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Abstract. Shor’s algorithm [Shor 1994] is the main threat to classical public-
key cryptography. Since its introduction in 1996, NTRU and its variants aim to
develop cryptographic algorithms that are secure even against quantum com-
puters. In this work, we study the matrix NTRU over integral domains proposed
in 2023. We found that there is an error on the condition to avoid decryption
failures and the key generation process is not practical due to severe limitations
on matrix inversion. We propose a corrected statement for the decryption failure
theorem and an expansion of the set of solutions when dealing with the problem
of inverting matrix in M, (Z[\/—3]) that makes the key generation significantly
faster.

1. Introduction

Shor’s algorithm [Shor 1994] is the main threat to classical public-key cryptography.
Since it can efficiently factor large integers and compute discrete logarithms, Shor’s algo-
rithm leads directly to attacks against well known and widely used cryptosystems such as
RSA [Rivest et al. 1978] and Eliptic Curve Cryptography ([Koblitz 1987]], [Miller 1985]).

The combination of Shor’s algorithm and quantum computers, as well as the ap-
plication of Grover’s algorithm [Grover 1996], led the cryptographic community to de-
velop what is called today’s post-quantum cryptography (PQC). Since then, designing
robust cryptographic schemes underpinned on mathematical problems that are intractable
by both quantum and conventional computers is a fast growing research topic and the
development of PQC has taken off in the last decade.

The National Institute of Standards and Technology (NIST) launched a PQC stan-
dardization project in 2016 [NIST]]. The competition aimed to select and standardize
cryptographic algorithms that are secure even against quantum computers. After four
rounds and six years, NIST selected one algorithm for public-key encryption/KEM and
three algorithms for digital signature. Two lattice-based systems have progressed sig-
nificantly in the NIST Post-Quantum Cryptography standardization process [NIST ]: the
NTRU [Chen et al. 2020]] and the NTRU Prime systems [Daniel J. Bernstein et al. 2024,
both based on the original NTRU system from [Hoffstein et al. 1998]].

Lattice-Based Cryptography relies on the difficulty of solving lattice-related prob-
lems, which are believed to be hard to solve even for a quantum computer. Among those
problems, we have the NTRU-related ones like SVP (Shortest Vector Problem) and CVP
(Closest Vector Problem), both believed to be quantum-resistant.

Introduced at CRYPTO’96, the NTRU cryptosystem has since undergone ex-
tensive analysis and numerous extensions. These include variations in polynomial
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coefficients and the adoption of matrix-based structures. Comprehensive reviews
can be found in works such as [Singh and Padhye 2016, [Salleh and Kamarulhaili 2020,
Mittal and Ramkumar 2022]]

Regarding NTRU and the NIST PQC standardization process, a variant called
NTRUEncrypt and its relatives were submitted and NTRUEncrypt was selected as an al-
ternate candidate, which means that it wasn’t standardized at first, but it is considered
valuable and can still be used or standardized later. The growing interest on NTRU algo-
rithm is because it has interesting properties, such as speed and small key sizes compared
to some other PQC algorithms, resistance to both classical and quantum attacks, and easy
adaptation into newer variants.

Since the introduction of NTRU, many variants have been proposed in the litera-
ture [Salleh and Kamarulhaili 2020]. The first NTRU generalization using matrices was
introduced in [[Coglianese and Goi 2005]], where key generation, encryption and decryp-
tion operate over matrices whose entries are polynomials. In 2008, [Nayak et al. 2008]]
proposed a matrix-based system as a variant of NTRU using only matrices with integer en-
tries, replacing the arithmetic of truncated polynomials with a simple modular arithmetic
on matrices. This new system, called matrix NTRU, was subject to some further analysis
and even suggested for real data applications. However, [Sousa and Neto 2024] showed
that Matrix NTRU is completely insecure and should be avoided in practical applications.

More recently, [Wijayanti et al. 2023]] developed a variant of NTRU which is
based on matrix arithmetic defined over Z[v/—3] called Matrix NTRU over Integral Do-
mains. We can say that this system is a Matrix NTRU variant, where the authors replaced
the underlined ring of the entries of the matrices. Of course they had to make some
changes in the key generation process and the approach of decryption failures.

