíveis: alterações
de instrumentação requerem modificação no código-fonte [Zhou 2020]; (iii) sobrecarga
e detecção: instrumentação pesada (Xposed, múltiplos tracers) aumenta CPU/RAM e ex-
põe a sandbox [Fratantonio et al. 2014, Intelligence 2023]; (iv) automação manual de
inputs: necessidade de scripts específicos ou intervenção humana para estímulo de UI
[Zorz 2016]; (v) tratamento de erros limitado: falta de políticas robustas de retry e
categorização de falhas [Fratantonio et al. 2014, Research 2021]; (vi) ausência de histó-
rico longitudinal: resultados sobrescritos impedem comparações entre execuções; (vii)
customização restrita: difícil integração de novos tracers ou técnicas de evasão. A Ta-
bela 1 compara a proposta com outras soluções, partindo do ARTEMIS em sua forma
mais “crua” (apenas o Android Emulator do repositório, atuando como sandbox padrão).
Embora usem a mesma base técnica, o ARTEMIS permite reconfigurar escalabilidade,
tracing e instrumentação, ao contrário de sandboxes com pipelines fixos. A comparação
é entre “sandbox + orquestração flexível” e “sandbox isolada”. Orquestradores genéricos
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como CyberChef ou AssemblyLine foram excluídos por não suportarem Android nati-
vamente, o que deslocaria o foco para esforço de integração, e não para funcionalidade
pronta para uso.

Tabela 1. Comparação teórica de ferramentas de análise dinâmica de malware
Android

Ferramenta Escalab. Config. Histórico Versões Inputs Sobrec. Extens. Erros Anti-ev.

AASandbox Baixa (1) Kernel fixo Logs básicos ≤2.3 Monkey500 Alta Baixa Abortam Fraca
TaintDroid Baixa (1) ROM Dalvik Logcat ≤4.3 Externo Alta Baixa Abortam Fraca
DroidScope Baixa (1) Plugins VMI Brutos 2.3 Script básico Alta Média Abortam Médio
DroidBox Baixa (1) Script emulador JSON simples 4.1–4.x Monkey+SMS Alta Baixa 1 execução Fraca
Andrubis Alta (cluster) Auto padronizado DB 4.2 Monkey+sist. Alta Média Retry→próximo Médio
ANANAS Baixa (local) Módulos selecionáveis Logs modulares 2.3–4.x Monkey modular Var. Alta Abortam Médio
CopperDroid Média (manual) QEMU modificado Relat. comport. 4.1 Script Mod. Baixa Pouco output Médio
CuckooDroid Alta (10–15) Perfis/disp. DB 4.x Monkey+auto Mod. Alta Retry init Moderado
MobSF (dinâmico) Média (Docker) GUI + Frida DB ≥7 Manual/script Mod. Alta Manual rerun Depende analista
BareDroid Alta (físicos) Flash/reset Logs centralizados 4.4 Mínimo Baixa Baixa Ignora Altíssima
VirusTotal Zenbox Altíssima (cloud) Fechada DB 4.4, 8.0, 13 Auto comum Mod. Fechada Sem fallback Boa
Joe Sandbox Alta (cloud) Scripts interativos DB robusto 4–11+ Auto/script Alta Boa Auto fallback Muito alta
ANY.RUN Android Alta (SaaS) Padrão único Sessões 7–8 Manual Baixa Baixa Manual Alta
Hatching Triage Alta (API/SOC) Perfis fixos DB 7–10 Auto/opção Mod. Boa Live intervene Alta
DroidHook Variável Xposed JSON 6–11+ Monkey/manual Mod. Alta Manual retry Alta
DroidDungeon Alta (cluster) Interno (YAML-like) Cumulativo 8–12+ Auto/manual Alta Altíssima Auto→físico Muito alta
ARTEMIS 1–N YAML declarativo DB Cumulativo 10–14+ Monkey/gui/YAML Mod. Altíssima Retry + auto-adapt. Adaptativa

Legenda das colunas:
Escalab.: Escalabilidade; Config.: Configuração de ambiente; Histórico: Histórico de execuções; Versões:
Versões Android suportadas; Inputs: Modo de simulação de entrada; Sobrec.: Sobrecarga de recursos;
Extens.: Extensibilidade; Erros: Tratamento de falhas; Anti-ev.: Técnicas anti-evasão.
Fonte: Adaptado a partir de documentação oficial e testes próprios com as ferramentas listadas.

