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Abstract. In 2023, Barreto and Zanon proposed a three-round Schnorr-like
blind signature scheme, leveraging zero-knowledge proofs to produce one-time
signatures as an intermediate step of the protocol. The resulting scheme, called
BZ, is proven secure in the discrete-logarithm setting under the one-more
discrete logarithm assumption with (allegedly) resistance to the Random inho-
mogeneities in a Overdetermined Solvable system of linear equations modulo a
prime number p attack, commonly referred to as ROS attack. The authors argue
that the scheme is resistant against a ROS-based attack by building an adversary
whose success depends on extracting the discrete logarithm of the intermediate
signing key. In this paper, however, we describe a distinct ROS attack on the
BZ scheme, in which a probabilistic polynomial-time attacker can bypass the
zero-knowledge proof step to break the one-more unforgeability of the scheme.
We also built a BZ variant that, by using one secure hash function instead
of two, can prevent this particular attack. Unfortunately, though, we show
yet another ROS attack that leverages the BZ scheme’s structure to break the
one-more unforgeability principle again, thus revealing that this variant is also
vulnerable. These results indicate that, like other Schnorr-based strategies, it
is hard to build a secure blind signature scheme using BZ’s underlying structure.

Keywords: Blind signature. Schnorr. ROS. Zero-knowledge proofs. Cryptanal-
VSis.

1. Introduction

Blind signatures are cryptographic schemes that allow a user to obtain a signature on
a message in such a way that the signer does not find out the actual contents of the
message. Several applications, including electronic voting [Fuchsbauer and Wolf 2024,
Fujioka et al. 1993] and e-cash [Chaum 1983], build upon the two main security prop-
erties provided by these schemes: perfect blindness and one-more unforgeability. The
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first means that it should be computationally hard for a signer, after seeing n message-
signature pairs, to correlate any pair to the specific interaction that originated it. Mean-
while, the second states that the user cannot output n 4 1 signatures after having only n
interactions with the signer.

EXISTING BLIND SIGNATURE SCHEMES. There are many blind signature schemes in
the literature, each relying on different computational problems and presenting dif-
ferent challenges. Blind RSA [Lysyanskaya 2023, Denis et al. 2023] builds upon the
one-more RSA assumption, yielding large signatures and key sizes for modern se-
curity levels [Chaum 1983, Coron 2000]. The blind ECDSA scheme proposed by
[Qin et al. 2021] relies on a combination of additive homomorphic encryption and non-
interactive zero-knowledge arguments. Blind BLS and other pairing-based blind sig-
nature schemes use pairing-friendly curves, which are slower than standard curves
[Boldyreva 2002, Hanzlik et al. 2023]. There are also proposals for boosting techniques
[Katz et al. 2021], which can improve the efficiency of some blind signature schemes
while ensuring that they remain secure for (polynomially many) concurrent executions
of the signing protocol. Finally, post-quantum alternatives are still a work in progress
due to performance issues and flaws identified in their corresponding security proofs
[Hauck et al. 2020, Katsumata et al. 2024].

BLIND SCHNORR SIGNATURE. In terms of efficiency, blind signature schemes based on
regular Schnorr signatures [Schnorr 1990] are among the most prominent constructions
[Schnorr 2001]. Unfortunately, however, the security of Blind Schnorr signatures com-
monly relies on the hardness of the Random inhomogeneities in an Overdetermined Solv-
able system of linear equations (commonly referred to as ROS) problem. Until the early
2000s, this assumption was considered reasonable for practical purposes, since the best-
known attack, using a k-dimensional generalization of the birthday problem, could solve
the ROS problem in sub-exponential time [Wagner 2002]. In 2021, though, Benhamouda
et al. proposed a polynomial-time algorithm to solve the ROS problem modulo a prime
number p in ¢ > logp dimensions [Benhamouda et al. 2021], showing that malicious
users could forge one-more signature using only poly-logarithm concurrent sessions. This
led to renewed research interest in the topic, aiming to build Blind Schnorr variants that
could resist to ROS attacks while still providing fast computations, small key sizes, and
short signatures.