When diving into mathematical details and in implementing
[Wijayanti et al. 2023]’s cryptosystem, we found out that there is an error on the
condition to avoid decryption failures and the key generation process is not practical due
to severe limitations on matrix inversion.

Our main contribution to matrix NTRU over integral domain is twofold.
First we made a more intensive simulation study and found a counterexample to
[Wyjayanti et al. 2023, Theorem 2] and these results, together with [Sousa and Neto 2024,
Proposition 1], led us to propose a corrected statement for the decryption failure theorem.
Second, we found that the conditions from the proof of [Wijayanti et al. 2023, Theorem
1] used in their paper for the key generation process are overly restrictive making it very
inefficient (around 14 minutes to generate keys for matrix of dimension 7 x 7). To solve
this problem we propose the expansion of the set of solutions when dealing with the prob-
lem of inverting matrix in M, (Z[/—3]) lowering the time for key generation of 7 x 7
matrices to less than one second.

The rest of the paper is organized as follows. In Section[2] we give some necessary
background on Algebraic Number Theory with respect to modular algebra over matrices
as used in [Wiayanti et al. 2023]. In Section [3| we show how the algorithm works in
details and discuss their decryption failure theorem and the limitations of the key gener-
ation process. In Section [ we give a detailed example that abides to the conditions of
[Wyayanti et al. 2023, Theorem 2] to avoid decryption failure, but the ciphertext does not
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correctly decrypts to the original message. Then we correct the decryption failure condi-
tion and make an intensive simulation study on critical parameters to support the result.
In Section [5] we dive deeper into the conditions for key generation, propose an exten-
sion of the solution space for finding matrix inverses and conclude with an experimental
study showing that this extended process not only works but is significantly faster than
[Wijayanti et al. 2023|]’s original algorithm. Finally, we conclude in Section [6] and give
further research directions.

2. Background

Let’s consider the ring
Z[v-3] ={a+bvV-3,a,b € Z}.

From Algebraic Number Theory, it is well known that Z+/—3] is an integral domain. For
any o = a + by/—3 € Z[v/—3] and p a prime number, we define

a mod p=(a modp)+ (b mod p)v-3.

We define M,,(Z[+/—3]) as the set of n x n matrices whose coefficients belong to
Z[v/-3].
As is common in cryptosystems like NTRU and its variants, we are going to work

with ternary elements. In the case of Matrix NTRU over Integral Domain being ternary
simply means that the real and imaginary parts of its entries are in € {—1,0, 1}.

Let p be a prime number and let

ayy ... QAip

A:

Ap1 ... QApp

be a matrix in M, (Z[v/—3]). Reduction modulo p in M, (Z[/—3]) is quite straightfor-
ward. We say that A is reduced modulo p, denoted as A mod p, if every entry in A is
reduced modulo p. Therefore

a;; modp ... ay, modp
A modp= : (1)

ap1 modp ... ap, modp

We can also define sum and multiplication of matrices modulo p. Let A and B be
matrices in M,,(Z[v/—3]). Operation A + B mod p is done component-wise, so we can
define

(A+B) modp=(A modp+ B modp) mod p.

In the same way, multiplication is defined as

(AxB) modp=(A modpxB modp) mod p.
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A careful reader will notice that the modulo p operation is not always canonical.
That is common in NTRU-like cryptosystems, because of what is called center lift oper-
ation, which is necessary for the decryption process work properly. In that case, it can
be useful to consider a non-canonical representation of the elements on the rings on what
the coefficients of the matrices belong to. Therefore, when we are dealing with a prime

modulus, we have
p—1 p—1
F,=<-
P { 2 7 7 2 }

and for a composite number, we have

Zf:{—g+1wn,g}.

