Anais do SBSeg 2025: Artigos Completos

ARTEMIS: Uma Plataforma Modular para Execucao,
Monitoracao e Investigacao de Aplicativos Android Suspeitos

Claudio Torres Junior', Dario Fernandes Filho', Jodo Pincovscy?, André Grégio'
9 9 9

'Departamento de Informética — Universidade Federal do Paran4d (UFPR)
SecRET (secret.inf.ufpr.br) - Curitiba — PR — Brasil

2Centro de Pesquisa e Desenvolvimento para a Seguranga das Comunicacdes (CEPESC)
Brasilia — DF — Brasil

{ctjunior, dsffilho, gregio}@inf.ufpr.br, pincovscy@cepesc.gov.br

Resumo. A fragmentacdo de versoes do Android e as limitacoes de ferramen-
tas atuais para monitoracdo efetiva da execucdo de APKs dificultam a andlise
de malware. Neste artigo apresenta-se ARTEMIS, uma plataforma baseada em
arquitetura de microsservigcos capaz de orquestrar andlises paralelas em instan-
cias heterogéneas, testada com 100 emuladores (Android 10-14) e dispositivos
fisicos. Em estudo de caso com 12.466 APKs maliciosas, ARTEMIS alcancou
taxa de instalacdo de 98,7% (arquitetura adaptativa) e recuperagcdo de 80,2%
dos APKs com falha por detec¢do de depuracdo (pipeline modular). ARTE-
MIS oferece andlises em larga escala, historico de execugoes e estratégias anti-
evasdo, essenciais para combater ameacas moveis modernas.

Palavras-chave: seguranca movel, andlise dindmica, malware Android, micros-
servicos, instrumentacdo multi-versdo.

Abstract. The fragmentation of Android versions and the limitations of current
tools for effectively monitoring APK execution make malware analysis difficult.
This paper presents ARTEMIS, a microservices-based platform capable of or-
chestrating parallel analysis across heterogeneous instances, tested with 100
emulators (Android 10-14) and physical devices. In a case study with 12,466
malicious APKs, ARTEMIS achieved a 98.7% installation rate (adaptive archi-
tecture) and 80.2% recovery of failed APKs through debug detection (modular
pipeline). ARTEMIS provides large-scale analysis, execution history, and anti-
evasion strategies, essential for combating modern mobile threats.

Keywords: .

1. Introducao

O sistema operacional Android detém, ha varios anos, a lideranca no mercado global
de smartphones, com cerca de 70% de participacdo mundial [GlobalStats 2024]. Essa
popularidade faz da plataforma um alvo preferencial de cibercriminosos, que exploram
vulnerabilidades conhecidas e técnicas de evasao cada vez mais sofisticadas para distribuir
malware mével [Lab 2024, Research 2024a]. Um dos principais obstaculos a andlise de
malware Android € a intensa fragmentacdo do ecossistema: apesar dos ciclos regulares de
atualizagdo promovidos pelo Google, grande parte dos dispositivos permanece operando
em versoes sem suporte oficial (e.g., Android 10-12), expondo-se assim a falhas antigas

1

Anais do SBSeg 2025: Artigos Completos

por longos periodos [Developers 2024, Statista 2024]. Essa diversidade de niveis de API,
arquiteturas de CPU e forks de fabricantes compromete a representatividade e a cobertura
das plataformas tradicionais para analise dindmica de malware Android.

Abordagens de andlise dindmica como CopperDroid [Tam et al. 2015], Cucko-
oDroid [Revivo et al. 2015] e MobSF [Zorz 2016] apresentam limitagdes criticas, tais
como cobertura restrita a poucas versoes do Android, arquiteturas monoliticas que su-
portam baixo paralelismo e exigem recompilacio para adicionar novos fracers ou instru-
mentadores, protec¢ao insuficiente contra mecanismos anti-anélise que resultam em aborto
precoce de execucdes e auséncia de histérico cumulativo de execugdes, dificultando com-
paracdes longitudinais e triagem reversa de erros. Para superar tais desafios, este artigo
apresenta ARTEMIS (Android Runtime Tracing, Execution and Malware Investigation
System): um sistema que ndo é uma sandbox, mas uma plataforma de orquestracdo inte-
ligente de sandboxes, emuladores e ferramentas de andlise em diversos niveis. Para tanto,
ARTEMIS foi idealizada por meio de uma arquitetura baseada em microsservigos, com
agendamento assincrono de tarefas, configuracdo declarativa facilitada, suporte multi-
versdo (Android 10 ao 14 e dispositivos fisicos), e um pipeline modular de instrumentagao
(e.g., Frida, strace, ftrace, tcpdump, Monkey, etc.) Com isso, ARTEMIS permite
coordenar centenas de instancias de andlise em paralelo, escalando conforme a infraes-
trutura disponivel e garantindo alta cobertura comportamental e resisténcia a evasao.

Com o objetivo principal de ser um bloco basico na construcdo de sistemas de
andlise de aplicagdes moveis, as contribuicdes da plataforma ARTEMIS sdo as seguin-
tes: (i) provisd@o de um pipeline totalmente declarativo em YAML para definir tracers,
estimulos de Ul e parametros de emulador sem recompilar o sistema, com base em arqui-
tetura de microsservigos capaz de orquestrar andlises simultaneas em multiplas versdes
do Android (10-14) e em dispositivos reais, escalando conforme a infraestrutura dispo-
nivel e mecanismos adaptativos de fallback — por exemplo, alternancia automética entre
emulador x86_64 e dispositivos ARM64 ao detectar erro de ABI (Application Binary
Interface); (i1) armazenamento e visualiza¢do de um histérico cumulativo das execugdes
de artefatos na plataforma, com registro completo destes (logs, PCAP, capturas de tela,
metadados) para comparagdes longitudinais e triagem reversa de erros; (iii) suporte a mul-
tiplas técnicas de monitoramento, tais como Virtual Machine Introspection (VMI), para
monitoramento externo ao sistema convidado diretamente no hipervisor para coleta de
chamadas de sistemas (syscalls), rastreamento interno do kernel Android, usando pon-
tos de instrumentag@o nativos para capturar fungdes e eventos do kernel, Hooks in-guest
via Frida e st race com inje¢do retardada para mitigar deteccdes baseadas em depuracao
(anti-debug).

2. Literatura e Tecnologias

Nesta secdo, as principais iniciativas de anélise dinamica de malware para Android sdo
revistas cronologicamente sob a 6tica de sua evolugdo técnica. Além disso, as tecno-
logias por trds dos conceitos que fundamentam o projeto da plataforma ARTEMIS sao
apresentadas, agrupados em cinco pilares: técnicas de instrumentacdo, coleta de artefatos
comportamentais, simulacio de entrada, estratégias anti-evasdo e suporte multi-versao.