SCHNORR BZ. One of the Schnorr-based blind signature schemes recently pro-
posed to resist ROS attacks, which is the focus of this manuscript, is the so-called
Schnorr Blind Signature Zero-Knowledge (BZ) scheme, described in [Barreto et al. 2023,
Barreto and Zanon 2023]. It consists of a three-move protocol where the usual, plain
Schnorr signatures are replaced by non-interactive zero-knowledge arguments of knowl-
edge arising from natural properties of Schnorr-based protocols. The security of BZ relies
on the one-more discrete logarithm assumption [Bellare et al. 2003], hereby referred to as
(OMDL), which is a stronger notion when compared to the discrete logarithm assump-
tion. Further, the authors discuss how to mount possible ROS-based attacks against BZ
[Barreto and Zanon 2023, Supplementary Material A], showing that they fail unless the
attacker can solve a discrete logarithm. From those observations, the authors claim that
the resulting BZ construction should be resistant against ROS-like attacks.

OUR CONTRIBUTION. In this paper, our contribution is threefold:
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i) We describe a novel ROS-based attack that, albeit possibly of independent interest,
is capable of violating the one-more unforgeability of the BZ scheme, bypassing
the zero-knowledge step of the protocol;

ii) In an attempt to solve the issue, we present a variant of the BZ scheme, hereby
referred to as modified—BZ (or m—BZ for short), which indeed resists to our first
attack;

iii) Going further, we show yet another variant of ROS-based attack on m-BZ
Scheme, which once again breaks its one-more unforgeability property, showing
that it is hard to build a secure blind signature scheme using BZ’s underlying
structure.

PAPER OUTLINE. The rest of this paper is organized as follows. Section 2 introduces the
mathematical notation and color scheme used throughout the paper. Section 3 outlines
the required background on Schnorr signatures, the ROS problem, and the BZ scheme.
Section 4 describes our first ROS-based attack, as well as the m—BZ variant built to avoid
this attack. Section 5 presents the second ROS-based attack on the modified BZ scheme,
for which we could not find a fix. Section 6 concludes the paper.

2. Premilinaries and Notation

SETS. For any finite set S, z <—$ .S denotes the uniformly random sampling of an element
x € S, while | S| is the number of elements in the set. We use [n] to mean the integers
from 1 to n, and [m : n] to represent the integers from m to n > m. We write {0, 1}~
to denote the set of all binary strings, and {0,1}" for the set of all binary strings with
arbitrary finite size. Bit values are represented as b € {0, 1}.

ALGEBRA. We denote the ring of integers modulo p by Z,, while its subset of strictly
positive values is denoted Z; := 7Z,\{0}. All arithmetic operations between elements of
Z,, are done modulo p, so we omit the (mod p) notation for conciseness. We use additive
notation for all operations in an Abelian group G = (G) with prime order p (i.e., |G| = p),
where G is a generator of G. Group elements are represented with uppercase letters (e.g.,
G € G), while non-group elements are represented as lowercase letters (e.g., g ¢ G).
We use bold font style to represent vectors, such as v. = (vy,...,v,) € Zg. Finally,
we also use (u,v) to denote the usual inner-product between vectors u,v € Zy, ie.,
<u, V> = Z U;V;.
1<i<n

BLIND SIGNATURES. As further detailed in Section 3.1, the two main actors interacting in
a blind protocol are a user U and a signer S. When describing their actions, we use a sub-
index (generally 1 or 2) to represent which step they are executing during the protocol.
For example, the first algorithm executed by the signer during the Sch protocol is referred
to as Sch.S; (param) where param is a set of inputs.