Since modular arithmetic over the rings M, (Z[\/—3]) is crucial for the Matrix
NTRU cryptosystem over Integral Domain work properly, we need to address the question
of how to invert matrices modulo p in that ring. First of all, a matrix A in this ring
is invertible modulo p if and only if p and the determinant of A are relatively prime
[Wijayanti et al. 2023]]. If that is the case, then there exists a (unique) matrix B such that
AB = BA = I,, in M,,(Z[/=3]), where I,, is the n x n identity matrix. The matrix B is
called the inverse of A modulo p and denoted A~ mod p.

3. Matrix NTRU Cryptosystem over Integral Domain

3.1. How the algorithm works

As we already know, Matrix NTRU over Integral Domain cryptosystem is defined over
matrices whose coefficients are in the ring Z[v/—3|. We have also noticed that we have to
deal with the question on how to invert matrices in a correct and efficient way.

Let A € M, (Z[\/—3]) and suppose det(A) # 0. If gcd(det(A),p) = 1, then A is
invertible modulo p and we can write

A™Y mod p = (det(A))'Adj(A),

where Adj(A) represents the adjoint matrix of A. The previous result is a classical one
regarding matrix theory and the interested reader can see [Hungerford 2012]] for a proof.

The method that can be used to invert the matrices is really important if
one wants to develop a secure and efficient key generation process. The authors in
[Wijayanti et al. 2023]] modify the algorithm in the original development of Matrix NTRU
cryptosystem [Nayak et al. 2008]] to replace the condition for matrix inversion. Although
their choice brought interesting properties, we show that it has serious limitations with a
huge impact on the speed of key generation, as we will show later in this work.

In what follows, let £(d) be the set of all matrices in M, (Z[/—3|) with d co-

efficients equal to 1, d coefficients equal to -1 and n? — 2d entries equal to zero. In
2

2
[Wijayanti et al. 2023]], they take the values for d near " and we follow them to keep

our results comparable to theirs. As an example, we use d = 5 for n = 3 just like them
for some specific experiments here, although the precise d value should be 6 according to
the formula.

Matrix NTRU over Integral Domains works as follows.
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1. Key Generation: Let p and ¢ be prime numbers. The private and public keys are
n x n matrices randomly chosen from the set £(d). First, we choose a pair of
ternary matrices F, GG such that /' mod p and ' mod ¢ are invertible. Then we
compute the matrices F,, = F~' mod p and F, = F~' mod ¢. The parame-
ters F, G, F,,, I, should be kept secret. Now, we can compute the public key by
performing the calculation

H =pF,G mod q.

2. Encryption: To encrypt a message, we encode it as a matrix M whose coefficients
are in the form a + by/—3 with a,b € F,. Next, we generate a random ternary
matrix R € M, (Z). Now, we compute the ciphertext as

E=HR+ M mod q.
3. Decryption: To decrypt, we compute
A=FF modq

applying the center-lift operation, which means that all A coefficients have the
form a + by/—3 with a,b € F,. Now we compute B = F,A mod p and the
calculation of

C =F,B modp

gives the desired plaintext.

The reader who wants to be sure that the decryption algorithm works can take a
look at [Wijayanti et al. 2023]].

3.2. Decryption failure in detail and Key generation process

Depending on the parameters selected, there can be decryption errors when operating on
Matrix NTRU over Integral Domains just like other NTRU variants cryptosystems and
even NTRU itself. That can happen because matrices C' and M, as defined on previous
subsection, are not always equal and we say there is a decryption failure in that case.
This is an important issue concerning any probabilistic cryptosystem since attackers can
take advantage of it, recovering secret data by exploring those decryption failures (see
[Jaulmes and Joux 2000] or [Gama and Nguyen 2007]). This justifies the importance of
having sufficient conditions under which decryption failures are avoided.

We notice that the authors [Wijayanti et al. 2023|] did address that question, al-
though there are corrections to perform regarding decription failures on Matrix NTRU
over Integral Domains.

Theorem 1 (Theorem 2 in [Wijayanti et al. 2023, Incorrect). If the parameters n,p,q,d
satisfy
q> 3V7 np,

then the system decrypts correctly.