2.2. Tecnologias da Plataforma ARTEMIS

Técnicas de Instrumentação. Para observar o comportamento em tempo de execução
de aplicações maliciosas, ARTEMIS integra três abordagens complementares de ins-
trumentação, sendo que a personalização via YAML permite acoplar novos módulos de
instrumentação conforme a necessidade de cada análise:

• Virtual Machine Introspection (VMI) (conceitual) – monitoramento externo ao
sistema convidado, realizado no hipervisor, que captura chamadas de sistema sem
depender de ptrace, garantindo maior furtividade. Embora não tenha sido tes-
tada na implementação atual, a arquitetura do ARTEMIS permite a integração de
módulos VMI em emuladores modificados;

• ftrace – ferramenta de rastreamento interna do kernel Android, utilizada por
meio de módulos de kernel externos, que registra funções e eventos do kernel com
baixo overhead; esta abordagem foi amplamente testada em nosso estudo; e

• Hooking in-guest – inserção de ganchos via Frida, Xposed ou strace dentro
do próprio sistema convidado, possibilitando interceptação de APIs Java/nativas;
a injeção retardada desses tracers reduz a janela de detecção por mecanismos de
depuração.

Enquanto a VMI oferece alta transparência ao custo de maior complexidade de in-
fraestrutura; o ftrace equilibra furtividade e desempenho; o hooking in-guest é flexível,
porém mais exposto a técnicas de evasão baseadas em ptrace.

Coleta de Artefatos Comportamentais. Os artefatos abaixo são exemplos do que pode
ser coletado pelo ARTEMIS de acordo com os tracers e instrumentadores definidos no
arquivo de configuração YAML:
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• Traces de syscalls – obtidos via VMI ou strace/ftrace, revelam operações
de arquivo, processos e sockets;

• Tráfego de rede – capturado com tcpdump ou mitmproxy, gerando arquivos
PCAP que expõem protocolos, domínios e canais de comando e controle (C2);

• Chamadas de API – ganchos via Frida ou Xposed registram parâmetros e valores
de retorno de APIs sensíveis (SMS, telefone, criptografia);

• Evidências de UI – logs de logcat, capturas de tela e eventos de entrada docu-
mentam a interação com a interface; e

• Outros artefatos customizáveis – o analista pode incluir extensões, como dumps
de memória, snapshots de processos ou qualquer outro tipo de log suportado pelos
módulos declarados.

Técnicas de Simulação de Entrada. Os métodos abaixo foram validados no estudo de
caso, mas o pipeline do ARTEMIS é totalmente maleável e permite a adição de novos
modos de estímulo via YAML:

• Geração aleatória (Monkey) – eventos pseudo-aleatórios para cobertura rápida
da UI; utilizado em todas as análises automáticas;

• Exploração guiada – heurísticas ou análises estáticas direcionam a execução a
componentes-alvo, conforme definido em perfis de configuração;

• Interação programática – argumentos são definidos em YAML e usados por
scripts Python (ADB/UIAutomator) que executam toques, swipes e inserção de
texto; e

• Modos customizáveis – é possível adicionar simuladores externos, desde que si-
gam a interface base de entrada. Após integrá-los ao pipeline, basta configurá-los
via YAML.

Estratégias Anti-Evasão. As abordagens a seguir foram testadas no protótipo, mas o
ARTEMIS suporta dinamicamente novos mecanismos de anti-evasão através de sua con-
figuração YAML:

• Spoofing de propriedades – falsificação de IMEI/IMSI, sensores e campos
build.prop para mascarar ambientes de emulação;

• Neutralização de checagens – aplicação de patches ou respostas simuladas para
APIs de anti-debug e anti-emulator, injetados no boot ou em tempo de execução;

• Injeção adaptativa de tracers – seleção dinâmica de VMI, ftrace ou hooking
in-guest (Frida/Xposed/strace), conforme o perfil de evasão detectado; e

• Módulos customizáveis – novos métodos de detecção e bypass podem ser adici-
onados declarando-se scripts ou binários para execução antes e durante a análise.