COLOR SCHEME. For easier reference, we use the same color scheme of
[Barreto and Zanon 2023]: key pairs are colored in blue; generators in red; primary com-
mitments in green; secondary commitments in magenta; primary challenges in purple;
secondary challenges in brown; primary answers in turquoise; and secondary answers in
wine-red. Transcript components from protocol sessions are indicated with a bar (e.g.,
¢), and blinding factors are indicated with Greek letters (except o, which represents a
signature).
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3. Background

In this section, we present the theoretical background upon which the manuscript
is built. We start by presenting Schnorr signatures in both original and blind ver-
sions; then, we present the ROS problem and the polynomial-time attack proposed by
[Benhamouda et al. 2021] to solve it. Lastly, we describe the scheme proposed by Bar-
reto and Zanon [Barreto and Zanon 2023], highlighting some aspects of its structure and
cryptographic assumptions upon which its security depends.

3.1. Schnorr Signature Variants

ORIGINAL SCHNORR SIGNATURE. The original Schnorr signature scheme
[Schnorr 1990] is widely used in modern cryptographic solutions. Examples in-
clude cryptocurrencies (e.g., Bitcoin recently adopted Schnorr signatures for curve
secp256k1 [Wuille et al. 2020a] and Taproot [Wuille et al. 2020b]), threshold signatures
[Bellare et al. 2022], identity-based schemes suited for resource-constrained environ-
ments [Galindo and Garcia 2009], implicit certification protocols for vehicular networks
[Barreto et al. 2020], among others. The security of Schnorr signatures relies on the
hardness of the discrete logarithm in prime order groups G such that |G| = p and on the
strength of the underlying hash function # : G x {0,1}" — Z.

In the Schnorr construction, a signer uses its private key x to produce a signature
o over (the hash of) a message m by: (i) sampling a random element v from Z; (ii)
computing the commitment U/ := u(; (iii) calculating the digest ¢ := H (U, m); and
finally (iv) computing » := u + cx (mod p). The output of the signature process is
o= (z,c)€ L, X Z,. The verifier uses the signer’s public key X := x (G and the message
m to verify if o is a valid signature. This is done by: (i) parsing o as (-, ¢); (if) computing
U' := =G — ¢X; and then (iii) outputting the boolean value of H (U, m) Z ¢. The
challenge ¢ is typically replaced by U in the signature. In this case, o := (=, U), and the
verification process consists in parsing o as (=, /) € Z3 x G* and evaluating the boolean

value of -G = U + ¢ X, ¢ :=H (U, m).

SCHNORR BLIND SIGNATURES. The Schnorr blind signature scheme [Schnorr 2001] de-
rives from the plain scheme: essentially, it takes advantage of the latter’s linearity to build
a three-move protocol, as illustrated in Figure 1. The procedure is as follows: (i) the
signer S uses the private key z to produce a primary commitment [/ := (' along with
a state variable sts := (z,u), and sends U to the user U; (if) U blinds U by combining
two randomly sampled blinding factors, named «, 5 <$ (Z;)Q, respectively with G and
X, thus obtaining U/ := U + oG + 5X; (iii) U also computes ¢ := H (I/, m) and uses 3 to
calculate ¢ := ¢+  mod p, saving the state variable sty := (X, ¢, U, «, ) and sending ¢
back to S; (iv) S uses sts and ¢ as inputs to produce -~ := u + ¢x mod p, and send it back
to U; (v) lastly, the user produces the signature o = (=, ¢, U), = := =~ + a mod p.

As one may notice, the verification process consists in returning the boolean value
? . . . . . . .
of =G = U+ cX, ¢ :=H (U, m), which is done identically to the original signature:

G=72G+ aG =

=U+4+cX+alG=U-aG -BX+cX+BX+aCG =
=U+cX
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The security of the Schnorr blind signature scheme relies on the intractability of
the ROS problem, which is detailed in the following section.

Blind Schnorr protocol BS

BS.S () BS.U (X :=xG,m)
(U, sts) + BS.S:(x) U
c (E,Stu) — BS.Ul(X,U, m)

o BS.UQ(Stu, 7)

Figure 1. Three-move blind signature protocol derived from Schnorr signatures
scheme.

