
Implementation and Analysis of a Synchronisation Protocol for
Fair Exchange with Strong Fairness and Privacy

Dhileane Quixabeira1, Mailson Teles-Borges1, Fabricia Roos-Frantz1, Rafael Z. Frantz1,
Sandro Sawicki1, Carlos Molina-Jimenez2, Jon Crowcroft2

1Unijuı́ University – Ijuı́, RS – Brazil

2University of Cambridge, Cambridge, UK
{dhileane.rodrigues, mailson.borges}@sou.unijui.edu.br

{frfrantz,sawicki,rzfrantz}@unijui.com.br
{carlos.molina,jon.crowcroft}@cl.cam.ac.uk

Abstract. Strong fairness ensures that in fair exchange protocols, items are either ex-
changed or remain with their original owners. Privacy, another key property, prevents
the leakage of sensitive information. Achieving both simultaneously is challenging.
Existing protocols that ensure strong fairness, such as those in online payments, fail
to guarantee privacy due to reliance on monolithic trusted third parties. These enti-
ties perform critical actions that expose data. We propose replacing them with a split
trusted third party model, composed of two trusted execution environments (one per
participant) and a public bulletin board used solely for synchronisation. Our anal-
ysis and implementation show that this approach preserves strong fairness, strong
timeliness and privacy.

1. Introduction

Fair Exchange Protocols (FEPs) enable two participants—say, Alice, in possession of an item,
and Bob, in possession of another item—to swap them. The nature of the items varies and
includes digital items (e.g. a photo or online accounts) that can be sent and received online,
physical items (e.g. a bottle of wine or a pizza) [Molina-Jimenez et al. 2024], or a combination
of both. For simplicity, in this paper, we will consider that the items are digital and can be
regarded as digital strings, which we call digital items. This assumption preserves the main
ideas that we wish to explain. Additionally, although we do not discuss physical items further,
it is worth noting that in our protocol, they can be represented (modelled) by digital items. For
example, PIN numbers that open physical containers can be exchanged with our protocol.

Several fair exchange protocols have been suggested that guarantee different properties,
including fairness—the most fundamental property [Asokan et al. 1997], [Brickell et al. 1988],
[Asokan et al. 2002], [Pinkas 2003], [Avoine and Vaudenay 2004], [Zhang et al. 2024]. Intu-
itively, when fairness is guaranteed, disputes never emerge because the protocol always pro-
duces fair outcomes. As elaborated in Section 2, protocols that guarantee strong fairness are
called strong fair exchange protocols (SFEPs). A serious drawback of existing SFEPs is that
they do not guarantee privacy. They leak sensitive information (for example, the nature of the
item) to third parties, particularly to the trusted third parties (TTPs) that these protocols manda-
torily need to involve [Pagnia and Gartner 1999]. Fair exchange is hard to solve because it is a
fundamental distributed system problem that manifests recurrently in several online scenarios,
such as payment versus delivery in online purchases, exchange of contract signatures, delivery

Anais do SBSeg 2025: Artigos Completos

1



versus receipt in certified email, and bartering in cashless economies [Markowitch et al. 2003],
[Asokan et al. 2002].

Representative examples of SFEPs that fail to protect privacy include those used on
platforms such as Amazon, PayPal, and Alipay [Lou 2023] and [Winn and Wright 2000]. In
some applications, the disclosure of sensitive information, such as shopping details, is merely
a minor inconvenience that may be tolerated. However, some exchanges, such as the exchange
of scientific data with business or intellectual value (for example, in federated learning), re-
quire privacy guarantees. We argue that the inability of existing SFEPs to provide privacy
is due to the approach that they take in the implementation of the TTP: they use a monolithic
TTPs that is application-aware, stateful, and responsible for manipulating sensitive information
[Asokan et al. 1997], [Asokan et al. 2002], [Almutairi and Nigel 2019].

We argue that, with previous technologies, this approach was a justifiable compromise.
However, the emergence of hardware enhanced for creating trusted execution environments
(TEEs) and ubiquitous communication has motivated us to replace the monolithic TTP with a
split TTP [Molina-Jimenez et al. 2024]. In this approach, the TTP is composed of three com-
ponents: two TEEs deployed on Alice’s and Bob’s devices (one on each) and a Public Bulletin
Board (PBB). With a split TTP-based solution, the execution of the operations involved in the
fair exchange can be thoughtfully allocated to the most suitable component (TEEs or PBB)
to achieve the desired property. For example, to guarantee strong fairness, the PBB is used
for executing synchronisation; to guarantee privacy too, the PBB is stateless and application–
agnostic; therefore, the PBB never has access to sensitive information. The latter is always
kept within the confines of TEEs that remain under the control of their owners. This thoughtful
allocation of operations contrasts with the monolithic TTP-based solution, where all operations
are indiscriminately executed in the TTP, including those that handle sensitive information.

The main contribution of this paper is a demonstration of how to implement the syn-
chronization module (a protocol in its own right) for fair exchange that guarantees strong fair-
ness and privacy. We use Finite State Machines (FSMs) and timelines of message exchanges to
analyse the properties of our protocol.

The remainder of this paper is structured as follows: Section 2 provides terminology
and definitions. In Section 3, we discuss Fair Exchange Without Disputes (FEWD), the spec-
ification of the fair exchange protocol that has inspired our work. In Section 5, we describe
our Python implementation of FEWD’s operations. In Section 6, we demonstrate how our
implementation of the synchronisation operation preserves strong fairness, privacy and other
properties. Section 7 summarises research that has influenced our work. Section 8 discusses the
main pending tasks that we have identified. Finally, in Section 9, we share our implementation
experience and ideas stimulated by our results.