Análise Dinâmica Multi-Versão. A fragmentação do Android requer suporte a múlti-
plos API levels. O ARTEMIS foi validado com versões do Android 10–14 e legadas,
usando imagens Docker/QEMU ou dispositivos físicos. A orquestração por microsser-
viços e Redis garante distribuição automática e escalável das análises. A arquitetura é
flexível, permitindo a inclusão rápida de novas versões via YAML. No entanto, funcio-
nalidades específicas, como novos modelos de permissão ou mudanças futuras na ART,
podem demandar ajustes adicionais.
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3. Arquitetura e Fluxo de Operação ARTEMIS
ARTEMIS (“Android Runtime Tracing, Execution and Malware Investigation System”)
foi concebido como uma plataforma modular, extensível e orientada a serviços para aná-
lise dinâmica de malware Android. Sua estrutura combina uma arquitetura de micros-
serviços com um pipeline declarativo, que juntos permitem coordenar desde poucas até
centenas (ou potencialmente milhares) de instâncias de análise em paralelo, conforme a
infraestrutura disponível. Nesta seção são explicados os módulos que compõem a plata-
forma e o fluxo de sua operação.

3.1. Arquitetura
A topologia do ARTEMIS divide-se em dois domínios lógicos—motor de análise e bac-
kend—que cooperam de forma assíncrona para oferecer escalabilidade horizontal, obser-
vabilidade completa e fácil reconfiguração.

3.1.1. Motor de Análise

O motor de análise é responsável por executar cada APK em ambiente controlado, or-
questrar os tracers configurados em YAML e consolidar os artefatos comportamentais.
Em resumo, o APK é recebido pelo Coordenador de Análise, o dispositivo é iniciali-
zado/configurado e o Workflow de Análise é disparado, resultando em relatórios JSON,
pcaps, texto, etc. A visão geral deste fluxo de operação pode ser vista na Figura 1 e, em
seguida, descreve-se cada um de seus componentes principais:

Figura 1. Visão geral do pipeline de análise de malware.
Fonte: Os Autores.

• Coordenador de Análise: inicializa o emulador ou dispositivo, aplica a configu-
ração YAML, sincroniza tracers e consolida os resultados;

• Motor de Workflow: organiza o processo em quatro fases (Pré-instalação, Insta-
lação, Pós-instalação e Análise), conforme ilustrado na Figura 2;

• Interface de Dispositivo: abstrai comandos ADB/fastboot, suportando emulado-
res QEMU, Genymotion e dispositivos físicos ARM;

• Gerenciador de Tracers: carrega e encerra qualquer tracer — nativo (strace,
tcpdump), kernel (ftrace) ou customizado (scripts Frida/Xposed) — sem re-
compilar o motor; e

• Gerenciador de Erros e Metadados: produz logs estruturados, classifica exce-
ções e aplica políticas de retry automáticas, garantindo robustez e rastreabilidade.
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3.1.2. Fluxo de Operação das Análises

O Workflow de Análise, ilustrado na Figura 2, implementa um pipeline dinâmico em qua-
tro fases sequenciais que guiam todo o processo de análise do APK:

Figura 2. Detalhamento do Workflow de Análise em quatro fases: Pré-instalação,
Instalação/Pré-Execução, Pós-Inicialização e Pós-Execução & Relatório.

Fonte: Os Autores.

Fase 1: Pré-Instalação. Esta fase prepara o ambiente antes da instalação do aplicativo
a partir do seguintes passos: (i) Garantir conexão com Emulador: Após ter o identi-
ficador do dispositivo configurado, testamos se a conexão é persistente; (ii) Configurar
Tracers (Pré-Instalação): Inicia os tracers definidos para esta fase (ex: captura de rede);
(iii) Iniciar Instrumentação Frida: Inicializa o servidor Frida e carrega scripts para
bypasses de segurança.

Fase 2: Instalação/Pré-Execução. Nesta fase, o APK é instalado e preparado para
execução seguindo os passos: (i) Instalar APK: Implanta o aplicativo no dispositivo,
normalmente via ADB; (ii) Configurar Tracers (Pré-Execução): Configura tracers adi-
cionais após a instalação; (iii) Iniciar Aplicação: Lança o aplicativo usando o método
definido na configuração.

Fase 3: Pós-Inicialização. Esta fase estabelece o monitoramento em tempo real, por
meio de: (i) Configurar Tracers (Pós-Inicialização): Inicia tracers que requerem o
aplicativo em execução; (ii) Selecionar Simulador de Input: Prepara o método de si-
mulação conforme configurado; (iii) Simular Inputs & Monitorar: Executa o método
de simulação selecionado para exercitar o aplicativo enquanto os tracers monitoram seu
comportamento.