3.2. ROS Problem

The Random inhomogeneities in a Overdetermined Solvable system of linear equations
problem is broadly studied in [Schnorr 2001]. This is done as part of the security assump-
tions required to overcome the susceptibility to attacks against the one-more unforgeabil-
ity property of the Schnorr blind signature scheme. The /—dimension ROS problem is
stated as follows!:

Definition 1 ([Benhamouda et al. 2021]) Given a prime p, dimension ¢ and access to a
random oracle H, : Zf, — Zy, find { + 1 vectors v;,i € [{ + 1], and one vector c:

Hos (Vi) = (¢, Vi) , Vi, ¢ € Zy,i € [€ 4 1]

The first positive result presenting a solution with sub-exponential time complex-
ity to the ROS problem was due to Wagner [Wagner 2002]. This was a consequence of
his work about the Generalized Birthday Paradox to { dimensions, defined as:

Definition 2 Ler i € [{] such that £; corresponds to a list of random elements. Find
x; € £;, 1 € [{] such that z1 + ... + x, = 0 mod p.

Wagner’s algorithm solved the problem in O (€ . Qflogpl/ (1+U°gp“) time complex-
ity. At the time, it had major consequences to cryptanalysis, especially to schemes us-
ing the hardness of the ROS problem as part of their security assumptions. Later, Ben-
hemouda et al. expanded Wagner’s approach and proposed a polynomial-time algorithm
to solve the ROS problem [Benhamouda et al. 2021], thus proving the insecurity of many
Schnorr-based blind signature schemes. One of their main results is stated as follows:

Theorem 1 ([Benhamouda et al. 2021]) Let PGen(1%) be a parameter generation algo-
rithm that, given as input the security parameter \ in unary, outputs an odd prime of (bit)
length \ = [logp|. If { > ) then there exists an adversary that runs in polynomial time
and solves the ROS problem relative to PGen with dimension /.

'Note that, in Definition 1, we use our own notation applied to an alternative formulation of ROS from
[Hauck et al. 2019, Fig. 3], where linear functions are used instead.
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The idea of the proof is to build an attacker capable of constructing a polynomial
whose coefficients depend on the information extracted from ¢ opened sessions. Then, it
leverages the recursive nature of the ROS problem to obtain the target values c and v,
from Definition 1, since the index i lies in the interval [¢ + 1]. It is worth mentioning
that an attack combining Wagner’s k-list algorithm and Theorem 1 is also addressed in
[Benhamouda et al. 2021] when discussing attacks for ¢ < logp. We refer the reader to
[Benhamouda et al. 2021] for a detailed discussion.

3.3. Barreto and Zanon Blind signature Scheme

Seeking to produce a three-move Schnorr-based blind signature scheme resilient to ROS
attacks, Barreto and Zanon [Barreto and Zanon 2023] adapted the scheme by providing a
zero-knowledge proof of knowledge (ZKPoK) of the - component, instead of providing its
actual value in the blind signature. More precisely, the scheme uses the - part of a Schnorr
signature o = (=, U/) as a private key, and then produces a second signature that can be
used as a proof. This technique is similar to the one used in [Galindo and Garcia 2009],
in the context of identity-based scenarios, and formally proved a succinct non-interactive
argument of knowledge (SNARK) by Barreto et al. [Barreto et al. 2022]. The resulting
blind signature scheme is called BZ, and its three-move protocol is shown in Figure 2.

Blind Schnorr Zero-Knowledge protocol BZ
BZ.S(x) BZ.U(X,m)

(U,V,sts) « BZ.Si(z) Uu,v

¢,d (@, d, sty) «s BZ.U (X, T, V,m)

W+ BZ.Sy(sts, ¢, d) w
o < BZ.Uy(sty, w)

Figure 2. Three-move blind signature scheme proposed by Barreto and Zanon.