2

Anais do SBSeg 2025: Artigos Completos

2.1. Trabalhos Relacionados

Primeiros esforcos (2010-2013). Em 2010, o AASandbox inaugurou a andlise compor-
tamental de APKs [Blésing et al. 2010], enquanto o TaintDroid introduziu rastreamento
de fluxo de informagdao em tempo real na VM Dalvik [Enck et al. 2010]. Em 2012, o
DroidScope combinou introspec¢do de maquina virtual (VMI) para tracar codigo nativo e
Dalvik simultaneamente [Yan and Yin 2012], e o DroidBox uniu o TaintDroid a ganchos
no framework Java para registrar vazamento de dados, SMS e rede [Lantz 2012].

Avancos (2014-2018). Andrubis (2014) integrou sandboxing, TaintDroid e t cpodump em
um emulador Android 4.2 [Fratantonio et al. 2014]. J4 ANANAS propds uma arquitetura
modular com monitor de syscalls no kernel [Neuner et al. 2014]. Por fim, CopperDroid
(2015) aperfeicoou a VMI para reconstruir operagdes de arquivo, IPC e rede em Android
2.3 [Tam et al. 2015].

Solucbes Open Source e Industriais (2015-2022). O CuckooDroid estendeu o Cuckoo
Sandbox para APKs, usando Xposed em Android 4.1.2 [Revivo et al. 2015]. O MobSF
(2016-) adicionou Frida e mitmproxy, suportando Android 4.1-12 em emuladores e dispo-
sitivos reais [Zorz 2016]. O BareDroid avaliou amostras em hardware fisico, reduzindo
artefatos de emulagdo [Mutti et al. 2015]. Embora pioneiras, essas ferramentas exigem
automacdo manual de inputs ou infraestrutura fisica onerosa; o ARTEMIS combina co-
bertura multi-versdo, orquestracdo declarativa em YAML e fallback inteligente, habili-
tando escalabilidade horizontal sem grandes friccoes.

Plataformas Recentes (2018-2025). Servigos comerciais como o VirusTotal Zenbox
(instrumentacdo Frida no Android 13) e o Joe Sandbox Mobile fornecem relatérios
detalhados e mapeamento MITRE ATT&CK [(VirusTotal) 2023, LLC 2024]. Prove-
dores como ANY.RUN Android e Hatching Triage oferecem ambientes ARM interati-
vos para andlise em tempo real [ANY.RUN 2025, Hatching 2024]. Novas iniciativas,
como o DroidHook € o DroidDungeon, focam em anti-evasdo e suporte multi-versao
[ResearchGate 2023, Research 2024b]. Entretanto, a maior parte é fechada ou limita a
customizacdo, enquanto ARTEMIS prové um ecossistema extensivel e open-source.

Apesar dos avancos ao longo do tempo, as solucdes existentes para andlise de
malware Android geralmente apresentam limitagdes persistentes: (i) cobertura de ver-
soes restrita: suporte apenas a releases antigas ou recentes, deixando lacunas em sistemas
legados [Tam et al. 2015, Revivo et al. 2015]; (ii) pipelines pouco flexiveis: alteracdes
de instrumentacdo requerem modificacdo no cédigo-fonte [Zhou 2020]; (iii) sobrecarga
e deteccao: instrumentacdo pesada (Xposed, multiplos tracers) aumenta CPU/RAM e ex-
poe a sandbox [Fratantonio et al. 2014, Intelligence 2023]; (iv) automacao manual de
inputs: necessidade de scripts especificos ou intervencdo humana para estimulo de Ul
[Zorz 2016]; (v) tratamento de erros limitado: falta de politicas robustas de retry e
categorizacgdo de falhas [Fratantonio et al. 2014, Research 2021]; (vi) auséncia de hist6-
rico longitudinal: resultados sobrescritos impedem comparagdes entre execugoes; (vii)
customizacao restrita: dificil integracdo de novos tracers ou técnicas de evasdao. A Ta-
bela 1 compara a proposta com outras solucdes, partindo do ARTEMIS em sua forma
mais “crua” (apenas o Android Emulator do repositério, atuando como sandbox padrio).
Embora usem a mesma base técnica, o ARTEMIS permite reconfigurar escalabilidade,
tracing e instrumentacao, ao contrdrio de sandboxes com pipelines fixos. A comparagao
¢ entre “sandbox + orquestracdo flexivel” e “sandbox isolada”. Orquestradores genéricos

3

Anais do SBSeg 2025: Artigos Completos

como CyberChef ou AssemblyLine foram excluidos por ndo suportarem Android nati-
vamente, o que deslocaria o foco para esfor¢o de integracdo, e ndo para funcionalidade
pronta para uso.

Tabela 1. Comparacao teorica de ferramentas de analise dinamica de malware

Android
Ferramenta Escalab. Config. Histérico Versoes Inputs Sobrec. Extens. Erros Anti-ev.
AASandbox Baixa (1) Kernel fixo Logs basicos <23 Monkey500 Alta Baixa Abortam Fraca
TaintDroid Baixa (1) ROM Dalvik Logcat <43 Externo Alta Baixa Abortam Fraca
DroidScope Baixa (1) Plugins VMI Brutos 23 Script béasico Alta Média Abortam Médio
DroidBox Baixa (1) Script emulador JSON simples 4.1-4.x Monkey+SMS Alta Baixa 1 execugdo Fraca
Andrubis Alta (cluster) Auto padronizado DB 42 Monkey-+sist. Alta Média Retry—préximo Médio
ANANAS Baixa (local) Médulos seleciondveis Logs modulares 2.3-4.x Monkey modular Var. Alta Abortam Médio
CopperDroid Média (manual) QEMU modificado Relat. comport. 4.1 Script Mod. Baixa Pouco output Médio
CuckooDroid Alta (10-15) Perfis/disp. DB 4.x Monkey+auto Mod. Alta Retry init Moderado
MobSF (dindmico) Meédia (Docker) GUI + Frida DB >7 Manual/script Mod. Alta Manual rerun Depende analista
BareDroid Alta (fisicos) Flash/reset Logs centralizados 4.4 Minimo Baixa Baixa Ignora Altissima
VirusTotal Zenbox Altissima (cloud) Fechada DB 44,8.0,13 Auto comum Mod. Fechada Sem fallback Boa
Joe Sandbox Alta (cloud) Scripts interativos DB robusto 4-11+ Auto/script Alta Boa Auto fallback Muito alta
ANY.RUN Android Alta (SaaS) Padrio dnico Sessoes 7-8 Manual Baixa Baixa Manual Alta
Hatching Triage Alta (API/SOC) Perfis fixos DB 7-10 Auto/opgao Mod. Boa Live intervene Alta
DroidHook Varidvel Xposed JSON 6-11+ Monkey/manual Mod. Alta Manual retry Alta
DroidDungeon Alta (cluster) Interno (YAML-like) Cumulativo 8-12+ Auto/manual Alta Altissima Auto—fisico Muito alta
ARTEMIS 1-N YAML declarativo DB Cumulativo 10-14+ Monkey/gui/'YAML ~ Mod. Altissima Retry + auto-adapt. Adaptativa