Fase 4: Pós-Execução & Relatório. Finaliza a análise e coleta os resultados: (i) Parar
Tracers: Encerra todos os tracers ativos; (ii) Parar Emulador/Celular: Desliga o emu-
lador ou desconecta do dispositivo; (iii) Coletar Artefatos: Consolida todos os arquivos
gerados durante a análise e produz um relatório estruturado. Os artefatos gerados incluem
traces de syscalls, PCAPs, logs de API, logcat, capturas de tela e um JSON de meta-
dados (configuração, hashes, tempos, anomalias). Cada execução gera um identificador
único, permitindo comparações longitudinais entre diferentes análises da mesma amostra.
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3.1.3. Backend

O backend da plataforma ARTEMIS segue uma arquitetura de microserviços projetada
para orquestrar análises de malware Android de forma escalável. Como ilustrado na Fi-
gura 3, o sistema implementa um fluxo completo desde o upload do APK até a entrega
dos resultados. Esta arquitetura modular permite que o sistema escale horizontalmente—
nos testes foram usados até 100 emuladores em paralelo, com o limite determinado apenas
pelos recursos disponíveis na infraestrutura. A separação entre API, processamento assín-
crono e armazenamento garante alta disponibilidade mesmo durante análises intensivas.

3.2. Frontend

O front-end, desenvolvido em React, já consome as APIs de autenticação, submissão e
consulta de análises, gestão de APKs e rotas administrativas. Optamos por não detalhá-
lo, pois o foco está na orquestração dos microsserviços, e não na interface.

Figura 3. Fluxo de dados do backend: (1) o usuário submete APK; (2-3) o sistema
armazena o binário no MinIO e cria registros no PostgreSQL; (4-5) uma tarefa é
enfileirada no Redis e atribuída a um worker; (6-7) o worker obtém o APK e inicia
a análise; (8a-c) os resultados são armazenados como relatórios no MinIO, en-
quanto métricas e status são atualizados no PostgreSQL; (9-10) o usuário pode
então consultar os resultados e obter dados detalhados da análise via API.

Fonte: Os Autores.

4. Metodologia e Experimentos
Para avaliar o ARTEMIS, definiu-se um experimento em larga escala que combinou auto-
mação em massa com métricas de sucesso, desempenho e cobertura de evasão. O ambi-
ente de testes utilizado possui os seguintes componentes: Infraestrutura - servidor com
2 TB de RAM e 2× Intel Xeon Gold 6338 (128 threads); Pools de Análise - 100 emula-
dores Android 10 (x86_64, 1 GiB RAM, 1 vCPU) e 4 dispositivos físicos ARM64 (Pixel
3/4); Tracers Avaliados - strace, ftrace, Frida, tcpdump, logcat, conforme
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configurado em YAML; Ferramentas de UI - Monkey, exploração guiada e scripts ADB
definidos em YAML.

Foi empregado um conjunto de 12.466 APKs maliciosos do repositório AndroZoo
(coleta 2023). Esse montante corresponde aos arquivos válidos de um lote inicial de
12.536 hashes: 70 downloads retornaram vazios e foram descartados.

Justificativa. No contexto Android, o Software Development Kit (SDK) define dois parâ-
metros fundamentais: minSdkVersion, que estabelece o nível mínimo de API em que
um app pode ser instalado, e targetSdkVersion, que indica o nível de API para o
qual o app foi compilado e testado.

APKs de 2023 (n=12.466). A minSdkVersion varia de API 3 a 29 (média 20,74; me-
diana 21) — incluindo apps legados abaixo e acima do nível 21, exigido pelo Jetpack/An-
droidX desde abril de 2024 [Stack Overflow users 2024] — e a targetSdkVersion
abrange API 29 a 35 (média 31,30; mediana 32), cobrindo desde Android 10 (API 29,
lançado em 03/09/2019 [Wikipedia contributors 2025]) até migrações para Android 14
(API 34 [Android Authority 2023]).

APKs de 2024 (n=9.114). A minSdkVersion permanece em API 3–29 (média 21,69;
mediana 21), enquanto a targetSdkVersion varia de API 30 a 53 (média 32,66;
mediana 33), com mais de 85 % dos apps em API 33–34, em função da política do Google
Play que exige targetSdkVersionmínimo 34 para novos envios e atualizações desde
31/08/2024 [Google 2025].

Essa diversidade maior de SDKs em 2023 é essencial para uma análise compara-
tiva robusta em emuladores Android 10 e 14.

4.1. Experimentos

Todos os experimentos descritos a seguir avaliam a plataforma ARTEMIS sobre os
12.466 APKs válidos, mostrando empiricamente como um framework modular, decla-
rativo e com histórico completo de análises pode superar as limitações de sandboxes pú-
blicas em profundidade, evasão e escalabilidade, garantindo cobertura abrangente mesmo
diante da diversidade do ecossistema Android.