The BZ scheme is built on a secure abelian group G of prime order p ~ 2\
generated by G = (G), and two distinct hash functions defined as H : G x {0,1}* —
Zyand G : G — Z,. It leverages the signing algorithm of BS to provide a primary
answer - to a primary challenge ¢ and primary commitment [/. Then, instead of returning
>, it uses this value as a private key and returns a proof of knowledge consisting of a
secondary answer w to a secondary challenge d and secondary commitment V. It is
worth mentioning that the second process is the same as in the primary challenge, but with
different values. Figure 3 presents the complete specification of the BZ blind signature
scheme. Compared to the original description from [Barreto and Zanon 2023], the only
visual difference is that we do not explicitly show = and /., but use their values directly
for conciseness.

The security of the BZ scheme is based on the one-more discrete-logarithm as-
sumption (OMDL), stated as follows:
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BZ.PG(1%) BZ.Sx(sts,c,d)

1: returnpar:= (p,G,G,H,QG) 20:  (x,par,u,v) < sts
BZ.KG(par) 20 (p,G,G,H,G) < par

30 48Zp, X < xG 23 WF/I"_(]()

4: sk« (x,par),pk «+ (X, par) 241 returnw

5: return (sk, pk) BZ.U,(sty, w)

BZ.S;(sk) 25: (X, par,c,d,U,V,m,0,p,€) < sty
6: (I, par) + sk 26: (p’ G,G,H, g) < par

70 (p,G,G,H,G) « par 27: ifV #AwWG+dU —edX :
8: u<SZy,vSZy 28 : return |

9: U+ uG,V G 29: w—prw —dd+e

10: stg < (z,par,u,v) 30: returno := (w,c,d,U,V)

11: return (U, V,sts) BZ.Ver(pk, m, o)
BZ.U;(pk, m) 31: (X, par) < pk
12: (X, par) « pk 2: (p,G,G,H,G) <+ par
3: (p,G,G,H,G) < par 33: (w,c,d,U,V)+ o
. if e 1 :
e (76, pe) s (Z;)4 34: ifcEHU,mUdZEG(V)
— _ 35: return 0
15: U<+ nU +0G, V< prV +eG )
16: ¢+ H(U,m),d+«G(V) 36: return V= wG + dU — cdX

17: C4c/m,d<d/p
18: sty < (X, par,c,d,U,V,m,0,p,¢)

19 return (¢, d, sty)

Figure 3. The complete BZ scheme. We use to highlight the definition of
= in line 22 and its usage in line 23 of BZ.S; (sts, ¢, d).

Definition 3 (One-more Discrete Logarithm Assumption) Let G be an abelian group
of prime order p generated by G and A a probabilistic polynomial-time algorithm. Let
OpL be an oracle that returns the discrete logarithm of any group element submitted by
the adversary A. Upon receiving the challenges X;, i € [{], it is hard for A to extract the
discrete logarithm of all X; and the one-more discrete logarithm x,y1 = logq Xyi1.

The idea behind the security proof presented in [Barreto and Zanon 2023] is to
build a reduction that breaks the impersonation under concurrent attacks IMP-CA) of the
one-more unforgeability assumption. At some point, the attacker must extract the discrete
logarithm -, i.e., a zero-knowledge proof of knowledge of the primary signature. The
proof appears to have some gaps, though, as noticed by [Chairattana-Apirom et al. 2024]:
their main criticism refers to the obtained concurrent security since a Schnorr identi-
fication scheme that is IMP-CA secure does not yield a secure blind signature. De-
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spite those concerns in [Chairattana-Apirom et al. 2024], to our knowledge no prac-
tical attack against BZ has been proposed in the literature. On the other hand,
[Barreto and Zanon 2023] does show how to instantiate variants of ROS-based attacks
against the scheme, and why they fail.