Legenda das colunas:

Escalab.: Escalabilidade; Config.: Configuracdo de ambiente; Historico: Histérico de execucdes; Versoes:
Versoes Android suportadas; Inputs: Modo de simulagdo de entrada; Sobrec.: Sobrecarga de recursos;
Extens.: Extensibilidade; Erros: Tratamento de falhas; Anti-ev.: Técnicas anti-evasio.

Fonte: Adaptado a partir de documentagéo oficial e testes proprios com as ferramentas listadas.

2.2. Tecnologias da Plataforma ARTEMIS

Técnicas de Instrumentacio. Para observar o comportamento em tempo de execugao
de aplicacoes maliciosas, ARTEMIS integra trés abordagens complementares de ins-
trumentacgdo, sendo que a personalizacdo via YAML permite acoplar novos médulos de
instrumentagdo conforme a necessidade de cada anélise:

e Virtual Machine Introspection (VMI) (conceitual) — monitoramento externo ao
sistema convidado, realizado no hipervisor, que captura chamadas de sistema sem
depender de pt race, garantindo maior furtividade. Embora nao tenha sido tes-
tada na implementacdo atual, a arquitetura do ARTEMIS permite a integracdo de
modulos VMI em emuladores modificados;

» ftrace - ferramenta de rastreamento interna do kernel Android, utilizada por
meio de médulos de kernel externos, que registra funcdes e eventos do kernel com
baixo overhead; esta abordagem foi amplamente testada em nosso estudo; e

* Hooking in-guest — insercdo de ganchos via Frida, Xposed ou st race dentro
do proprio sistema convidado, possibilitando interceptacdo de APIs Java/nativas;
a injecao retardada desses tracers reduz a janela de detec¢do por mecanismos de
depuracdo.

Enquanto a VMI oferece alta transparéncia ao custo de maior complexidade de in-
fraestrutura; o ft race equilibra furtividade e desempenho; o hooking in-guest € flexivel,
porém mais exposto a técnicas de evasdo baseadas em ptrace.

Coleta de Artefatos Comportamentais. Os artefatos abaixo sdo exemplos do que pode
ser coletado pelo ARTEMIS de acordo com os tracers e instrumentadores definidos no
arquivo de configuracio YAML.:

Anais do SBSeg 2025: Artigos Completos

* Traces de syscalls — obtidos via VMI ou st race/ftrace, revelam operacdes
de arquivo, processos e sockets;

* Trafego de rede — capturado com tcpdump ou mitmproxy, gerando arquivos
PCAP que expdem protocolos, dominios e canais de comando e controle (C2);

* Chamadas de API — ganchos via Frida ou Xposed registram parametros e valores
de retorno de APIs sensiveis (SMS, telefone, criptografia);

* Evidéncias de UI - logs de 1ogcat, capturas de tela e eventos de entrada docu-
mentam a interacdo com a interface; e

* QOutros artefatos customizaveis — o analista pode incluir extensdes, como dumps
de memoria, snapshots de processos ou qualquer outro tipo de log suportado pelos
modulos declarados.

Técnicas de Simulacdo de Entrada. Os métodos abaixo foram validados no estudo de
caso, mas o pipeline do ARTEMIS ¢ totalmente maledvel e permite a adi¢do de novos
modos de estimulo via YAML.:

* Geracao aleatoria (Monkey) — eventos pseudo-aleatérios para cobertura rapida
da UI; utilizado em todas as analises automaticas;

* Exploracao guiada — heuristicas ou andlises estdticas direcionam a execugdo a
componentes-alvo, conforme definido em perfis de configuragdo;

* Interacdo programatica — argumentos sao definidos em YAML e usados por
scripts Python (ADB/UIAutomator) que executam toques, swipes € inser¢ao de
texto; e

* Modos customizaveis — é possivel adicionar simuladores externos, desde que si-
gam a interface base de entrada. Apds integrd-los ao pipeline, basta configura-los
via YAML.

Estratégias Anti-Evasdo. As abordagens a seguir foram testadas no protétipo, mas o
ARTEMIS suporta dinamicamente novos mecanismos de anti-evasdo através de sua con-
figuracdo YAML.:

* Spoofing de propriedades — falsificacio de IMEI/IMSI, sensores e campos
build.prop para mascarar ambientes de emulacio;

* Neutralizacao de checagens — aplicacdo de patches ou respostas simuladas para
APIs de anti-debug e anti-emulator, injetados no boot ou em tempo de execugao;

* Injecdo adaptativa de tracers — selecao dinamica de VMI, ftrace ou hooking
in-guest (Frida/Xposed/st race), conforme o perfil de evasdo detectado; e

* Médulos customizaveis — novos métodos de deteccdo e bypass podem ser adici-
onados declarando-se scripts ou bindrios para execugdo antes e durante a andlise.

Analise Dinamica Multi-Versao. A fragmentacido do Android requer suporte a multi-
plos API levels. O ARTEMIS foi validado com versdes do Android 10-14 e legadas,
usando imagens Docker/QEMU ou dispositivos fisicos. A orquestracdo por microsser-
vicos e Redis garante distribuicdo automatica e escaldvel das andlises. A arquitetura é
flexivel, permitindo a inclusdo rapida de novas versdes via YAML. No entanto, funcio-
nalidades especificas, como novos modelos de permissdao ou mudangas futuras na ART,
podem demandar ajustes adicionais.

Anais do SBSeg 2025: Artigos Completos

3. Arquitetura e Fluxo de Operacao ARTEMIS

ARTEMIS (“Android Runtime Tracing, Execution and Malware Investigation System”)
foi concebido como uma plataforma modular, extensivel e orientada a servigos para and-
lise dindmica de malware Android. Sua estrutura combina uma arquitetura de micros-
servicos com um pipeline declarativo, que juntos permitem coordenar desde poucas até
centenas (ou potencialmente milhares) de instancias de andlise em paralelo, conforme a
infraestrutura disponivel. Nesta secdo sdo explicados os médulos que compdem a plata-
forma e o fluxo de sua operacdo.