Para explorar aspectos complementares da análise dinâmica de malware, defini-
mos três perfis de execução, cada um projetado para revelar um tipo distinto de limitação
ou ponto forte:

i) Emulador x86_64 + strace: Android 10 (API 29) com 1 GiB RAM e 1 vCPU.
Coleta de chamadas de sistema (strace), logs de aplicação (logcat), pacotes
de rede (tcpdump) e injeção de 900 eventos Monkey (≈3 min), simulando um
sandbox intrusivo padrão;

ii) Emulador x86_64 stealth: Mesma configuração de hardware, porém sem qual-
quer tracer baseado em ptrace no boot, para medir o impacto de instrumentação
intrusiva na evasão de amostras; e

iii) Dispositivos físicos ARM64: Google Pixel 3 e 4 rodando Android 10, usados
como fallback para casos de incompatibilidade de ABI detectados nos emuladores.

Dessa forma, foi possível avaliar simultaneamente a profundidade de coleta, a
resiliência contra técnicas de detecção de instrumentação e a cobertura de ABI do mundo
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real. Para tanto, o experimento foi organizado em cinco fases sequenciais, com artefatos
e metadados acumulados ao longo do processo:

Fase 0 – Preparação: validação das amostras, registro de hashes e tamanhos iniciais;
Fase 1 – Emulação strace: primeira execução massiva no perfil (i), gerando artefatos

completos de sistema, rede e logs de aplicação;
Fase 2 – Emulação stealth: reexecução dos APKs que falharam na fase 1 sem tracer,

quantificando técnicas de evasão baseadas em ptrace;
Fase 3 – Fallback ARM64: instalação dos mesmos APKs falhos em dispositivos físi-

cos, avaliando recuperação de casos de incompatibilidade de ABI detectadas nos
emuladores; e

Fase 4 – Paralelas multi-versão: seleção de 100 APKs (20 por versão: 10-14) para aná-
lises simultâneas, alternando strace e ftrace.

A próxima seção detalha cada uma dessas fases, explicando em profundidade os
métodos e os critérios utilizados nas execuções e análises realizadas.

Em cada fase foram extraídos 12 campos de metadados (pacote, atividades, per-
missões, e etc.) para enriquecer o perfil dos APKs e facilitar diagnósticos posteriores. O
cluster contou com 100 emuladores Android 10 (x86_64), cada um com 1 GiB RAM e
1 vCPU, hospedados em um servidor com 2 TB RAM e dois Intel Xeon Gold 6338 (128
threads). Sob carga máxima, o uso total de RAM ficou em torno de 7%, sem saturação
dos NUMA nodes. Esses resultados comprovam que a arquitetura baseada em microsser-
viços com filas Redis possibilita escalabilidade praticamente linear, permitindo adicionar
novos workers sem alterações no código.

5. Testes e Resultados

Com base nos experimentos descritos na Seção 4.1, 12.466 análises foram realizadas
(distribuídas sequencialmente pelas Fases 1 a 4)1, sendo que 7.590 (60,89%) delas foram
bem-sucedidas e 4.876 (39,11%) apresentaram falhas.

5.1. Análise de Metadados Estáticos

Para extrair estaticamente metadados críticos às fases de análise, utilizamos
um pipeline em camadas (Tabela 2), ordenado por velocidade de extração
dos 12 campos: package_name, app_label, main_activity, sdk_min,
sdk_target, permissions, version_code, version_name, activities,
certificates, ABIs e services. Cada ferramenta supera limitações da anterior:
aapt é rápida, mas falha com manifestos ofuscados; apkutils faz parsing estruturado,
porém não trata bem compressões atípicas; androguard recupera bytecode e certifi-
cados obfuscados, mas trava em empacotamentos dinâmicos; direct_extraction
acessa diretamente o ZIP e XML cifrados; e binary_manifest decodifica o ma-
nifesto binário sem descompilar o APK. Essa estratégia em camadas garante cobertura
completa dos metadados, mesmo sob ofuscação avançada, assegurando análises precisas.

Com a combinação dessas ferramentas, aumentamos o recall dos atributos princi-
pais de 63,98% para 75,98%, um ganho absoluto de 12 p.p. (18,75% relativo).

1A Fase 0 é meramente preparatória e não gera métricas de execução.
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Tabela 2. Uso e eficácia das ferramentas de extração estática.