2. Background

Fair exchange protocols are executed between two parties, say Alice and Bob who are in posses-
sion of items D_A and D_B, respectively, to exchange their items. Fair exchange as a research
topic gained broad attention in the early 80s thanks to Asokan’s work [Asokan et al. 1997].
Since then, several protocols have been published that can be used to exchange items of differ-
ent nature (e.g, digital, physical) and under different properties.

The most fundamental property of FEPs is fairness. From this perspective, they can be

Anais do SBSeg 2025: Artigos Completos

2



divided into two classes:

• Strong FEPs: guarantee strong fairness, that is, upon completion of the protocol, either
Alice is left in possession of D_B and Bob in possession of D_A or the items remain
with their original owners. These protocols produce only fair outcomes and therefore
prevent the occurrence of disputes.

• Weak FEPs: guarantee only weak fairness, that is, they might produce unfair outcomes
where one of the parties is left with the two items and its counterpart gets none. There-
fore, these protocols account for the potential occurrences of disputes. These are sorted
out by dispute resolution mechanisms executed separately, that is, outside the normal
execution of the protocol and are very likely to include humans acting as arbiters.

In 1999, Pagnia and Gartner demonstrated that fair exchange is at least as hard as con-
sensus [Pagnia and Gartner 1999]; therefore, strong fairness cannot be achieved without the
involvement of a TTP. The TTP is a central controller used for keeping the invariant that the
FSMs of both participants reach the same final states. The salient feature of weak FEPs is that
they can be implemented without TTPs (see Section 7).

2.1. Desirable Properties of Fair Exchange
In addition to strong fairness, there are other properties to evaluate a protocol. We
will mention only the most relevant ones: privacy, timeliness, physical timeout indepen-
dence [Asokan et al. 1997], [Markowitch et al. 2003], [Huang et al. 2014].

Privacy guarantees that only Alice and Bob have access to sensitive information. Time-
liness ensures that a participant, say Alice, can unilaterally and immediately cancel the protocol,
that is, without the need to wait for additional messages from Bob either directly or indirectly
through a TTP. It is worth clarifying that to cancel, Alice might need to send or receive a
message produced locally by the TTP. Physical timeout independence is observed when the
protocol does not use physical clocks to timeout.

The challenge is to guarantee these properties without compromising strong fairness.
For example, timeliness is trivial to implement without strong fairness—Alice can simply
abandon the protocol at any time and lose her item. In this paper, we focus on strong
fairness, privacy and timeliness. Additional information is in [Molina-Jimenez et al. 2024],
[Almutairi and Nigel 2019], [Ray et al. 2005].

2.2. The Four Operations Included in Fair Exchange
A close examination of fair exchange will reveal that any fair exchange protocol can
be separated into four basic operations: deposit, verify, synchronisation, and release/re-
store [Molina-Jimenez et al. 2024]. We will describe the operations from Alice’s side; Bob’s
executions mirror Alice’s. Handshake is executed by Alice and Bob to agree on the terms
and conditions of the exchange, including items’ descriptions. Deposit is executed by Alice to
surrender her item. Verify is executed by Alice against Bob’s item to check that the item is the
one that she is expecting. Synchronisation is executed to determine whether the exchange will
take place or cancelled. Finally, Release/Restore or nothing is executed: Release is executed
to release Bob’s item to Alice when the protocol completes in success. However, the execution
of Release might be followed by the execution of Restore to return Alice’s item (or compen-
sation) to Alice, when the protocol completes in cancellation. In some protocols like FEWD,
cancellation generates no operation; both items remain locked forever within TTPs.

Anais do SBSeg 2025: Artigos Completos

3



In fact, all existing FEPs include these operations, not necessarily clearly identified and
separated. We have observed that the approach taken to implement and execute these operations
determines what properties (see Section 2.1) the protocol will be able to deliver. For example, in
FEPs that use gradual release, synchronisation is executed between the two participants rather
than in a TTP, therefore, gradual release protocols can guarantee only weak fairness. Similarly,
in escrow-based protocols, deposit is executed in a stateful TTP; consequently, these protocols
are unable to guarantee privacy.

2.3. TTP Architecture: Monolithic versus Split

A salient feature of existing strong FEPs is that they implement their TTPs following a mono-
lithic architecture, as shown in Figure 1a; typically, the TTP is a server with storage and com-
putational facilities. As shown in Figure 1a, the TTP is used for executing all the four basic
operations (highlighted in bold to indicate where each operation is performed in both the Tra-
ditional Monolithic TTP and the Split TTP) discussed in Section 2.2. The appeal of such an
architecture is its simplicity and familiarity; unfortunately, it compromises privacy.

Synchronise
PBB

att_A att_B

dev_A dev_B
Deposit
Verify

Synchronise
Release/Restore

TTP

dev_A dev_B

Legend:
:  communication channel

a) b)

app_Bapp_A

Deposit
Verify

Release/Restore

Deposit
Verify

Release/Restoreapp_Bapp_A

Figure 1. (a) Traditional monolithic TTP (b) Split TTP

Another alternative is to use a split architecture, shown in Figure 1b. The TTP is com-
posed of three components: two attestables (one for each participant) and a PBB. The attesta-
bles are TEEs that comply with the attestable model discussed in Section 2.4. The attestables
are shown in double lines to emphasise their security shield. They can be hardware–embedded
in the device of each participant or somewhere else.

The PBB can be implemented by any public server (e.g. a web server, social network
platform, etc.). Its functionality is similar to the blackboard architecture’s [Long et al. 2017].
In our implementation, the main requirement on the PBB is that it is publicly available, offers
API that accepts post token operations, has an arbitrarily large log for storing tokens per-
manently in some order, and accepts the retrieve tokens operations to deliver the whole
log. A token is a string of characters, for example, “hi”. The advantage of this approach is
modularity. As shown in Figure1b, the execution of the four basic operations (shown in bold)
can be thoughtfully allocated to the three components to achieve different properties. This is
the approach taken by FEWD and we will elaborate in Section 3.