3.1. Arquitetura

A topologia do ARTEMIS divide-se em dois dominios 16gicos—motor de andlise e bac-
kend—que cooperam de forma assincrona para oferecer escalabilidade horizontal, obser-
vabilidade completa e f4cil reconfiguracao.

3.1.1. Motor de Analise

O motor de andlise é responsdvel por executar cada APK em ambiente controlado, or-
questrar os tracers configurados em YAML e consolidar os artefatos comportamentais.
Em resumo, o APK ¢ recebido pelo Coordenador de Andlise, o dispositivo € iniciali-
zado/configurado e o Workflow de Analise € disparado, resultando em relatérios JSON,
pcaps, texto, etc. A visdo geral deste fluxo de operacdo pode ser vista na Figura 1 e, em
seguida, descreve-se cada um de seus componentes principais:

e & - &

APK malicioso Corodenador da analise Inicializagao/configuragio Workflow da analise
do dispositivo

Geragao de relatorios

Figura 1. Visao geral do pipeline de analise de malware.
Fonte: Os Autores.

* Coordenador de Anadlise: inicializa o emulador ou dispositivo, aplica a configu-
racdo YAML, sincroniza tracers e consolida os resultados;

* Motor de Workflow: organiza o processo em quatro fases (Pré-instalacdo, Insta-
lacdo, Pés-instalac@o e Anélise), conforme ilustrado na Figura 2;

* Interface de Dispositivo: abstrai comandos ADB/fastboot, suportando emulado-
res QEMU, Genymotion e dispositivos fisicos ARM;

* Gerenciador de Tracers: carrega e encerra qualquer fracer — nativo (strace,
tcpdump), kernel (ft race) ou customizado (scripts Frida/Xposed) — sem re-
compilar o motor; e

* Gerenciador de Erros e Metadados: produz logs estruturados, classifica exce-
coes e aplica politicas de retry automdticas, garantindo robustez e rastreabilidade.

6

Anais do SBSeg 2025: Artigos Completos

3.1.2. Fluxo de Operacao das Analises

O Workflow de Andlise, ilustrado na Figura 2, implementa um pipeline dindmico em qua-
tro fases sequenciais que guiam todo o processo de analise do APK:

‘ Pre-Instalacao ‘ Instalacao / Pre-Execucan ‘ Pos-Inicializagac ‘ Pos-Execugao & Relatorio ‘
[Garantir conexao com Emulador Instalar APK] {CUnTlgurarTracers (Pos-Inicializagao) Parar Tracers
¥ v ¥)
[Configurar Tracers (Pré-Instalagio) Configurar Tracers (Pré-Execugao)] Selecionar Simulador de Input Parar Emulador/Celular J

[Iniciar Instrumentagao (Frida) [Iniciar Aplicagao { Simular Inputs & Monitorar Coletar Artefatos J

Figura 2. Detalhamento do Workflow de Andlise em quatro fases: Pré-instalacao,
Instalacao/Pré-Execucao, Pés-Inicializacao e Pés-Execucao & Relatorio.
Fonte: Os Autores.

Fase 1: Pré-Instalacao. Esta fase prepara o ambiente antes da instalacio do aplicativo
a partir do seguintes passos: (i) Garantir conexao com Emulador: Apds ter o identi-
ficador do dispositivo configurado, testamos se a conexdo € persistente; (ii) Configurar
Tracers (Pré-Instalacio): Inicia os tracers definidos para esta fase (ex: captura de rede);
(ii1) Iniciar Instrumentacao Frida: Inicializa o servidor Frida e carrega scripts para
bypasses de seguranga.

Fase 2: Instalacao/Pré-Execucdo. Nesta fase, o APK ¢ instalado e preparado para
execucdo seguindo os passos: (i) Instalar APK: Implanta o aplicativo no dispositivo,
normalmente via ADB; (ii) Configurar Tracers (Pré-Execucao): Configura tracers adi-
cionais ap0s a instalacdo; (iii) Iniciar Aplicacdo: Lanca o aplicativo usando o método
definido na configuracao.

Fase 3: Pés-Inicializacdo. Esta fase estabelece o monitoramento em tempo real, por
meio de: (i) Configurar Tracers (Pés-Inicializacio): Inicia tracers que requerem o
aplicativo em execucao; (ii) Selecionar Simulador de Input: Prepara o método de si-
mulacdo conforme configurado; (iii) Simular Inputs & Monitorar: Executa o método
de simulacdo selecionado para exercitar o aplicativo enquanto os tracers monitoram seu
comportamento.

Fase 4: Pés-Execucao & Relatorio. Finaliza a andlise e coleta os resultados: (i) Parar
Tracers: Encerra todos os tracers ativos; (ii) Parar Emulador/Celular: Desliga o emu-
lador ou desconecta do dispositivo; (iii) Coletar Artefatos: Consolida todos os arquivos
gerados durante a andlise e produz um relatdrio estruturado. Os artefatos gerados incluem
traces de syscalls, PCAPs, logs de API, 1ogcat, capturas de tela e um JSON de meta-
dados (configuracdo, hashes, tempos, anomalias). Cada execucdo gera um identificador
unico, permitindo comparacdes longitudinais entre diferentes andlises da mesma amostra.

7

Anais do SBSeg 2025: Artigos Completos

3.1.3. Backend

O backend da plataforma ARTEMIS segue uma arquitetura de microservigos projetada
para orquestrar analises de malware Android de forma escaldvel. Como ilustrado na Fi-
gura 3, o sistema implementa um fluxo completo desde o upload do APK até a entrega
dos resultados. Esta arquitetura modular permite que o sistema escale horizontalmente—
nos testes foram usados até 100 emuladores em paralelo, com o limite determinado apenas
pelos recursos disponiveis na infraestrutura. A separagdo entre API, processamento assin-
crono e armazenamento garante alta disponibilidade mesmo durante andlises intensivas.

3.2. Frontend

O front-end, desenvolvido em React, ja consome as APIs de autenticagdo, submissdo e
consulta de andlises, gestdo de APKs e rotas administrativas. Optamos por nao detalha-
lo, pois o foco estd na orquestragdo dos microsservicos, € ndo na interface.