Ferramenta Uso (%) Sucesso (%) Campo(s)-chave

aapt 77,74 63,98 package_name, permissions
apkutils 11,41 60,91 permissions
androguard 0,55 100 / 42,60 app_label / certificates
apktool <0,10 — parsing de Manifest
direct_extraction 10,21 61,21 main_activity
binary_manifest <0,05 — campos residuais

Fase 1 — Emulação strace: Diagnóstico Inicial

Uma vez que um dos objetivos do ARTEMIS é identificar as falhas para que se possa
melhorar tanto a plataforma quanto obter o máximo de informações possíveis de uma
APK executada, investigou-se os motivos por trás dessas falhas, explicados a seguir:

• 59,66% (2.909) de erros de instalação (apk_installation_error);
• 34,33% (1.674) de erros na inicialização do app (launch_error);
• 5,74% (280) de erros durante a execução ativa de um tracer

(runtime_tracer_error);
• 0,25% (12) de erros desconhecidos pelo pipeline (unknown_error);
• 0,02% (1) de erro na configuração inicial do tracer

(pre_install_tracer_error).

Como cada falha produz artefatos completos (logs, capturas de pacotes, traces)
registrados no histórico, é possível realizar uma triagem reversa automática, isto é, lan-
çar perfis alternativos que disparam apenas quando pertinentes, economizando inúmeras
horas de CPU.

A fim de se verificar as falhas observadas no ARTEMIS, iniciou-se a investi-
gação pelo maior conjunto, que compreende os principais erros de instalação (2.909
APKs). A Tabela 3 apresenta os códigos de erro identificados durante a instalação das
APKs sob análise, onde NO_MATCHING_ABIS indica que o dispositivo não suporta
nenhuma das Application Binary Interfaces (ABI) presentes no pacote (por exemplo,
armeabi-v7a, arm64-v8a, x86), impossibilitando o carregamento de bibliotecas
nativas; MISSING_SPLIT sinaliza a falha ao instalar um split-APK em razão da ausên-
cia de um ou mais módulos necessários (como arquivos de arquitetura, idioma ou densi-
dade de tela) no conjunto de APKs; UNKNOWN_FAILURE corresponde a uma falha
genérica não categorizada pelo instalador do Android; e SHARED_USER_INCOMP
refere-se à incompatibilidade no uso de sharedUserId entre APKs dependentes, ge-
ralmente resultante de divergências na assinatura digital ou nas declarações de permissão,
o que impede a instalação conjunta para preservar a integridade do sistema.

Uma vez que a fragmentação de ABIs em APKs é um fator crítico de falha na exe-
cução em emuladores x86, considerando incompatibilidades no conjunto de instruções da
CPU, extensões específicas de hardware, orientação de bytes (endianness) e convenções
de chamada entre código nativo e a runtime do Android, realizou-se uma análise sobre o
conjunto de 12.466 APKs com base na configuração de suas bibliotecas nativas.
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Tabela 3. Tipos de erros encontrados, quantidade de APKs que os apresentaram
e porcentagem da falha de instalação.

Código de Erro APKs % de Instalações

NO_MATCHING_ABIS 2.840 97,63%
MISSING_SPLIT 51 1,75%
UNKNOWN_FAILURE 17 0,58%
SHARED_USER_INCOMP. 1 0,03%

A Tabela 4 apresenta, de forma unificada, a distribuição das APKs por tipo de
ABI, a taxa de sucesso de execução e o tempo médio de execução em ambiente x86.
As categorias são definidas da seguinte forma: no_abis representa APKs sem bibliote-
cas nativas (por exemplo, escritos apenas em Java ou Kotlin); x86_only inclui apenas
bibliotecas compiladas para a arquitetura x86; both_x86_and_arm corresponde a APKs
multiplataforma, contendo bibliotecas para x86 e ARM; arm64_only representa APKs
com suporte exclusivo a ARM64 (AArch64); arm64_and_arm refere-se a APKs com
bibliotecas tanto para ARM64 quanto para ARM 32-bit; e arm_only representa APKs
com suporte apenas para ARM 32-bit.

Tabela 4. Estatísticas por configuração de ABI: distribuição no conjunto de
APKs, taxa de sucesso e tempo médio de execução.