Anais do SBSeg 2025: Artigos Completos

4



2.4. The Attestable Model and Current Implementation Technologies
An attestable is a model for executing code that manipulates sensitive data. It is expected
to offer an API and observe three properties: Firstly, it is an execution environment within
a black box that conceals data and computation from outside. Secondly, once a program
is launched into execution, it will follow its logic faithfully, which might include absolute
execution independence. Thirdly, it can attest to those first two points. The model can
be implemented using different hardware and software technologies. For example, we can
use ARM TrustZone [Pinto and Santos 2019], Intel SGX [Costan and Devadas 2016], AMD
SEV [Kaplan et al. 2016], Amazon Nitro enclaves [AmazonAWS 2025] and compartments cre-
ated in Morello Boards [ARM limited 2022]. These technologies are becoming common in
conventional mobile devices, servers, and cloud platforms.

3. FEWD and the Main Four Operations of Fair Exchange
FEWD is a strong FEP that uses a split TTP. Its architecture is shown in Figure 2.
Details on concepts that can aid in implementing this type of protocol can be found
in [Molina-Jimenez et al. 2024]. Here, we present only a summary focusing on the concepts
needed to understand the implementation discussed in Section 5.2.

z

Synchronise
PBB

Deposit
Verify

Release/Restore

Deposit
Verify

Release/Restore

Post token, retrieve tokens

att_A att_B

dev_A dev_B

sy
nc

hr
on

is
at

io
n

ex
ch

an
ge

do
cu

m
en

t m
an

ip
ul

at
io

n

app_A app_B

Figure 2. FEWD and its split TTP

Alice and Bob are in possession of personal devices dev_A and dev_B, respectively.
Each device has access to an attestable (att_A and att_B respectively). In Figure 2, the
attestables are shown in double lines to emphasise their security shield. They are shown em-
bedded in the devices, but they can be somewhere else, for example, in the cloud. Alice and
Bob initiate and drive the execution of the protocol from their respective applications (app_A
and app_B). The attestables are assumed to have cryptographic facilities for building secure
channels to communicate with the PBB and with each other.

We will use a simple scenario to explain the main ideas where Alice and Bob conduct
the handshake operation offline. We use the following notations:

D_A: Alice’s item, D_B: Bob’s item, [D_A]: Alice’s encrypted item, [D_B]: Bob’s
encrypted item, att_A: Alice’s attestable, att_B: Bob’s attestable, app_A: Alice’s appli-
cation, app_B: Bob’s application, Sync_A and Cancel_A: Alice’s tokens, Sync_B and
Cancel_B: Bob’s tokens. The main four operations are described as follows:

Anais do SBSeg 2025: Artigos Completos

5



1. deposit: Alice and Bob deposit encrypted versions of their items in each other’s at-
testables. As a result, after decryption D_A is locked in att_B and D_B is locked in
att_A.

2. verify: att_A verifies the properties of D_B. On Bob’s side, att_B verifies the prop-
erties of D_A. A party unsatisfied with the verification result either silently abandons or
cancels the protocol.

3. synchronise: att_A posts a Sync_A token to the PBB to express her interest in
continuing the protocol. Similarly and independently, att_B posts Sync_B. To learn
the outcome, att_A and att_B independently, retrieves the log of tokens from the
PBB.

4. release: If att_A retrieves Sync_A and Sync_B from the log, it releases D_B to
app_A. Consequently, on Bob’s side att_B will also retrieve Sync_A and Sync_B
and release D_A to app_B. Observe that in FEWD the execution of restore is never
needed. No operation is executed when the protocol is cancelled.
In summary, items are released through the execution of the release operation to

their new owners applications (app_A and app_B) only when Alice posts Sync_A and Bob
posts Sync_B. Items not released remain locked forever within the attestables. As explained
in [Molina-Jimenez et al. 2024], restore operations are needed only in the exchange of some
classes of items; we do not cover this topic in this paper. Items remain locked when Alice,
Bob or both cancel the exchange. Figure 5 shows all possible developments of the protocol,
including cancellations.

As shown in Figure 2, from the point of view of its functionality, FEWD is divided into
two main parts: document manipulation and synchronisation. In the document manipulation
part, operations such as deposit, verify, release/restore of items are performed, coordinated by
the devices and their trusted environments. This part maintains the protocol state and handles
sensitive information. In the synchronisation part, tokens are generated and exchanged to guide
the outcome of the transaction between the involved parties. The latter is used by Alice and
Bob only to produce a binary outcome—1 or 0—that, in FEWD, are interpreted as release
or lock both items, respectively. The subtlety is that this outcome can be produced without
any knowledge of the other parts of the protocol. As demonstrated in Section 6, the separate
synchronisation operation enables privacy and other properties.

4. Example of Post of Sync and Cancel Tokens
Figure 3 illustrates two possible outcomes of the FEWD protocol: (a)

Exchange successful and (b) Exchange cancelled. In (a), the protocol executes
the following sequence: (1) - Alice’s attestable (att_A) posts a Sync_A token to the PBB; (2)
- Bob’s attestable (att_B) posts a Sync_B token to the PBB; (3) Alice’s attestable retrieves
both tokens Sync_A and Sync_B from the PBB; (4) Bob’s attestable also retrieves both to-
kens Sync_A and Sync_B. As a result, both parties confirm mutual commitment to proceed
and the protocol reaches the Exchange successful state.

In (b), the protocol executes the following sequence: (1) - Alice’s attestable initiates the
exchange by posting Sync_A to the PBB on the hope to complete the exchange in success; (2)
- In contrast, Bob’s attestable decides to cancel the protocol and posts Cancel_B; (3) Alice’s
attestable retrieves both tokens Sync_A and Cancel_B from the PBB; (4) - Bob’s attestable
also retrieves both tokens Sync_A and Cancel_B from the PBB. As a result, the protocol
reaches the Exchange cancelled state.