=
I

1. Upload de APK 9. Request dos resultados

L@

4. Enfileirar tarefa

2. Armazena APK 3. Cria registro
10b. Obter relatérios !F\Ia RPdISI ' 6 m
—— BD Postgres
| —
5. Alribui tarefa

[j:fwmo::j < 6. Ohter APK @

Gerenciador de
Workers

10a. Obter dados da analise

7. Inicia andlise

Bb. Atualiza metricas

8a. Armazena relatérios 4.\QJ— 8c. Atualiza status —

Pipeline de anélise

Figura 3. Fluxo de dados do backend: (1) o usuario submete APK; (2-3) o sistema
armazena o binario no MinlO e cria registros no PostgreSQL; (4-5) uma tarefa é
enfileirada no Redis e atribuida a um worker; (6-7) o worker obtém o APK e inicia
a analise; (8a-c) os resultados sao armazenados como relatdrios no MinlO, en-
quanto métricas e status sao atualizados no PostgreSQL; (9-10) o usuario pode
entao consultar os resultados e obter dados detalhados da analise via API.

Fonte: Os Autores.

4. Metodologia e Experimentos

Para avaliar o ARTEMIS, definiu-se um experimento em larga escala que combinou auto-
macao em massa com métricas de sucesso, desempenho e cobertura de evasao. O ambi-
ente de testes utilizado possui os seguintes componentes: Infraestrutura - servidor com
2 TB de RAM e 2x Intel Xeon Gold 6338 (128 threads); Pools de Analise - 100 emula-
dores Android 10 (x86_64, 1 GiB RAM, 1 vCPU) e 4 dispositivos fisicos ARM64 (Pixel
3/4); Tracers Avaliados - strace, ftrace, Frida, tcpdump, logcat, conforme

8

Anais do SBSeg 2025: Artigos Completos

configurado em YAML; Ferramentas de Ul - Monkey, exploracdo guiada e scripts ADB
definidos em YAML.

Foi empregado um conjunto de 12.466 APKs maliciosos do repositério AndroZoo
(coleta 2023). Esse montante corresponde aos arquivos validos de um lote inicial de
12.536 hashes: 70 downloads retornaram vazios e foram descartados.

Justificativa. No contexto Android, o Software Development Kit (SDK) define dois para-
metros fundamentais: minSdkVersion, que estabelece o nivel minimo de API em que
um app pode ser instalado, e target SdkVersion, que indica o nivel de API para o
qual o app foi compilado e testado.

APKSs de 2023 (n=12.466). A minSdkVersion varia de API 3 a 29 (média 20,74; me-
diana 21) — incluindo apps legados abaixo e acima do nivel 21, exigido pelo Jetpack/An-
droidX desde abril de 2024 [Stack Overflow users 2024] — e a targetSdkVersion
abrange API 29 a 35 (média 31,30; mediana 32), cobrindo desde Android 10 (API 29,
lancado em 03/09/2019 [Wikipedia contributors 2025]) até migracdes para Android 14
(API 34 [Android Authority 2023]).

APKs de 2024 (n=9.114). A minSdkVersion permanece em API 3-29 (média 21,69;
mediana 21), enquanto a targetSdkVersion varia de API 30 a 53 (média 32,66;
mediana 33), com mais de 85 % dos apps em API 33-34, em func¢do da politica do Google
Play que exige t arget SdkVersion minimo 34 para novos envios € atualiza¢des desde
31/08/2024 [Google 2025].

Essa diversidade maior de SDKs em 2023 € essencial para uma andlise compara-
tiva robusta em emuladores Android 10 e 14.

4.1. Experimentos

Todos os experimentos descritos a seguir avaliam a plataforma ARTEMIS sobre os
12.466 APKs validos, mostrando empiricamente como um framework modular, decla-
rativo e com histérico completo de andlises pode superar as limitagdes de sandboxes pu-
blicas em profundidade, evasdo e escalabilidade, garantindo cobertura abrangente mesmo
diante da diversidade do ecossistema Android.

Para explorar aspectos complementares da andlise dindmica de malware, defini-
mos trés perfis de execugdo, cada um projetado para revelar um tipo distinto de limitagao
ou ponto forte:

i) Emulador x86_64 + strace: Android 10 (API129) com 1 GiB RAMe 1 vCPU.
Coleta de chamadas de sistema (st race), logs de aplica¢do (1ogcat), pacotes
de rede (t cpdump) e injecao de 900 eventos Monkey (~3 min), simulando um
sandbox intrusivo padrio;

i1) Emulador x86_ 64 stealth: Mesma configuracdo de hardware, porém sem qual-
quer tracer baseado em pt race no boot, para medir o impacto de instrumentagao
intrusiva na evasdo de amostras; €

iii) Dispositivos fisicos ARM64: Google Pixel 3 ¢ 4 rodando Android 10, usados
como fallback para casos de incompatibilidade de ABI detectados nos emuladores.

Dessa forma, foi possivel avaliar simultaneamente a profundidade de coleta, a
resiliéncia contra técnicas de detec¢do de instrumentacdo e a cobertura de ABI do mundo

9

Anais do SBSeg 2025: Artigos Completos

real. Para tanto, o experimento foi organizado em cinco fases sequenciais, com artefatos
e metadados acumulados ao longo do processo:

Fase 0 — Preparacao: validacdo das amostras, registro de hashes e tamanhos iniciais;

Fase 1 - Emulacio strace: primeira execucdo massiva no perfil (i), gerando artefatos
completos de sistema, rede e logs de aplicacio;

Fase 2 — Emulacao stealth: reexecucdo dos APKs que falharam na fase 1 sem tracer,
quantificando técnicas de evasao baseadas em ptrace;

Fase 3 — Fallback ARM64: instalacio dos mesmos APKs falhos em dispositivos fisi-
cos, avaliando recuperagdo de casos de incompatibilidade de ABI detectadas nos
emuladores; e

Fase 4 — Paralelas multi-versao: selecdao de 100 APKs (20 por versao: 10-14) para ané-
lises simultaneas, alternando strace e ftrace.

A préxima secdo detalha cada uma dessas fases, explicando em profundidade os
métodos e os critérios utilizados nas execugdes e andlises realizadas.

Em cada fase foram extraidos 12 campos de metadados (pacote, atividades, per-
missdes, e etc.) para enriquecer o perfil dos APKs e facilitar diagnésticos posteriores. O
cluster contou com 100 emuladores Android 10 (x86_64), cada um com 1 GiB RAM e
1 vCPU, hospedados em um servidor com 2 TB RAM e dois Intel Xeon Gold 6338 (128
threads). Sob carga méxima, o uso total de RAM ficou em torno de 7%, sem saturacio
dos NUMA nodes. Esses resultados comprovam que a arquitetura baseada em microsser-
vicos com filas Redis possibilita escalabilidade praticamente linear, permitindo adicionar
novos workers sem alteracdes no cédigo.