As we demonstrate in the next section, Theorem (1] is incorrect, as shown by a
counterexample. Fortunately, we are able to correct the decryption failure condition and
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validate it extensively, particularly near the boundary cases, to support the new claim
alongside the mathematical proofs.

Regarding the key generation process, although the method the authors
[Wijayanti et al. 2023]] applied for matrix inversion is correct, we discovered that a slight
modification can significantly accelerate the generation of the coefficients in Theorem 1
from [Wyjayanti et al. 2023].

In a short summary, we could say that the authors in [Wijayanti et al. 2023|] made
a severe restriction when dealing with the generation of the coefficients on the Extended
Euclidean Algorithm in the ring Z[v/—3]. We notice that the same is true regarding the
determinant of the private key /. We show how to speed up the key generation by letting
the coefficients o and /3 in Theorem 1 of [Wijayanti et al. 2023] take values in Z[\/—_?)] as
well as the determinant of the matrix F'.

4. A Counterexample and Correction to the Decryption Failure Theorem

In such public key system it is advisable to provide necessary conditions under which
decryption failure does not happen. An attempt to provide such condition was done in
[Wijayanti et al. 2023]] and is described in Theorem I} For n = 3,p = 3 this condition
boils down to ¢ > 71.44. The authors present examples where they tested the values for
n = 3,p = 3 and ¢ varying from 13 to 673, but they tested the encryption and decryption
process only 100 times for each case which was not enough to spot inconsistencies in
their result. They spotted no errors for ¢ = 73 which abides to the condition ¢ > 71.44
but as we show in Example q = 73 gives indeed decryption failure when tested more
intensively.

Example 4.1 (Counterexample to Theorem[I)). This is an example of a decryption failure
for N = 3,p = 3,q = 73,d = b5, where the chosen parameters satisfy the theorem’s
hypotheses and should, in principle, permit correct decryption of the ciphertext. However,
as we detail below, this does not occur. The private keys chosen are F and G:

0—+/-3 0 ~1 —v/=3 —1++-3 0
F= -1 1-+y/-3 —-1| G=| 0 —1 1
V=3 1+vV/-3 1 V=3 1—-v=3 1++/-3

The corresponding inverses I, and F are:

2 2+42V=3 2+V-3
Fy=[1+2/-3 0 14 2v/-3
2+v-3 V-3 2v/-3

[ 37 18 +18v/—3 55+ 18y/—3
F,= |55+ 18V—-3 0 95 + 18y/—3
|72+ 36v/—3 54+ 55v—3 54+ 18y —3]

The public key is H = pF,G:

[16 + 161/=3 19+ 16/=3 57+ 54/=3
H= |32+35v—-3 0 3

48 + 60/ —3 60 + 54v/—3 16 + 16+/—3 ]

6
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Consider we want to encrypt the message M using a random matrix R:

—V=3 V=3
M=|] 1 —1++-3
—V=3 V=3

The corresponding ciphertext is computed as E = pHR + M (mod q):

25 +12y/—-3 574 64v/-3 10+ 69v—3
E = [45+32y—-3 72+ 10v/—-3 40+ 32y/—3
394+ 50v—3 40+ 14v/—-3 524 67v—3

To decrypt, we first compute A = FE (mod q):

M0+71v—=3 6+2v-3 9+69v—3
A= [4+T71v-3 5+6y-3 1423
25+6v—-3 36+T7yv—-3 8+3v-3

and

—3-2V"3 6+2/=3 9—4/-3

Acenter,lljﬂ = 4 — 2\/ -3 5+ 6\/ -3 1+2v-3

25 +6v/—3 36+4+7v—-3 8+3v-3

Then we compute B = A (mod p):
V3 23 23 V3 V3 V3
B=|1++v-3 2 1+2v-=3 Beenterain = |1 ++v—3 —1 1—+v-3
1 V=3 2 1 V=3 —1

Finally, we compute C' = F,B (mod p):

2v=3 1 1+2V/=3 V=31 1-
c=| 1 0 2 Coomerip=| 1 0 -1
2v/=3 0 0 —V=3 0 0

Note that C' # M.