4. Attacking BZ

In this section, we propose a new ROS-based attack against BZ, and show its correctness.
Subsequently, we show a possible fix to the original BZ scheme, producing m-BZ — a
modified version of the original scheme that uses one (instead of two) hash functions to
produce a blind signature. Our attack uses an strategy similar to the one discussed in
[Benhamouda et al. 2021], i.e., we make use of information extracted from ¢ concurrent
sessions to build a probabilistic polynomial-time adversary .4 able to forge the (¢ 4 1)-th
blind signature on some chosen message.

ATTACK DESCRIPTION. The attacker A starts by opening ¢ > logp sessions with the
server to receive the commitments U/; and V', @ € [¢]. The attacker then randomly samples
iy Pi, €; from Z]’; and computes V; as follows:

Vi = pimi Vi + &G (1)

The secondary challenges are calculated according to the specification: d; :=
G (V;) and d; := d, /p;i- Now, the adversary needs to generate two different values for the
primary challenges ¢; , as in [Benhamouda et al. 2021]. For that, it has to also use two
different U;, since ¢; = H (U;, m). Hence, for each bit b € {0, 1}, A generates different
d; » randomly sampled over Z;; and calculates U; , as follows:

Up = Ui + 0i G )

A then computes the primary challenges ¢;, := H (U;;, m) followed by ¢, :=
¢;.»/ i, as in the original scheme. The adversary defines b € {0, 1}£ as the chosen vector
of bit challenges to receive the answers w;, i € [{], satisfying:

WG+ dU; —Cp,d; X =V, i € [€]

For each i € [(], A can iterate the equation p; times to obtain a linear combination
of equations, that is:

Z bi (ﬁjG +d;U; — Ei’hia/jX) = Z Vi

1<i<t 1<i<t

With a slight abuse of notation, this can be rewritten as the following inner prod-
uct equation by leveraging the fact that the considered group G is abelian and written
additively:

<p7 W> G + <p7 ﬁ/Ul> - <p76’£,b7-ﬁ’/> X = <pvv> (3)

8
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ATTACK RATIONALE. The essence of the attack consists in manipulating (p, ;,d; ), i.e
choosing p in such a way that, for any y € Z, the value of (p,¢;,,d;) will be equal to y
when evaluated on specific values (b, .. bg) =: b € {0,1}*. To succeed, the attacker
must find p € Z{ such that, for all y € Z* there is a x := (C1, 1, ..., Cpp,ds) € ZE
satisfying (p,x) = y. A can find p by deﬁning the polynomial P(x) as follows

221 1 xl—( Od)
d; —

1<i<¢ Ci1 Ciod;

Note that ¢; ) = ¢, ; with negligible probability in A. We can then rewrite this
equation in terms of (p,x) and an additional factor py by separating the numerator of

P(x):

= Z pi%; +po = (P, X) + po “)
1<i<t
where
21 i1 —Ciod;
pii=—————poi= »_ 27— ®)
Ci,'ld[ - C’i,O({i 1<i<t Ci,l({i - Ci?o(]lj

‘With  this  construction, P di,. . Cop,ds) = ZZ L2070, e,
P(cip,diy ... Cop,dy) is equal to the binary representation of b € {0,1}*. In or-
der to find x such that (p,x) = y, the attacker picks b as the binary representation of

Y + po, and sets x = (¢4, 1, ..., Crp,dr). This works because:

<P, Ei,bﬂz> = P(Crp,di,- .-, Cop,de) — po
= (y +po) — po
=Yy

After this, ¢;,,, d;, i € [¢] and p are well defined. Now, A uses Equation 3 to
produce the commitments and challenges of the forged signature. For this purpose, A
computes the parameters in the specified order:

( (p, V)
A= =G (V")
U* <p’ﬁ7U > (6)
d*
& =H (U, m*Y)
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Finally, the attacker chooses b as the binary representation of ¢*d* + p, such that
<p,Ei7bﬂ7—> = ¢*d" and sends the challenges accordingly (i.e., sets 0; = 0;p,, U; = U, p,,
¢i = Ciy,» G = Cip, and sends ¢;, d;). After receiving answers W = (W, . ..,,), the
adversary can output the legitimate signatures:

g; = (,OmZFL — 67:(1j + €, ¢, (Il,,j, UL‘, ‘;), fori € [E]