5. Testes e Resultados

Com base nos experimentos descritos na Secdo 4.1, 12.466 andlises foram realizadas
(distribuidas sequencialmente pelas Fases 1 a 4)!, sendo que 7.590 (60,89 %) delas foram
bem-sucedidas e 4.876 (39,11%) apresentaram falhas.

5.1. Analise de Metadados Estaticos

Para extrair estaticamente metadados criticos as fases de analise, utilizamos
um pipeline em camadas (Tabela 2), ordenado por velocidade de extracdo
dos 12 campos: package_name, app_label, main_activity, sdk_min,
sdk_target, permissions, version_code, version_name, activities,
certificates, ABIs e services. Cada ferramenta supera limitacdes da anterior:
aapt € rapida, mas falha com manifestos ofuscados; apkutils faz parsing estruturado,
porém ndo trata bem compressdes atipicas; androguard recupera bytecode e certifi-
cados obfuscados, mas trava em empacotamentos dindmicos; direct_extraction
acessa diretamente o ZIP e XML cifrados; e binary_manifest decodifica o ma-
nifesto bindrio sem descompilar o APK. Essa estratégia em camadas garante cobertura
completa dos metadados, mesmo sob ofuscac¢io avancada, assegurando anélises precisas.

Com a combinagdo dessas ferramentas, aumentamos o recall dos atributos princi-
pais de 63,98% para 75,98%, um ganho absoluto de 12 p.p. (18,75% relativo).

"' A Fase 0 é meramente preparatria e nio gera métricas de execugio.

10

Anais do SBSeg 2025: Artigos Completos

Tabela 2. Uso e eficacia das ferramentas de extracao estatica.

Ferramenta Uso (%) Sucesso (%) Campo(s)-chave

aapt 77,74 63,98 package_name, permissions
apkutils 11,41 60,91 permissions

androguard 0,55 100/42,60 app_label/ certificates
apktool <0,10 — parsing de Manifest
direct_extraction 10,21 61,21 main_activity
binary_manifest <0,05 — campos residuais

Fase 1 — Emulacdo st race: Diagnéstico Inicial

Uma vez que um dos objetivos do ARTEMIS ¢ identificar as falhas para que se possa
melhorar tanto a plataforma quanto obter o0 maximo de informagdes possiveis de uma
APK executada, investigou-se os motivos por trds dessas falhas, explicados a seguir:

* 59,66% (2.909) de erros de instalagdo (apk_installation_error);
34,33% (1.674) de erros na inicializacdo do app (Launch_error);

5,74% (280) de erros durante a execucdo ativa de um tracer
(runtime_tracer_error);

0,25% (12) de erros desconhecidos pelo pipeline (unknown_error);

0,02 % (D) de erro na configuracao inicial do tracer
(pre_install_tracer_error).

Como cada falha produz artefatos completos (logs, capturas de pacotes, traces)
registrados no histérico, é possivel realizar uma triagem reversa automadtica, isto é, lan-
car perfis alternativos que disparam apenas quando pertinentes, economizando indmeras
horas de CPU.

A fim de se verificar as falhas observadas no ARTEMIS, iniciou-se a investi-
gacdo pelo maior conjunto, que compreende os principais erros de instalagdao (2.909
APKs). A Tabela 3 apresenta os codigos de erro identificados durante a instalacao das
APKs sob andlise, onde NO_MATCHING_ABIS indica que o dispositivo ndo suporta
nenhuma das Application Binary Interfaces (ABI) presentes no pacote (por exemplo,
armeabi-v7a, arm64-v8a, x86), impossibilitando o carregamento de bibliotecas
nativas; MISSING_SPLIT sinaliza a falha ao instalar um split-APK em razao da ausén-
cia de um ou mais médulos necessarios (como arquivos de arquitetura, idioma ou densi-
dade de tela) no conjunto de APKs; UNKNOWN_FAILURE corresponde a uma falha
genérica ndo categorizada pelo instalador do Android; e SHARED_USER_INCOMP
refere-se a incompatibilidade no uso de sharedUserId entre APKs dependentes, ge-
ralmente resultante de divergéncias na assinatura digital ou nas declaracdes de permissao,
o que impede a instalacdo conjunta para preservar a integridade do sistema.

Uma vez que a fragmentacao de ABIs em APKSs é um fator critico de falha na exe-
cucdo em emuladores x86, considerando incompatibilidades no conjunto de instrucdes da
CPU, extensdes especificas de hardware, orientacio de bytes (endianness) e convencdes
de chamada entre c6digo nativo e a runtime do Android, realizou-se uma anélise sobre o
conjunto de 12.466 APKs com base na configuracao de suas bibliotecas nativas.

11

Anais do SBSeg 2025: Artigos Completos

Tabela 3. Tipos de erros encontrados, quantidade de APKs que os apresentaram
e porcentagem da falha de instalacao.

Cédigo de Erro APKs % de Instalacoes
NO_MATCHING_ABIS 2.840 97,63%
MISSING_SPLIT 51 1,75%
UNKNOWN_FAILURE 17 0,58%
SHARED_USER_INCOMP. 1 0,03%

A Tabela 4 apresenta, de forma unificada, a distribuicdo das APKs por tipo de
ABI, a taxa de sucesso de execu¢do e o tempo médio de execucdo em ambiente x86.
As categorias sdo definidas da seguinte forma: no_abis representa APKs sem bibliote-
cas nativas (por exemplo, escritos apenas em Java ou Kotlin); x86_only inclui apenas
bibliotecas compiladas para a arquitetura x86; both_x86_and_arm corresponde a APKs
multiplataforma, contendo bibliotecas para x86 e ARM; arm64_only representa APKs
com suporte exclusivo a ARM64 (AArch64); arm64_and_arm refere-se a APKs com
bibliotecas tanto para ARM64 quanto para ARM 32-bit; e arm_only representa APKs
com suporte apenas para ARM 32-bit.

Tabela 4. Estatisticas por configuracdo de ABI: distribuicio no conjunto de
APKs, taxa de sucesso e tempo médio de execucao.