We found that [Wijayanti et al. 2023|] did not took into account the fact that de-
cryption failures can occur if any real or complex component of the matrices involved
during decryption is not smaller than ¢/2.

A corrected statement of a necessary condition for decryption failure will be given
in the next Section which also includes further experimental investigation of boundary
cases to strengthen and test this new condition. The corrected condition requires ¢ > 96,
1.e., the minimum value of ¢ to create a system without decryption failure is ¢ = 97.
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4.1. Correcting the decryption failure condition

Theorem 2. Suppose that the system parameters n, p, q satisfy

-1
q > 8n<p+ [p—-D
2
Then the system decrypts correctly.

Proof. We first determine the shape of the calculation of A during decryption. Consider-
ing that
A=pGR+ FM( mod q)

we need to restrict its largest possible entries of pGR + F'M.

More specifically, none of the components (real or imaginary) of any entry
of the above matrix should exceed ¢/2 in order for the decryption to work (see
[Silverman et al. 2008, Proposition 6.48]). This is a direct consequence of the fact that in
the matrix NTRU over integral domain, the module ¢ operation for matrices was defined
component-wise in (I)).

Since the product of the matrices involves products of elements in Z(v/—3) we
start by considering the sets
T, ={-1,0,1}

and
’]I‘k:{—k:,...,O,...,k:}, ke Z.

Given arbitrary o = a + bv/=3, 8 = ¢ + dv/—3 € Z[/—3] we have
af = (a+bv/=3)(c+ dvV—3) = ac — 3bd + (ad + bc)v/—3,
Ifa,b,c,d € T, then
max{ac —3bd} =4 and max{ad+ bc} =2

so the maximum absolute value of the entries of a3 in this scenario is 4. In a similar way,
Ifa,b € Ty and ¢, d € T}, then

max{ac — 3bd} =k —3(—k) =4k and max{ad+bc} =k +k =2k

so the maximum absolute value of the entries of o3 in this second scenario is 4k.

Now we will bound the largest value of the components of the matrices involved
in
A=pGR+ FM mod q.
Since both G and R are in £, their entries are elements whose components are in
T, and therefore the largest entry of pG R is 4np. Now for the product F'M, the entries

of F have components in T, but the entries of M have components in T, with k = [’%1 .
Therefore, by the same argument we see that the largest entry is n(4[2]).
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Putting it all together, the largest entry in pGR + F'M is 4n(p + k) and since it
should be smaller than ¢/2 ([Silverman et al. 2008|, proof of Proposition 6.48]) the de-
cryption failure condition boils down to

—1
q/2>4n(p+ [p—Z —D,
which completes the proof. [

For p = 3,n = 3 the condition is ¢ > 96 which differs from the one found
by [Wiayanti et al. 2023]] ( ¢ > 71.44 and it is now clear why the previous incorrect
condition would be prone to decryption failure.

4.2. Experimental Support for Theorem [2{ Correctness in Boundary Scenarios

In order to assess empirically the correctness of our new decryption failure Theorem
it is crucial to test it at the boundary, which the decryption failure condition is tested
more often. Fixing p = 3,n = 3 in Theorem [2] gives the condition ¢ > 96. Since ¢
must be prime, the values ¢ = 89 and ¢ = 97 are particularly interesting: for ¢ = 89,
decryption is expected to fail at some point, while for ¢ = 97, no failure should occur.
The example below illustrates the case ¢ = 89, listing all matrices generated that satisfy
the system’s hypotheses and demonstrating that decryption fails. For ¢ = 97 we do
intensive encryption and decryption testing.