Those are known to be valid due to the correctness of the BZ. Finally, A
obtains the forged signature by calculating w* := (p,w) and outputting o* =
(w*, ¢, d*, U*, V*). Tts validity can be verified from the definitions listed in (6):

V* = <p,v> =
- <p7W> G + <p’a’U1> - <p76i,bzgi> X g

=wG@+dU —cd*' X

This is the verification equation for the forged signature o*, which corresponds to a valid
signature on message m* = my,; L.

EXPERIMENTAL RESULTS. The results of Table 1 show the average time in seconds to
break one-more unforgeability of BZ instantiated over different secure elliptic curves
[Randall 2023]. Our experimental setup consists of common off-the-shelf equipment (an
Intel Core 13-4005U @ 1.70GHz with 4GB of RAM) to simulate the attack using Sage-
Math.

Elliptic Curve | Expected security level | Time (s)
P-224 112 5.4
P-256 128 6.5
P-384 192 16.6
P-521 256 43.3

Table 1. Time measurements of attack on BZ instantiated over different secure
elliptic curves.

4.1. Suggested fix: designing the m—BZ scheme

One possible approach to neutralize the described ROS attack consists in using a single
secure hash function, introducing a dependence between the challenges. In this case, both
challenges ¢ and d would be obtained simultaneously, i.e., (¢,d) := H (U, V,m), H :
G* x {0,1}* — Z;. Line 16 of algorithm BZ.U; (pk, m) would be replaced by (c, ) :=
H (U, V, m) after the primary and secondary commitments are calculated: U/ := 7/ + G
and V:= prV +eG.

This modification renders the described attack impossible because it creates a cir-
cularity between ", U” and ¢* in Equation 6. Consequently, the attacker would be unable
to perform the first steps of the attack, which involve calculating a secondary challenge
d; followed by the generation of two different primary challenges ¢; ., b; € {0,1}.

10
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5. Attack on m-BZ

Although the m—BZ construction prevents the attack described in Section 4, unfortunately
it is still vulnerable to a second probabilistic polynomial-time attack that breaks its one-
more unforgeability. The core of the attack consists in solving the problem of generating
blinded challenges ¢, with the same d. Essentially, this means that, given a message m
and commitments / and 1/, the attacker A must generates only one d and two possible
¢, b € {0,1}. If A sends the challenges (¢;, d) to the signer and receives an answer 0y,
A can compute a signature oy, := (wy, ¢y, dy, Uy, V).

ATTACK’S DESCRIPTION. The attack works as follows. After sending the challenges, A
receives an answer w,, satisfying the verification equation:

0,G+dU —¢dX =V
This equation is equivalent to:

W,G —GdX =V —dU (7)

The attacker sets the secondary commitment to 1, = V' — dU, so the primary
commitment [/, can be chosen freely. In particular, it can be set to a known discrete
logarithm, i.e., U, := u, G, wy, <$ Z;, with u;, generated by the attacker. .4 generates two
random nonces w;, and sets U, = u;,G. With the two commitments defined, ¢, and d, are
calculated as usual, i.e., (¢, d;,) := H (U, Vi, m). Then, A can manipulate Equation 7
using V}, = V —dU:

Vi, = W0,G — Gd X =
= WG + (dyupyG — dyupG) — Gd X =
= (W — dyup)G + dyupG — Gpd X =
= (W — dyup) G + dpUy — &pd X

Hence, obtaining the equation:

‘/;) - U'[)G + dl)Ub - Eba)( (8)