Anais do SBSeg 2025: Artigos Completos

6



att_A

PBB

att_B

(1) Sync_A

(2) Sync_B

(3) retrieve

Sync_A, Sync_B (4) retrieve
Sync_A, Sync_B

Exchange
Successful

Exchange
Successful

att_A

PBB

att_B

(1) Sync_A

(2) Cancel_B

(3) retrieve

Sync_A, Cancel_B (4) retrieve
Sync_A, Cancel_B Exchange

Cancelled

Exchange
Cancelled

a) b)

Figure 3. Outcomes of FEWD: (a) Exchange successful; (b) Exchange cancelled.

5. Implementation of FEWD
The specification of FEWD was published in 2024 [Molina-Jimenez et al. 2024], but no imple-
mentation was reported. A complete implementation is time demanding. Luckily, the protocol
can be cleanly separated into two parts (see Section 3) that can be implemented separately to
scrutinise their properties. Our article focuses on the synchronisation protocol that is executed
with the help of tokens posted to and retrieved from a PBB.

5.1. Implementation of the Handshake and Initial Setup

To start the protocol, Alice and Bob execute a handshake operation to create a setup document
that they agree to observe during the execution of the protocol. To this end, the attestables
create their public keys and define the user identities. The setup document stipulates that Alice
and Bob agree to the terms of the exchange. Although the setup document can include several
parameters, our implementation includes only three:

• PBB: specifies the uniform resource locator (URL) and transfer layer security
(TLS) [Dierks and Rescorla 2008] certificate of the PBB that Alice and Bob agree to
use.

• Device keys: specifies the keys and certificates to be used for the attestation of Alice’s
and Bob’s trusted components.

• Document: describes the items that Alice and Bob are exchanging. It contains three
sub-parameters: setup values, module, and certificate. The module contains four sub-
parameters: setup values types, doc values types, verify function, gather function.
Among them, the gather function is responsible for generating the doc values.

Let us examine the description of Alice’s item. The description is symmetrically applied
to Bob as well. For instance, M_A, refers to the module in Alice’s item description, and M_B
refers the module in Bob’s description.

The setup values, denoted by P_A, are the values provided by Alice. Their correspond-
ing types form the list of setup values types, represented as S_A. The doc_values_types,
denoted TA, refer to the types expected by Bob. The gather function collects the values of the
original item from Alice. We use the notation GA. The values collected are put in a list of
doc types, that is, XA = {x1, . . . , xM}. If the types of the values in XA match the types listed

Anais do SBSeg 2025: Artigos Completos

7



in doc values types, the gather function outputs XA, otherwise it outputs an error, witch cancels
the exchange. The verify function is responsible for validating the data. It takes setup values
from the setup document and the doc types list gathered by the gather function as input and
produces a boolean: True if the values in setup values match the values in doc types. True and
false represent, respectively, the acceptance and rejection of D_A.

Imagine that Alice and Bob are willing to exchange items using our protocol. Bob
expects to receive a book. Algorithm 1 shows an example of a handshake and Initial
Setup Description. This algorithm contains the list setup values, setup values types and
doc values types, PA, SA and TB, respectively. It also shows the function verify and gather, VA

and GA, respectively.

Algorithm 1: Handshake and Initial Setup Description
// Setup values

1 PA ← [“png”, 10, “Alice”] // PA ← [P1, P2, P3]

// setup values types

2 SA ← [format, sizeMB, author] // SA ← [S1, S2, S3]

// doc values types

3 TB ← [format, sizeMB, author] // TA ← [T1, T2, T3]

// gatherer function
4 Function Gather function (D A):
5 x1 ←D A.format
6 x2 ←D A.sizeMB
7 x3 ←D A.author
8 return [x1, x2, x3]

// X A

// the verify function
9 Function Verify function:

10 P1 : S1, P2 : S2, P3 : S3,
11 X1 : T1, X2 : T2, X3 : T3,

12 if x1 ̸= p1 then
13 return false
14 if x2 > p2 then
15 return false
16 if x3 ̸= p3 then
17 return false
18 return true

5.2. Implementation of the Synchronisation Operation
We are currently using Python to implement the synchronisation part to examine how strong
fairness and privacy are guaranteed. The code is available from https://github.com/

gca-research-group/fair-exchange-v1. We have implemented the attestables as TCP
clients, namely, att_A.py and att_B.py. The PBB, Alice’s application and Bob’s ap-
plications have been implemented as TCP servers, PBB.py, app_A.py and app_B.py,
respectively.

Figure 4 shows the modules of our current implementation where dev_A and dev_B
represent Alice’s and Bob’s devices, respectively. We have used TCP servers and clients that
communicate with each other over secure channel (secchan) created with TLS, to realise the
components shown in Figure 2. In this version, the whole code is executed by a single user
(rather than two independent users with their own devices) using the menu shown in the fig-

Anais do SBSeg 2025: Artigos Completos

8



att_A.py
(TCP client)

app_B.py
(TCP client)

app_A.py
(TCP client)

tokens_files.txt

PBB.py (TCP server)

TLS secchan_A

TLS secchan_A2P TLS secchan_B2P

TLS secchan_AB
dev_B

TLS secchan_B

1: start_encryption_process
2: exec_deposit_operation
3: exec_synchronise_operation
0: exit_program

Menu.py

TLS secchan_ATT

dev_A

att_B.py
(TCP client)

Figure 4. Python implementation of FEWD

ure. Option ”1” causes app_A and app_B to encrypt, respectively, D_A and D_B. Option
”2” triggers the execution of deposit: [D_A] and [D_B] are locked inatt_B and att_A,
respectively. Option ”3” triggers the execution of synchronise and invites Alice and Bob
to type and submit their tokens: Sync_A or Cancel_A and Sync_B or Cancel_B, respec-
tively. The database used in our PBB stores an ID that identifies the exchange, along with the
user’s token.