ABI # APKs % Total Sucesso Média (s)
no_abis 6479 51,97% 72,90% 561,65
both_x86_and_arm 3.102 2488% 91,81% 603,49
arm64_and_arm 1.642 13,17% 0,00% 357,15
arm64_only 638 5,12% 0,47% 348,57
arm_only 589 4,72% 0,00% 290,79
x86_only 16 0,13% 100,00% 596,89

Considerando os 1.674 erros de inicializacdo das apps (Launch_error), o c6-
digo app_not_running, que representa apps que nao foram inicializados correta-
mente, apareceu em 100% dos casos. Destes, 87,93% eram APKs do tipo no_abis
e 10,81% do tipo both_x86_and_arm, totalizando 98,74% dos casos. Os 1,26% res-
tantes distribuem-se entre outras configuracdes de ABI. Isto indica que, mesmo sendo
instalados corretamente, tais APKs possuem algum outro bloqueio para inicializagao sem
falhas. A Tabela 5 mostra as principais bibliotecas necessarias para a execucdo desses

APKs.

Ao se fazer a andlise dos tempos de execucdo para as 12.466 APKs, observou-se
Tempo Médio de 521,45 segundos (mediana de 513,67s, minimo de 88,56s e maximo
de 1.649,26s), considerando que as analises bem-sucedidas (7.590) duraram 600,60s
em média enquanto que as analises falhas (4.876) duraram 397,9s em média. J4 os
abortos precoces, isto €, execucdes que duraram ~~<400s) reduziram o tempo médio em
aproximadamente 33,8%, ao passo que indicaram onde ajustes na estratégia de fallback
sdo cruciais. Com isso, identificou-se que as falhas tendem a ocorrer em estagios iniciais
da andlise, o que explica sua duracdo média significativamente menor, € que o tipo de

12

Anais do SBSeg 2025: Artigos Completos

Tabela 5. Principais bibliotecas ausentes em APKs com launch_errors.

Biblioteca Ocorréncias
libbreakpad-core.so 134
libhermes.so 120
libmmkv.so 41
libflutter.so 17
libjscexecutor.so 17

falha mais custoso (507,23s) ocorre quando o tracer da problema durante a execugao.
Registrar relatérios em todas as fases permite triagem reversa automatizada e reexecugoes
muito mais eficientes. Na Tabela 6 temos o tempo médio por tipo de erro.

Tabela 6. Tempo médio por tipo de erro, seguido da quantidade de APKs que
apresentou cada um dos erros (4.876 APKs).

Tipo de Erro Tempo Médio (s) Quantidade
runtime_tracer_error 507,23 280
launch_error 481,08 1.674
apk_installation_error 339,62 2.909
pre_install_tracer_error 227,58 1
unknown_error 389,42 12

Como visto na Tabela 4, foram calculados os tempos médios de execugao por
ABI, levando a conclusdo que arm_only € a configuracdo mais ripida (290,79s) e
both_x86_and_arm € a mais lenta (603,49s), devido ao custo das operacoes/tradu-
coes de instrugdes em diferentes arquiteturas. A cada incremento de versdao de API, foi
observado um acréscimo de aproximadamente 11,7 s no tempo de processamento, suge-
rindo maior complexidade no bytecode, multiplicidade das verificacdes de segurancga e
permissdes nas versdes mais recentes do Android.

Fase 2 — Emulacdo stealth: Reexecuciao Sem ptrace

Reexecutamos todos os APKs que foram instalados com sucesso mas ndo geraram relato-
rios na Fase 1. Essa etapa quantificou o impacto das protecdes anti-debug/anti-emulator.

Protecoes Anti-Debug e Anti-Emulador. Foram identificadas 10.876 APKs (87,25%)
fazendo uso de ao menos uma técnica de evasao, com média de 2,38 métodos por apli-
cativo. As trés técnicas mais frequentes encontradas foram: emulator detection (84,85%,
10.577), root detection (71,80%, 8.950) e anti-debug (51,15%, 6.376). Observou-se tam-
bém que os tracers baseados em ptrace (strace e frida) sdo facilmente identificados
por protecdes Anti-Debug. Ao injetd-los tardiamente ou alternar para ftrace/hooking
in-guest, a cobertura de amostras analisdveis foi ampliada em 6,8% em relacdo a andlises
restritas ao ptrace.

Impacto da Instrumentacdo Intrusiva. Dos APKs com prote¢do Anti-Debug, 1.674
falharam em gerar relatérios, indicando que interromperam sua execugao ao detectar ten-

13

Anais do SBSeg 2025: Artigos Completos

tativas de depuracao. Dentre esses, 1.491 (89,07%) nao estavam corrompidos e foram re-
processados com uma abordagem alternativa. Ao remover o uso do strace, 101 APKs
(6,77% do grupo) passaram a produzir relatorios completos, dos quais 81 (80,20%) con-
cluiram com éxito utilizando apenas ft race, uma técnica que ndao depende de ptrace.
Isso demonstra que a capacidade de alternar declarativamente entre st race, ftrace
e, futuramente, VMI — sem recompilar o kernel — permitiu recuperar a maioria das
amostras afetadas por defesas Anti-Debug. Como o ftrace opera no nivel de kernel,
ele evita interagdes diretas com processos via chamadas de depuracdo, tornando-se menos
detectavel por mecanismos de prote¢ao no espaco do usudrio.

Fase 3 — Fallback ARM64 em Dispositivos Fisicos

Realizar o roteamento adaptativo a dispositivos fisicos (fallback ARM64) recuperou
98,70% das falhas de instalacdo, eliminando virtualmente os falsos-negativos por incom-
patibilidade de ABI. Entre os 2.909 APKs que ndo puderam ser instalados no emulador
x86_64, 2.872 (98,70 %) instalaram-se sem erros em smartphones Pixel 3/4 ARM64, res-
tando apenas 37 (1,30%) com problemas persistentes.

Esses casos residuais limitam-se aos c6digos MISSING_SPLIT (auséncia de mo-
dulos obrigatérios de arquitetura, idioma ou densidade de tela) e NO_CERTIFICATES,
decorrente da falta de assinatura digital vilida. Assim, a estratégia de fallback em hard-
ware real elevou a cobertura de instalagdo para praticamente 99%. O resultado sugere
ainda que um segundo nivel de fallback, baseado no carregamento dinamico de bibliotecas
antes da inicializagdo, pode mitigar grande parte dos launch_errors remanescentes
e ampliar a cobertura global da plataforma.

Fase 4 — Execucoes Paralelas Multi-Versao (APIs 10-14)

Na fase 4, 100 APKs (20 para cada API 10-14) foram executados em paralelo usando
perfis st race/ftrace. Essas versoes foram escolhidas pois representam quase a totali-
dade de dispositivos atualmente em operagdo. Todos os jobs concluiram sem sobrescrever
artefatos anteriores, mantendo um histérico completo de cada execu¢@o. A orquestragao
paralela e cumulativa possibilitou identificar comportamentos condicionais de cada SDK,
fundamentais para mapear padrdes de evasao ligados as versdes do Android.