ATTACK RATIONALE. The core of the attack consists in ensuring that Equation 7 holds
for signature oy, := (wy, ¢y, dy,, Uy, V). For that purpose, A has to choose ¢, and d such
that ¢,d = c¢,d,. By a simple substitution of G&d = cud, in Equation 8, the term Gd X
becomes c,d, X, so oy is verified as valid. Due to the independence of d with respect to b,
A can set d to be a non-zero constant. This means that A can calculate ¢, as:

cpd
G = = ©)
d
Finally, A computes w;, := w, — dyu,, and the valid signature on message m: o =

(wb; cp, dy, Uy, Vb)-

11



Anais do SBSeg 2025: Artigos Completos

Building upon this core procedure, the complete attack is as follows: the adversary
opens ¢ concurrent sessions with the signer, receiving commitments [/; and V/; for i €
[(]. Then, for each session, A calculates the commits and challenges (blinded or not)
as explained above: (i) sets the constant value d; +s Z;; (if) uses Equation 7 to obtain
Vi, := Vi — d;Uy; (iii) makes Uy, = u;,G, b € {0,1}, w;, < Z%: (iv) computes
(Cipydip) :==H (U;p, Viym;); and finally (v) uses Equation 9 to calculate ¢; ;.

After that, A computes the coefficients p;, ¢ € [{], and the constant term p, of
the linear polynomial P exactly as in the attack described in Section 4, using Equation
5. A can then employ the same trick of setting the commit [/* to a value with a known
discrete logarithm: it generates a random v* <= Z, and calculates the commitments and
challenges of the forged signature following Equation 3:

V* = <p,v> - <P,3/'Ui>
U =uG (10)
(c*,d*) :=H (U, V* m¥)

The attacker chooses once again b € {0, 1} as the binary representation of ¢*d* +
po and sends the challenges accordingly (i.e., sets w; = wu;;, Ui = Uy, ¢; = Cip,s
d; =d,, ¢; = ¢, and sends ¢;, d;). After receiving answers W, the adversary can output
the legitimate signatures:

g; = (ﬁz — (],;Y,l,lj,C,Ij,(,]yj, Ui, ‘/,"), fore € [6]

All those signatures are valid for the reasons explained at the beginning of this
section. Finally, the attacker can produce the forged signature by calculating w* :=
(p,W) — d*u* and outputting o* = (w*,c*,d*,U*, V*). Its validity can be verified by
following the definitions given in (10):

V' = (p, V) = (p,dT.) =
=(p,w)G — <p,E7¢,bﬁ,,-> X =
= (W' +du)G - cd"' X =
=wG+ U —cd" X O

EXPERIMENTAL RESULTS. Table 2 shows the average time, in seconds, to break one-
more unforgeability of m~BZ blind signature scheme. Our experiments use the same
setup and safe elliptic curves as in the practical results of Section 4. We can notice that,
while the usage of one hash function in m—-BZ hinders our first ROS-like attack, it also
allows forgeries to be obtained in this second attack with 25% less time on average.

6. Conclusion

In this paper, we show how to successfully break one-more unforgeability of BZ blind
signature scheme. This is accomplished by means of a new ROS-like attack capable of
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Elliptic Curve | Expected security level | Time (s)
P-224 112 4.0
P-256 128 4.7
P-384 192 12.4
P-521 256 31.2

Table 2. Time measurements of attack on m—BZ instantiated over different secure
elliptic curves.

circumventing BZ’s the zero-knowledge step, designed to be an obstacle to such types of
attacks. Further, we propose modifications in the original BZ, leading to the so-called m—
BZ scheme: by using one secure hash function instead of two, we can effectively prevent
the described attack. Unfortunately, however, m—BZ is susceptible to a second attack, as
we can built a new probabilistic polynomial-time algorithm to forge a valid signature from
¢ concurrent sessions. Our experimental results show that the one-more unforgeability
property can be broken in seconds using common off-the-shelf equipment, even when BZ
and m—BZ are instantiated with different secure elliptic curves. Both attacks are written
in SageMath and uploaded in the following git repository. These results indicate that, like
other Schnorr-based strategies, it is hard to build a secure blind signature scheme using
BZ’s underlying structure.
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