To simplify the code, we have introduced the following slight diversions from the orig-
inal specification described in [Molina-Jimenez et al. 2024]:

1. In the original specification, the post and retrieve operations use independent communi-
cation sessions. Our implementation uses a single communication session that is used
for posting and retrieving.

2. In the original specification, the attestables can repeatedly post tokens Sync and
Cancel and are responsible for scanning the retrieved log. In our implementation,
a token can be posted only once.
Unbounded token postings generates several deployment difficulties. It exposes the sys-
tem to denial-of-service (DoS) attacks, where a malicious participant can flood the pro-
tocol with excessive token submissions (e.g. Sync_A, Sync_A, Sync_A, etc.). Addi-
tionally, redundant token processing increases computational and storage overhead that
degrades performance. Semantic ambiguity is another concern —multiple instances of
the same token type complicate validity checks. Moreover, repeated submissions can
be exploited to delay the completion of the protocol.

3. In the original specification, all the participants are allowed to read the PBB’s log. The
PBB returns the entire log that includes all received tokens. However, our implemen-
tation constraints the PBB to return only the tokens related to the current execution
instance. In other words, only the participants directly involved in a specific exchange
have access to the tokens.

We are aware that these diversions result in different properties. Yet, as demonstrated
in Section 6, our implementation retains strong fairness, privacy and timeliness.

Anais do SBSeg 2025: Artigos Completos

9



5.3. Implementation of the Attestables

The attestables att_A.py and att_A.py are implemented as TCP client. Incidentally,
att_A, interacts with app_A, app_B and PBB. In algorithm 2, Alice’s attestable receives
the item D_A to encrypt it. Additionally, Alice’s attestable accepts a connection via a secure
channel from att_B through app_A, sends the encrypted file [D_A] to att_B, receives an
encrypted file [D_B] from att_B, and verifies [D_B]. Next, the att_A posts Sync_A or
Cancel_A to PBB. After retrieving the tokens from the PBB through app_A, att_A exe-
cutes either release to surrender D_B to app_A or lock D_B forever.

Algorithm 2: Implementation of the attestables
1 Function ProcessAttestables(D A ∈ D, D B ∈ D):
2 encrypted D A← Encrypt(D A)
3 att B ← Send(encrypted D A)
4 att A← Receive(encrypted D B)
5 isV alid← V erify(encrypted D B)
6 if isV alid then
7 PBB ← Send(Sync A)

8 else
9 PBB ← Send(Cancel A)

10 tokens← RetrieveTokens(PBB)

5.4. Implementation of the PBB

Being a server, the PBB remains listening for connection requests placed by clients app_A and
app_B to post or retrieve tokens originally generated by att_A and att_B. The PBB stores
received tokens in a list. It returns the list in response to retrieve operations. Algorithm 3 is an
pseudocode excerpt from PBB.py.

Algorithm 3: Implementation of the PBB
1 Function ProcessPBB(request ∈ {receive, retrieve}, s ∈ {att A, att B, app A, app B}):
2 if indication.receive == ok then
3 if s = att A or s = att B then
4 PBB ← Receive(tokens);
5 else
6 Error: invalid sender for token reception;

7 else if request = retrieve then
8 if s = app A or s = app B then
9 PBB ← RetrieveRequest(s);

10 s← ReturnTokens(tokens);
11 else
12 Error: invalid requester for token retrieval;

13 else
14 Error: invalid request type;

5.5. Implementation of Alice’s Application

Alice’s app_A.py and Bob’s app_B.py applications bridge the communications between
their respective attestables and the PBB. For example, to post a token, att_A.py sends the
token to app_A and app_A forwards it to the PBB. In a direct interaction, Alice’s application
sends the item to be encrypted by its attestable and receives either the decrypted item or a
notification indicating that the exchange has been aborted. Algorithms 4, shows a pseudocode
excerpt of the implementation of app_A.py.

Anais do SBSeg 2025: Artigos Completos

10



Alice’s application sends D_A to Alice’s att_A for encryption. It forwards the items
involved in the deposit operation between Alice’s att_A and Bob’s att_B. During the syn-
chronisation process, Alice’s application forwards tokens between att_A and PBB and re-
ceives either D_B or a cancel notification.

Algorithm 4: Behavior of Alice’s Application (app A)
1 Function Processapp A(D A ∈ D, token ∈ T ):
2 att A← Receive(D A);
3 response← ReceiveFrom(att A);
4 if response = encrypted D A then
5 att B ← Send(encrypted D A);
6 else
7 return AbortNotification;

8 token← ReceiveFrom(att A);
9 PBB ← Send(token);

10 result← ReceiveFrom(PBB);
11 if result = valid then
12 return D B;
13 else
14 return AbortNotification

6. Analysis of Properties

We have simplified the implementation of the PBB and traded generality for simplicity. We
will discuss next what aspects of privacy are preserved or compromised in our current imple-
mentation.

6.1. Strong Fairness

The FSM of Figure 5 shows how strong fairness is preserved in our implementation. Accord-
ing [Molina-Jimenez et al. 2024], strong fairness can only be guaranteed in protocols where the
synchronise operation is executed in an independent messages environment, i.e., a messaging
service that cannot be controlled by the participants. In our implementation, this environment
is provided by the PBB. The figure shows the FSM of the synchronise operation. It con-
sists of five states: one initial, two intermediate and two final states. There are eight possible
paths from the initial to the final states. Strong fairness is guaranteed because the FSM al-
ways progresses from the initial state to one of the two mutually exclusive final states; either
Exchange successful or Exchange cancelled.