5.2. Licoes Aprendidas por Fase (F#)

(F3) Compatibilidade de ABI. O fallback em dispositivo fisico recuperou 58,89% das
falhas totais (2.872/4.876);
(F2) Instrumentacao furtiva. O pipeline centrado em ft race recuperou 80,20% das
amostras anti-debug que falhavam com ptrace;
(F1-F3) Triagem reversa. Artefatos de falha, desde a Fase 1, orientam reexecugdes dire-
cionadas, economizando recursos;
(F0-F4) Historico cumulativo. Armazenar todos os relatérios viabiliza andlises longitu-
dinais e auditoria forense; e
(F1-F4) Escalabilidade elastica. Microsservicos e filas permitem crescimento sem refa-
toragdes profundas.

14

Anais do SBSeg 2025: Artigos Completos

Limitacoes e Ameacas a Validade. O estimulo via Monkey pode ndo acionar fluxos
complexos de UI; concorréncia intensiva. Execugdes paralelas podem introduzir timing
side-channels; viés de amostragem. A base AndroZoo, embora variada, pode refletir
preferéncias regionais; evasoes avancadas. Técnicas baseadas em virtualizacao de hard-
ware ou gatilhos externos permanecem fora do escopo; suporte de versao. Focamos no
Android 10-14, exigindo adaptacdes para o Android 15 e posteriores.

6. Conclusao

Este trabalho apresenta a plataforma ARTEMIS, uma solu¢do dinamica para andlise de
malware Android que supera desafios como fragmentacdo do ecossistema, técnicas de
evasdo e escalabilidade, utilizando uma arquitetura de microsservicos, agendamento as-
sincrono via Redis e configuracio em YAML para orquestrar emuladores e dispositivos
fisicos em paralelo, suportando multiplas versdes do Android (10-14). Um estudo com
12.466 APKs maliciosas demonstrou alta eficicia, como taxa de instalacdo de 98,7%,
recuperacdo de 80,2% dos APKs que falhavam por detec¢do de depuragdo e armazena-
mento de artefatos para andlises longitudinais. Limita¢des incluem o uso do Monkey para
estimulo de Ul, padrdes de temporizacao suscetiveis a deteccao e evasdes avancadas. Os
resultados e o cédigo-fonte do ARTEMIS, bem como os conjuntos de dados utilizados,
estardo disponiveis como recurso aberto para a comunidade, fomentando novos desenvol-
vimentos de anélise de malware Android.

Agradecimentos

Este trabalho foi apoiado pelo Centro de Computacao Cientifica e Software Livre - C3SL
da UFPR, em parceria com o Ministério da Satide, bem como pelo CNPq via bolsa de
produtividade em pesquisa.

Referéncias
Android Authority (2023). Android 14 release schedule.

ANY.RUN (2025). Interactive android sandbox for malware analysis. https://any.
run/.

Blising, T., Batyuk, L., Schmidt, A.-D., Camtepe, S. A., and Albayrak, S. (2010). An
android application sandbox system for suspicious software detection. In Malicious
and Unwanted Software (MALWARE), 2010 5th International Conference on, pages
55-62. IEEE.

Developers, G. A. (2024). Android platform versions dashboard. https://
developer.android.com/about/dashboards.

Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., McDaniel, P., and Sheth, A. N.
(2010). Taintdroid: An information-flow tracking system for realtime privacy moni-
toring on smartphones. In Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 393—407.

Fratantonio, Y., van der Veen, V., and Platzer, C. (2014). Andrubis: Android malware
under the magnifying glass. Number TR-ISECLAB-0414-001.

GlobalStats, S. (2024). Mobile operating system market share worldwide. https:
//gs.statcounter.com/os-market—-share/mobile/worldwide.

15

Anais do SBSeg 2025: Artigos Completos

Google (2025). Meet google play’s target api level requirement. Accessed: May 2025.
Hatching (2024). Triage: Advanced android sandbox for malware analysis. https:
//tria.ge/.

Intelligence, I. S. (2023). Reducing resource overhead in malware sandboxing. https:
//securityintelligence.com/.

Lab, K. (2024). Mobile malware evolution 2024. Technical report, Kaspersky Lab.

Lantz, P. (2012). Droidbox: Android application sandbox. https://github.com/
pjlantz/droidbox.

LLC, J. S. (2024). Joe sandbox mobile - android dynamic analysis. https://www.
joesecurity.org/.

Mutti, S., Fratantonio, Y., Bianchi, A., Invernizzi, L., Corbetta, J., Kirat, D., Kruegel, C.,
and Vigna, G. (2015). Baredroid: Large-scale analysis of android apps on real devi-

ces. In Proceedings of the 31st Annual Computer Security Applications Conference
(ACSAC), pages 71-80.

Neuner, S., van der Veen, V., Lindorfer, M., Huber, M., Merzdovnik, G., Mulazzani, M.,
and Weippl, E. (2014). Enter sandbox: Android sandbox comparison. In Proceedings
of the 3rd IEEE Mobile Security Technologies Workshop (MoST).

Research, C. P. (2024a). Mobile security report 2024. Technical report, Check Point.

Research, E. (2024b). Droiddungeon: Bypassing android malware evasion techniques.
https://s3.eurecom. fr/.

Research, T. M. (2021). Evasive malware techniques targeting android. Technical report,
Trend Micro.

ResearchGate (2023). Droidhook: A flexible android dynamic analysis framework.
https://www.researchgate.net/.

Revivo, L., Caspi, O., and Shalyt, M. (2015). Cuckoodroid — fighting the tide of android
malware. Check Point Blog.

Stack Overflow users (2024). What is the minsdkversion for targetsdkversion 34?
Statista (2024). Distribution of android versions worldwide.

Tam, K., Khan, S. J., Fattori, A., and Cavallaro, L. (2015). Copperdroid: Automatic
reconstruction of android malware behaviors. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS). Internet Society.

(VirusTotal), G. T. I. (2023). Virustotal zenbox: Dynamic malware analysis. https:
//docs.virustotal.com/.

Wikipedia contributors (2025). Android 10 — android version history.

Yan, L.-K. and Yin, H. (2012). Droidscope: Seamlessly reconstructing the os and dalvik
semantic views for dynamic android malware analysis. In USENIX Security Sympo-
sium, pages 569-584. USENIX Association.

Zhou, P. (2020). Limitations and extensions of cuckoo sandbox for android analysis.
https://medium.com/.

Zorz, M. (2016). Mobsf: Security analysis of android and ios apps. Help Net Security.

16