Example 4.2 (Testing boundary values of Theorem [2). Let p = 3,n = 3,¢q = 89,d = b.
The value q = 89 corresponding to a prime slightly smaller than the required restriction
q > 96, which tell us there might be a decryption failure. The private keys chosen are

—1-y/=3 1-y=3 —-1-=3
1 V=3 1
1 0 0

F =

and

—1-v/=-3 1—-v/-3 —-1-+/-3
G= 0 1 1
V=3 0 1

The corresponding inverses I, and Fy are:

0 0 1 0 0 1
Fob=| 1 1+y=3 0| F,=| 4 44444y/=3 0
2V=3 14+2/-3 2 45y/=3 444 45\/—3 88

The public key is H = pF,G'
3v—3 0 3
H = |46 4+ 46v/—3 86 0
494+ 40v/—-3 3+3v—-3 0

9
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Consider we want to encrypt the message M using a random matrix R:

1—+v-3 0 0 l—v-3 v-3 1
M=|-1-+v-3 0 V=3 R=|-1-v-3 0 -1
l—v-3 —-1+v-3 1 1—+v-3 1 0

The corresponding ciphertext is computed as E = pHR + M (mod q):

13 + 88v/—3 83 3V =3
E=|8+2y—-3 40+46v—-3 49+47v-3
87+ T73v/—=3 574+ 50V/—-3 47+ 37y -3

To decrypt, we first compute A = FE (mod q):

41 10+83v—3 85
A= |54+80v-3 2++v-3 84
13 + 88y —3 83 3v—3

and
41 10 -6v—-3 -4
Acenter,lift = |[5—-9V-3 2443 -5
13 —+v-3 —6 3v—3
Then we compute B = A (mod p):
2 1 2 —1 1 —1
B= p 24v=3 1| Bumeun=| -1 —1+v=3 1
1+2y-3 0 0 1—+v-3 0 0
Finally, we compute C' = F,B (mod p):
1+2v-3 0 0 1—+v-3 0 0
C= |1+ 2\/ -3 0 \% -3 Ccenter,lift = |1- V -3 0 \% -3
1 24+v-3 1 1 -1+v-3 1

Note that Ciepier i 7 M (specifically at entries (2,1) and (2,2)).

The value for ¢ = 97 is worth being intensively tested. We had crafted two sce-
narios. The first one has private keys, messages M and random R’s crafted in order to
maximaze the magnitude of the entry at position (1,1) of the matrix pGR + F'M to force
a possible decryption failure. We tested 107 times and no decryption failure were found.
We have also devised another experimental setting where both keys and messages were
chosen randomly in £(d), and no decryption failure appeared after running the experiment
10° times.

We have also devised an experiment varying the values of n and d. The value of ¢
was choosen to be the smallest prime satysfying the conditions of Theorem 2] The results
are shown in Table

10
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Table 1. Decryption failure rate for the NTRU-like matrix scheme using the faster
and more general key generation process. Here, g is the smallest prime sat-
isfying Theorem@, and d is approximately %nQ as in [Wijayanti et al. 2023].

n q d | Number of Decryption Failure
3197 ] 6 0
4 | 131 | 11 0
5 (163 | 17 0
6 | 193 | 24 0
7 1227 | 33 0
10 | 331 | 67 0
15 | 487 | 150 0

5. Key Generation: Limitations, Corrections, and Efficient Approaches

5.1. Limitations of Existing Key Generation Methods and challenges

The key generation process proposed in [Wijayanti et al. 2023|] for the matrix NTRU over
integral domain require very strict conditions on the determinant of /' in order for it to
be invertible modulo p and q. They require the existence of integers o and [ such that
adet(F') + fp = 1, and similarly for ¢. This led to a very slow key generation process,
which was reported in [Wijayanti et al. 2023, Table III], where key generation for n = 7
takes around 14 minutes on a personal computer.

The authors argue that such slow process is probably due to the non existence of
the determinant inverse modulo p or ¢, but we show that if one allows both « and /3 to be
in Z[+/—3], then the inverse of F'is not only fast to calculate but it exists in most cases. In
fact, valid keys can be generated for n = 7 in 0.01 seconds, which significantly improves
over the process proposed in [Wijayanti et al. 2023].