Figure 5 shows of the paths that progresses from the initial states to one of the final
states, namely Exchange successful. It also shows of the paths that progresses from the
initial state to the Exchange cancelled state, i.e., the final state where the exchange is
cancelled.

6.2. Privacy

In SFEPs privacy in put at risk by the information that Alice and Bob reveal to the TTP.
As explained in Section 2, the latter is needed at least for the execution of the syn-
chronise operation [Pagnia and Gartner 1999]. Figure 5 shows how our implementation
can execute the synchronise operation without revealing sensitive information to the PBB:
Observe that the FSM uses only four application–agnostic strings as tokens: Sync_A,
Cancel_A, Sync_B and Cancel_B to synchronise in either Exchange cancelled or

Anais do SBSeg 2025: Artigos Completos

11



Exchange
cancelled

Initial
state

Sync_A
posted

Sync_B
posted

Exchange
successful

Sync_A

Sync_B

Cancel_A

Cancel_B

Cancel_A

Cancel_B

Cancel_A

Sync_B

Sync_A

Cancel_B

Legend:

Initial state

Final state
Intermediate state

Figure 5. FSM of sync operation with its two unique and mutually exclusive final states.

Exchange successful. In practice, the strings might include some information mean-
ingful to Alice and Bob (for example, keys and signatures), yet they do not need to include
information about the items under exchange, the identities of parties involved or the develop-
ment of the exchange. Therefore, they not need to be concealed from the PBB or from other
parties that might have access to it. With this approach, the PBB is not only stateless but also
application–agnostic. It is only a token repository that offers two services: it stores tokens and
delivers tokens.

The description of the FEWD in [Molina-Jimenez et al. 2024], the PBB accepts a token
from anybody and appends it to the tail of an arbitrarily large log. Upon request, it surrenders
the whole log to anybody. This is certainly a general model of a PBB that can be used to
synchronise with privacy guarantees. However, the implementation of such a PBB is demand-
ing due to its generality; also the fact that the token requester always retrieves the whole log
(perhaps with thousands of tokens) for scanning to determine if the two tokens that he needs
are or are not yet in the log, questions the efficiency of the model. In our implementation,
we have simplified the PBB log. We assume that Alice and Bob run only a single instance of
the protocol. The PBB is responsible for receiving tokens and recording them in a database
that is associated with a unique exchange ID between participants, ensuring that only tokens
corresponding to that specific exchange are stored; therefore the tokens need to include the
exchange’s ID. This exchange’s ID is generated during the initial handshake between the par-
ticipants. The association of tokens to instances of the protocol simplifies the task of filtering
tokens in the PBB and therefore simplifies the code that implements the PBB. It also frees the
attestables from the task of token filtering.

We stress that, in our protocol, the deposit, verify and release/restore operations are
executed within the attestables, while the synchronise operation is executed in the PBB. The
use of attestables for executing sensitive document–related operations, without exposing them
to the PBB, guarantees privacy.

6.3. Strong Timeliness

We defined timeliness in Section 2.1 as a facility offered to the participants to cancel the pro-
tocol immediately and unilaterally. We will use Figures. 6 and 7 to explain how timeliness can

Anais do SBSeg 2025: Artigos Completos

12



be used by Alice and Bob in FEWD.

Figure 6 shows the four paths that can develop when Alice posts firstly (see also
Fig. 5). Another set of four similar paths develops when Bob posts firstly, we do not dis-
cussion them. The symbol “*” means any token posted by Alice or Bob or no token posted
at all. These tokens are irrelevant because they have no effect in reaching the final outcome:
either Exchange cancelled or Exchange successful.

Sync_A Sync_B

Sync_A Cancel_B

Sync_A Cancel_A

Cancel_A

Sync_A immediately 
followed by Sync_B

T1 T2 T3

path 1: Exchange
successful at T2

path 2: Exchange
cancelled at T2

path 3: Exchange
cancelled at T2

path 4: Exchange
cancelled at T1*

time

*

*

*

irrelevant tokens

Figure 6. Post of cancel tokens to guarantee timeliness at synchronisation.

Figure 6 shows that Alice can use token Cancel_A to cancel, admittedly, under certain
restrictions that materialise when she changes her mind after posting Sync_A. Bob can do the
same using Cancel_B. Let us examine some developments. Path 4 illustrates that if Alice
has not posted any token, she can post Cancel_A to cancel categorically; tokens posted at
T2 or later or no additional tokens posted will have no effect on the outcome. Path 3 shows a
cancellation under a restriction. Alice firstly posts Sync_A to agree to the exchange; however,
she changes her mind and posts Cancel_A; Alice’s cancellation takes effect only because Bob
has not posted Sync_B yet. If Bob posts Sync_B before Alice posts Cancel_A, Cancel_A
becomes irrelevant as in path 1. Path 2 shows the immediate effect of Bob’s cancellation; Alice
posts Sync_A early with the intention to continue the exchange, but Cancel_B spoils her
plans.

Figure 7–a shows the timelines of path 2 of Figure 6. The interval before posting
Sync_A at T1 is safe for Alice, i.e., she is not at risk of losing her item. T1–T6 is risky for
Alice: she cannot cancel the protocol categorically or abandon it. She needs to wait until T6.
She is safe beyond T6, after learning that Bob has cancelled. In fact, Alice is safe from T4

onwards, but she does not know yet. T2–T4 is an interval of uncertainty for Alice, the develop-
ment depends on Bob. Bob remains safe all the time: he takes advantage of timeliness at T3 to
cancel and abandon the protocol without bothering to retrieve the tokens.