ABI # APKs % Total Sucesso Média (s)

no_abis 6.479 51,97% 72,90% 561,65
both_x86_and_arm 3.102 24,88% 91,81% 603,49
arm64_and_arm 1.642 13,17% 0,00% 357,15
arm64_only 638 5,12% 0,47% 348,57
arm_only 589 4,72% 0,00% 290,79
x86_only 16 0,13% 100,00% 596,89

Considerando os 1.674 erros de inicialização das apps (launch_error), o có-
digo app_not_running, que representa apps que não foram inicializados correta-
mente, apareceu em 100% dos casos. Destes, 87,93% eram APKs do tipo no_abis
e 10,81% do tipo both_x86_and_arm, totalizando 98,74% dos casos. Os 1,26% res-
tantes distribuem-se entre outras configurações de ABI. Isto indica que, mesmo sendo
instalados corretamente, tais APKs possuem algum outro bloqueio para inicialização sem
falhas. A Tabela 5 mostra as principais bibliotecas necessárias para a execução desses
APKs.

Ao se fazer a análise dos tempos de execução para as 12.466 APKs, observou-se
Tempo Médio de 521,45 segundos (mediana de 513,67s, mínimo de 88,56s e máximo
de 1.649,26s), considerando que as análises bem-sucedidas (7.590) duraram 600,60s
em média enquanto que as análises falhas (4.876) duraram 397,9s em média. Já os
abortos precoces, isto é, execuções que duraram ≈<400s) reduziram o tempo médio em
aproximadamente 33,8%, ao passo que indicaram onde ajustes na estratégia de fallback
são cruciais. Com isso, identificou-se que as falhas tendem a ocorrer em estágios iniciais
da análise, o que explica sua duração média significativamente menor, e que o tipo de
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Tabela 5. Principais bibliotecas ausentes em APKs com launch_errors.

Biblioteca Ocorrências

libbreakpad-core.so 134
libhermes.so 120
libmmkv.so 41
libflutter.so 17
libjscexecutor.so 17

falha mais custoso (507,23s) ocorre quando o tracer dá problema durante a execução.
Registrar relatórios em todas as fases permite triagem reversa automatizada e reexecuções
muito mais eficientes. Na Tabela 6 temos o tempo médio por tipo de erro.

Tabela 6. Tempo médio por tipo de erro, seguido da quantidade de APKs que
apresentou cada um dos erros (4.876 APKs).

Tipo de Erro Tempo Médio (s) Quantidade

runtime_tracer_error 507,23 280
launch_error 481,08 1.674
apk_installation_error 339,62 2.909
pre_install_tracer_error 227,58 1
unknown_error 389,42 12

Como visto na Tabela 4, foram calculados os tempos médios de execução por
ABI, levando à conclusão que arm_only é a configuração mais rápida (290,79s) e
both_x86_and_arm é a mais lenta (603,49s), devido ao custo das operações/tradu-
ções de instruções em diferentes arquiteturas. A cada incremento de versão de API, foi
observado um acréscimo de aproximadamente 11,7 s no tempo de processamento, suge-
rindo maior complexidade no bytecode, multiplicidade das verificações de segurança e
permissões nas versões mais recentes do Android.

Fase 2 — Emulação stealth: Reexecução Sem ptrace

Reexecutamos todos os APKs que foram instalados com sucesso mas não geraram relató-
rios na Fase 1. Essa etapa quantificou o impacto das proteções anti-debug/anti-emulator.

Proteções Anti-Debug e Anti-Emulador. Foram identificadas 10.876 APKs (87,25%)
fazendo uso de ao menos uma técnica de evasão, com média de 2,38 métodos por apli-
cativo. As três técnicas mais frequentes encontradas foram: emulator detection (84,85%,
10.577), root detection (71,80%, 8.950) e anti-debug (51,15%, 6.376). Observou-se tam-
bém que os tracers baseados em ptrace (strace e frida) são facilmente identificados
por proteções Anti-Debug. Ao injetá-los tardiamente ou alternar para ftrace/hooking
in-guest, a cobertura de amostras analisáveis foi ampliada em 6,8% em relação a análises
restritas ao ptrace.