5.2. Efficient Key Generation Using the Extended Euclidean Algorithm in Z[+/—3]
and a simulation study of its efficiency

A critical step in the Matrix-NTRU cryptosystem over the ring Z[/—3] is the generation
of a matrix F' € M,,(Z[v/—3]) that admits modular inverses modulo two distinct primes
p and ¢. That is, we require £'~! mod p and F~! mod q to exist in order to compute the
private and public key pair. This condition depends directly on the invertibility of det(F’)
in the ring Z[v/—3].

In [Wyjayanti et al. 2023]’s approach, this invertibility was achieved by requiring
the solution of the Diophantine equation

adet(F)+ fp=1

with «, 5 € Z. This restriction dramatically impacts efficiency: since det(F') lies in
Z[v/—3], finding integer coefficients satisfying the above equation becomes increasingly
unlikely as n grows, leading to impractical key generation times. For instance, forn = 7,
it was reported that generating a valid matrix /' could take over 10 minutes, severely
limiting scalability (see [Wijayanti et al. 2023, Table III]).

To overcome this bottleneck, we propose lifting the restriction that «, 5 must be
integers. Instead, we solve the extended Euclidean equation in the domain Z[v/—3] itself.
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That is, given a prime p, we apply the extended Euclidean algorithm in Z[v/—3] to find
a, B € Z[v/—3] satisfying:
adet(F)+ fp = 1.

When such « exists, we define the modular inverse of ' modulo p as:
F~' mod p = aadj(F),

where adj(F') denotes the adjugate matrix of F'. In the case the equation resolves to —1,
we take —aadj(F’) as the modular inverse.

This generalization dramatically improves efficiency: most matrices F' with
nonzero determinants in Z[y/—3] admit modular inverses modulo p and ¢ under this ex-
tended notion. As a result, key generation becomes not only feasible but fast, even for
larger values of n, as the experimental results in Table [2|demonstrate.

We performed a Simulation with Generalized Key Generation using parameters
that abide to the Corrected Decryption Failure Bounds from Theorem 2] The results are
shown in Table [2| where we see that new key generation not only outperforms the initial
approach suggested in [Wijayanti et al. 2023]] but makes it fast for moderate values of n.
It is worth noting that the values of p, ¢ did not significantly affect the running time of
the system as reported in [Wijayanti et al. 2023]] and therefore we think this comparisons
makes sense.

Table 2. Comparison of key generation times (in seconds) between the ref-
erence method ([Wijayanti et al. 2023]) and the method presented in this
work. Average time execution is presented for our work based on 1000
executions. The values for the computational time for key generation in
[Wijayanti et al. 2023]] are the correspondent ones presented in their Table
lll where it is not clear which p and g was used and therefore, we reported
their minimum time for each dimension for a somewhat fair comparison.

n q d | KeyGen [Wijayanti et al. 2023]] (s) | KeyGen THIS WORK (s)
3197 6 0.17336 0.00327
4 | 131 | 11 0.93104 0.00495
5 1163 | 17 7.33099 0.00719
6 | 193 | 24 83.7658 0.01045
7 227 | 33 766.048 0.01313
10 | 331 | 67 not available 0.03368
15 | 487 | 150 not available 0.11421

The most important lesson from Table [2]is that [Wijayanti et al. 2023]]’s approach
to generate keys for the matrix NTRU over the integral domain was overly restrictive
making it hard to find keys even for moderate values of n, but this is immediately solved
by using extended Euclidean algorithm in the integral domain Z[/—3].

6. Conclusion

We have studied the theory behind the new post-quantum system Matrix NTRU over in-
tegral domain and corrected an important result on its decryption failure condition. In
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addition, we replaced the previous approach of key generation by one that is more practi-
cal and much faster for this purpose.

Although we have made significant strides in making the matrix NTRU over in-
tegral domain more practical it is important to note that we are not recommending its
deployment at this stage. Future work should focus on a thorough analysis of its se-
curity. We believe that the system may still be vulnerable to attacks in a severe way,
particularly through the breaking of the private key matrix in individual rows combined
with an integer lattice attack using the isomorphism presented in [Monica Nevins 2010]].
This is an interesting future research question. Source code is made available at https:
//github.com/thiagopodl7/integral_domain matrix_ntru.
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