Figure 7–b shows path 3 where Alice is safe before posting Sync_A at T1; she enters
a risky interval at T1; she executes the retrieve operation at T4 but she retrieves only her own
Sync_A token because Bob has posted nothing. Alice repeats (shown as “...”) retrieve several
times with the same disappointing result. At T5 she loses her patience and resorts to timeliness
to free herself from the situation. She leaves the risky interval at T8 when she retrieves Sync_A,
Cancel_A and learns that she has cancelled the protocol. Alice’s interval of uncertainty is not
shown explicitly but covers T1-T8. Bob takes advantage of timeliness too. He does absolutely

Anais do SBSeg 2025: Artigos Completos

13



nothing and remains always safe. b) is an example of how our simplified implementation
partially impacts timeliness: it cannot develop b) because it does not include code for Alice to
execute retrieve (T4) repeatedly. The restriction can be lifted but at complexity cost.

att_Batt_A

Sync_A

PBB

Alice’s
uncertainty Cancel_B

retrieve
Sync_A,

Cancel_B

risky interval
safe interval

Legend:
T1

T2

T3
T4
T5T6

att_Batt_A

Sync_A
PBB

T1 T2

a) b)

retrieve
Sync_A T3

...
Cancel_A T6
retrieve
Sync_A,

Cancel_A

T7

T4

T5
T8

Figure 7. Timeliness with safe, uncertain and risky intervals.

7. Related Work

Table 1. TTPs used in fair exchange protocols and protocols’ properties.

Feature [Brickell 1988] [Pinkas 2003] [Avoine 2004] [Asokan 2002] [Zhang 2024] FEWD
Synchronizing TTP − − − ✓ ✓ ✓
Split TTP − − ✓ − − ✓
Strong Fairness − − − ✓ ✓ ✓
Strong Timeliness − − − − − ✓
Privacy ✓ ✓ ✓ − − ✓

Our work takes inspiration directly from the description of Fair Exchange Without Dis-
putes (FEWD) [Molina-Jimenez et al. 2024] and aimed at providing the first implementation to
demonstrate that FEWD is implementable with current technologies without compromising the
properties that it is expected to deliver. Another source of inspiration was Avoine’s work (see
for example [Avoine and Vaudenay 2004]) where the use of trusted execution environments is
suggested to deposit and lock documents under exchange. Our work appreciates the idea and
progresses it with actual implementation. Also, in the original work, presumably to avoid the
use of a stateful TTP, they use a probabilistic protocol (KIT) to synchronise, as a result, they
achieve weak fairness, which is acceptable in some applications but not in others; we cover
the neglected applications with the inclusion of the stateless party (a public bulletin board) to
synchronise and provide strong fairness. In addition, our discussion on the properties of fair
exchange protocols (strong fairness, timeliness) and of the items (idempotent versus unique)
under exchange is grounded on Asokan’s work [Asokan et al. 2002] — our PBB is a simplified
version his off–line TTP.

From Pagnia’s results [Pagnia and Gartner 1999] we have learnt that without the in-
volvement of a TTP an exchange protocol cannot guarantee strong fairness. It follows that the
properties of an exchange protocol depend on how the TTP, if included, is used. It is worth
remarking that though Pagnia does not mention it explicitly, he refers to a TTP used for the
execution of the synchronisation operation (the crucial operation to achieve consensus in the

Anais do SBSeg 2025: Artigos Completos

14



exchange); we call it a synchronising TTP. Also, implicitly, he refers to a TTP, that indepen-
dently, is able to collect information about the global state of the exchange; this precludes pairs
of remotely separated TTPs used in some protocols. We will use Table 1 to show the point and
to summarise the properties of the protocols that have motivated our work. In the table, we have
placed the protocols that do not use synchronising TTPs on the left side of the double line. The
fourth row of the table shows that none of these protocols can guarantee strong fairness. An
examination of the cited works will reveal that in these protocols, the synchronisation operation
is executed by gradual release —a protocol in its own right. The inclusion of gradual release in
these protocols compromise timeliness: the parties cannot abandon the execution of the grad-
ual release protocol at arbitrary times, once initiated, a party needs to run the gradual release
to completion. The reason for this is that gradual release is a peer–to–peer stateful protocol
that gradually progresses to end states. The preclusion of a synchronising TTP allows these
protocols to guarantee privacy (see the last row of the table) in a simpler and natural manner.

In contrast, the protocols on the right side of the double line use a synchronising TTP
and, therefore, are able to guarantee strong fairness. The last row of the table shows that neither
Asokan 2002 nor Zhang 2024 can guarantee privacy, due to the use of TTPs that execute (in
addition to synchronisation) operations that expose to them sensitive information.

In contrast, thanks to the use of a split TTP that includes a component used only for
the execution of the synchronisation operation, FEWD (our protocol) is able to guarantee pri-
vacy. It also guarantees timelines in a simpler manner, to appreciate this point, it might help
to contrast the simplicity of the cancellation operation shown in Fig. 7 against the cancellation
operation of [Asokan et al. 2002].

8. Future Work

Several implementation and fundamental research tasks remain pending. Incidentally, the syn-
chronise operation in FEWD deserves further analysis. In Figure 4, it is implemented with
the help of the PBB, as a result, it guarantees strong fairness and privacy; yet we are aware
that other synchronisation mechanisms can be used to release or lock the items forever. Ac-
cordingly, we are planning to replace the PBB–based synchronisation by other synchronisation
protocols and compare their properties and performance. In particular, we will implement and
use protocols that guarantee only weak fairness like gradual release like the Keep in Touch
protocol [Avoine and Vaudenay 2004]. As explained in [Molina-Jimenez et al. 2024], fair ex-
change raises legal implications that we are planning to study: for example, regarding privacy,
what are the legal implications of using protocols like FEWD for exchanging illegal items? Our
future work includes also the formal validation of the protocol (e.g. by model–checking) and
systematic testing of the current and new versions of the implementation using different case
studies. We also intend to conduct a deeper performance metrics analysis and carry out scal-
ability testing. Another avenue on our agenda is to use a blockchain with a smart contract (in
place of the stateless PBB) to implement the execution of the synchronisation operation; pre-
liminary observations suggest that a PBB with storage and computation facilities for building a
global view (in the PBB) of the protocol will simplify the storage and analysis of the token log
and the whole protocol. The inclusion of a blockchain is likely to introduce further engineering
and cryptographic challenges.