Impacto da Instrumentação Intrusiva. Dos APKs com proteção Anti-Debug, 1.674
falharam em gerar relatórios, indicando que interromperam sua execução ao detectar ten-

Anais do SBSeg 2025: Artigos Completos

13



tativas de depuração. Dentre esses, 1.491 (89,07%) não estavam corrompidos e foram re-
processados com uma abordagem alternativa. Ao remover o uso do strace, 101 APKs
(6,77% do grupo) passaram a produzir relatórios completos, dos quais 81 (80,20%) con-
cluíram com êxito utilizando apenas ftrace, uma técnica que não depende de ptrace.
Isso demonstra que a capacidade de alternar declarativamente entre strace, ftrace
e, futuramente, VMI — sem recompilar o kernel — permitiu recuperar a maioria das
amostras afetadas por defesas Anti-Debug. Como o ftrace opera no nível de kernel,
ele evita interações diretas com processos via chamadas de depuração, tornando-se menos
detectável por mecanismos de proteção no espaço do usuário.

Fase 3 — Fallback ARM64 em Dispositivos Físicos

Realizar o roteamento adaptativo a dispositivos físicos (fallback ARM64) recuperou
98,70% das falhas de instalação, eliminando virtualmente os falsos-negativos por incom-
patibilidade de ABI. Entre os 2.909 APKs que não puderam ser instalados no emulador
x86_64, 2.872 (98,70%) instalaram-se sem erros em smartphones Pixel 3/4 ARM64, res-
tando apenas 37 (1,30%) com problemas persistentes.

Esses casos residuais limitam-se aos códigos MISSING_SPLIT (ausência de mó-
dulos obrigatórios de arquitetura, idioma ou densidade de tela) e NO_CERTIFICATES,
decorrente da falta de assinatura digital válida. Assim, a estratégia de fallback em hard-
ware real elevou a cobertura de instalação para praticamente 99%. O resultado sugere
ainda que um segundo nível de fallback, baseado no carregamento dinâmico de bibliotecas
antes da inicialização, pode mitigar grande parte dos launch_errors remanescentes
e ampliar a cobertura global da plataforma.

Fase 4 — Execuções Paralelas Multi-Versão (APIs 10–14)

Na fase 4, 100 APKs (20 para cada API 10–14) foram executados em paralelo usando
perfis strace/ftrace. Essas versões foram escolhidas pois representam quase a totali-
dade de dispositivos atualmente em operação. Todos os jobs concluíram sem sobrescrever
artefatos anteriores, mantendo um histórico completo de cada execução. A orquestração
paralela e cumulativa possibilitou identificar comportamentos condicionais de cada SDK,
fundamentais para mapear padrões de evasão ligados às versões do Android.

5.2. Lições Aprendidas por Fase (F#)

(F3) Compatibilidade de ABI. O fallback em dispositivo físico recuperou 58,89% das
falhas totais (2.872/4.876);

(F2) Instrumentação furtiva. O pipeline centrado em ftrace recuperou 80,20% das
amostras anti-debug que falhavam com ptrace;

(F1–F3) Triagem reversa. Artefatos de falha, desde a Fase 1, orientam reexecuções dire-
cionadas, economizando recursos;

(F0–F4) Histórico cumulativo. Armazenar todos os relatórios viabiliza análises longitu-
dinais e auditoria forense; e

(F1–F4) Escalabilidade elástica. Microsserviços e filas permitem crescimento sem refa-
torações profundas.
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Limitações e Ameaças à Validade. O estímulo via Monkey pode não acionar fluxos
complexos de UI; concorrência intensiva. Execuções paralelas podem introduzir timing
side-channels; viés de amostragem. A base AndroZoo, embora variada, pode refletir
preferências regionais; evasões avançadas. Técnicas baseadas em virtualização de hard-
ware ou gatilhos externos permanecem fora do escopo; suporte de versão. Focamos no
Android 10–14, exigindo adaptações para o Android 15 e posteriores.

6. Conclusão
Este trabalho apresenta a plataforma ARTEMIS, uma solução dinâmica para análise de
malware Android que supera desafios como fragmentação do ecossistema, técnicas de
evasão e escalabilidade, utilizando uma arquitetura de microsserviços, agendamento as-
síncrono via Redis e configuração em YAML para orquestrar emuladores e dispositivos
físicos em paralelo, suportando múltiplas versões do Android (10–14). Um estudo com
12.466 APKs maliciosas demonstrou alta eficácia, como taxa de instalação de 98,7%,
recuperação de 80,2% dos APKs que falhavam por detecção de depuração e armazena-
mento de artefatos para análises longitudinais. Limitações incluem o uso do Monkey para
estímulo de UI, padrões de temporização suscetíveis a detecção e evasões avançadas. Os
resultados e o código-fonte do ARTEMIS, bem como os conjuntos de dados utilizados,
estarão disponíveis como recurso aberto para a comunidade, fomentando novos desenvol-
vimentos de análise de malware Android.
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