Anais do SBSeg 2025: Artigos Completos

15



9. Conclusions

The related work section reveals that research on fair exchange was intense in the 80s but
recently quite. Why are we re–birthing the topic right now.? Two reasons have motivated
our work. Firstly, we believe that online transactions where items are swapped directly (i.e.
without money mediation) will increase with data proliferation; in open science for example,
researchers frequently exchange data, in social networks, participants frequently swap personal
photos, addresses and locations. Secondly, we believe that the availability of technologies for
instantiating TEE simplifies the fair exchange and other similar problems; and can help in
building simpler protocols with better properties. The Python implementation discussed here
consists of about 1570 LOC. To evaluate the proposed scheme, we conducted tests with results
demonstrated that the proposed protocol is capable of ensuring strong fairness, privacy and
timeliness. Our current results have raised questions about the security of the TEE; we can
ask if the items left locked forever in the attestable when the protocol is cancelled, will persist
inaccessible forever or only temporary safe, that is, till Bob hacks his attestable and extracts
Alice’s item. There are other open questions. For example, to what extent the description of
items used in verify give away the items? From our implementation experience, this question
seems more difficult than synchronisation. We leave these questions for future work.

Availability of artifacts

The source code that implements the synchronisation protocol of FEWD is publicly available
at: https://github.com/gca-research-group/fair-exchange-v1.

Acknowledgements

Research partially funded by the Co-ordination for the Brazilian Improvement of Higher Edu-
cation Personnel (CAPES) and the Brazilian National Council for Scientific and Technological
Development (CNPq) under project grants 311011/2022-5, 309425/2023-9, 402915/2023-2.
EPSRC/EP/X015785/1 (G115169) funded Carlos Molina and Jon Crowcroft. Thanks to Dann,
Hazem and Mansoor from the Centre for Re-decentralisation (CRDC) of Univ. of Cambridge.

References

Almutairi, O. and Nigel, T. (2019). Performance modelling of an anonymous and failure re-
silient fair-exchange e-commerce protocol. In Proceedings International Conference on
Performance Engineering, pages 5–12.

AmazonAWS (2025). AWS Nitro system. https://aws.amazon.com/ec2/nitro/nitro-enclaves/.

ARM limited (2022). ARM morello program. https://www.arm.com/architecture/cpu/morello.

Asokan, N., Schunter, M., and Waidner, M. (1997). Optimistic protocols for fair exchange. In
Proceedings of the 4th ACM Conference on Computer and Communications Security, pages
7–17.

Asokan, N., Shoup, V., and Waidner, M. (2002). Optimistic fair exchange of digital signatures.
IEEE Journal on Selected Areas in communications, 18(4):593–610.

Avoine, G. and Vaudenay, S. (2004). Fair exchange with guardian angels. In International
Workshop on Information Security Applications, pages 188–202. Springer.

Anais do SBSeg 2025: Artigos Completos

16



Brickell, E. F., Chaum, D., Damgård, I. B., and van de Graaf, J. (1988). Gradual and verifiable
release of a secret. In Proceedings Advances in Cryptology, pages 156–166.

Costan, V. and Devadas, S. (2016). Intel SGX explained. Cryptology ePrint Archive.

Dierks, T. and Rescorla, E. (2008). RFC 5246: The transport layer security (TLS) protocol
version 1.2.

Huang, Q., Wong, D. S., and Susilo, W. (2014). P 2 OFE: Privacy-preserving optimistic fair
exchange of digital signatures. In Topics in Cryptology–CT-RSA 2014: The Cryptographer’s
Track at the RSA Conference 2014, San Francisco, CA, USA, February 25-28, 2014. Pro-
ceedings, pages 367–384. Springer.

Kaplan, D., Powell, J., and Woller, T. (2016). AMD memory encryption. White paper, 13:12.

Long, E. S., Nguyen, B., Pitropov, M. A., and Torres, E. A. (2017). Blackboard architecture
style. https://student.cs.uwaterloo.ca/ cs446/1171/Arch Design Activity/Blackboard.pdf.

Lou, J. (2023). Sensitive Data Risks Analysis in Emerging Online Platforms. University of
Louisiana at Lafayette.

Markowitch, O., Gollmann, D., and Kremer, S. (2003). On fairness in exchange protocols. In
International Conference Information Security and Cryptology—ICISC, pages 451–465.

Molina-Jimenez, C., Toliver, D., Nakib, H. D., and Crowcroft, J. (2024). Fair Exchange:
Theory and Practice of Digital Belongings. World Scientific.

Pagnia, H. and Gartner, F. C. (1999). On the impossibility of fair exchange without a trusted
third party. Technical report, Darmstadt University of Technology.

Pinkas, B. (2003). Fair secure two-party computation. In Proceedings International Conference
on the Theory and Applications of Cryptographic Techniques, pages 87–105.

Pinto, S. and Santos, N. (2019). Demystifying arm trustzone: A comprehensive survey. ACM
computing surveys (CSUR), 51(6):1–36.

Ray, I., Ray, I., and Natarajan, N. (2005). An anonymous and failure resilient fair-exchange
e-commerce protocol. Decision Support Systems, 39(3):267–292.

Winn, J. K. and Wright, B. (2000). The law of electronic commerce. Wolters Kluwer.

Zhang, L., Kan, H., Qiu, F., and Hao, F. (2024). A publicly verifiable optimistic fair exchange
protocol using decentralized CP-ABE. The Computer Journal, 67(3):1017–1029.

Anais do SBSeg 2025: Artigos Completos

17


