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Abstract. In Healthcare 5.0, the expanded attack surface increases the vulner-
ability of Intrusion Detection Systems (IDS) to sophisticated threats. Among
them, adversarial attacks modify features to evade the detection of malicious
samples. XAl-driven methods enable the manipulation of fewer — sometimes
Jjust one—features while maximizing impact. To date, no XAl-driven adversarial
strategy has been applied to cyber-biomedical features in Healthcare 5.0. In
this work, we address this gap by employing XAI-Driven approach to maximize
IDS degradation through a feature-level adversarial attacks. Our results reveals
that a single feature perturbed can drastically reducing F1-Score from 99% to
0% in data alteration scenarios and from 81% to 12% in spoofing attacks.

1. Introduction

Healthcare 5.0 marks a deep advancement in the digital transformation of medicine by
unifying Artificial Intelligence (Al), Internet of Things (IoT) and human-centric design
to deliver precise, personalized treatment, predictive diagnostics and continuous moni-
toring [Gadekallu et al. 2024]. With the global Digital Health market expected to sur-
pass $258 billion by 2029 [Statista 2025], cybersecurity within the Internet of Medical
Things (IoMT) has become a critical concern. As connected medical devices, telehealth
platforms, and Al-driven diagnostics become foundational to modern healthcare, their
dependence on sensitive patient data and networked environments significantly amplifies
exposure to cyber threats. A single security breach can endanger patient safety, disrupt es-
sential clinical services, and erode public trust in digital health infrastructure. Alarmingly,
recent findings reveal a 44% year-over-year increase in global cyber-attacks, with health-
care identified as the second most targeted industry — highlighting the sector’s growing
risk profile [Check Point Software Technologies 2025].

These advancements also create complex attack surfaces that traditional Intru-
sion Detection System (IDSs) are ill-equipped to defend. To address this, recent re-
search has developed network-biomedical datasets that combine network traffic with
physiological signals for enhanced intrusion detection in electronic health monitoring sys-
tems [Hady et al. 2020]. In addition, a major challenge faced by modern IDSs involves
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adversarial attacks, which have gained attention for their ability to subtly manipulate in-
put data in ways that degrade detection performance without raising suspicion. These
attacks exploit the decision boundaries of Machine Learning (ML) models, often requir-
ing only minimal perturbations to cause misclassifications — posing a serious threat to
systems that rely on Al for anomaly detection.

Explainable Al (XAI) methods — increasingly integrated into Healthcare 5.0
IDS — generate saliency maps and feature-attribution scores that reveal which network or
physiological signals trigger an alert. Yet these explanations can be weaponized: attack-
ers use XAl outputs to pinpoint and minimally perturb critical features, mounting stealthy
adversarial attacks [Okada et al. 2025] [Yan et al. 2024]. While traditional adversarial
techniques have been explored separately for network and sensor data, and XAl-driven
attacks tested on pure IDS datasets, no study has assessed explanation-guided attacks on
combined IDS and physiological streams or compared their effectiveness against classic
methods within Healthcare 5.0. We address this gap by evaluating IDS vulnerability and
robustness under XAl-informed threat models in a converged healthcare environment.

In this work, we (i) adapt the XAl-driven adversarial attack technique
from [Okada et al. 2025] to evade machine learning—based intrusion detection systems
(IDSs), and (ii) evaluate its effectiveness against a classical adversarial approach on a
Healthcare 5.0-aligned dataset. We first apply XAl techniques to rank feature importance
on the WUSTL-EHMS-2020 dataset [Hady et al. 2020] and then craft targeted perturba-
tions on the most influential features. Although focused on the healthcare domain, our
methodology is domain-agnostic and applicable to other sectors. Importantly, this study
evaluates adversarial impact in a controlled setting; the deployment and configuration of
real-world IDSs are out of scope. Our results show that perturbing a single feature can
reduce the F1-score from 99% to 0% in data alteration scenarios and from 81% to 12% in
spoofing attacks. These findings highlight the need for explanation-aware defense strate-
gies.

The paper is structured as follows. Section 2 introduces the fundamental concepts.
Section 3 reviews related work on XAl-driven adversarial attacks in medical networks
and outlines key research gaps. Section 4 details our methodology, including XAl-based
feature ranking and the design of targeted perturbations. Section 5 presents the results
and analysis. Finally, Section 6 concludes the paper and suggests future research.

2. Background

Firstly, this section outlines the key foundations for our XAl-driven adversarial frame-
work in Healthcare 5.0. We begin by defining Healthcare 5.0 — its smart, data-driven
technologies and the security risks they introduce. Next, we cover XAl methods that
render complex models interpretable. Then, we trace the evolution of network Intrusion
Detection Systems, emphasizing modern ML- and DL-based approaches in healthcare set-
tings. We follow with a discussion of how XAI outputs can be repurposed for adversarial
attacks, and finally review classic white-box and black-box attack strategies, contrasting
unconstrained and constrained domains.

2.1. Healthcare 5.0

Healthcare 5.0 marks a transformative phase in medical care, emphasizing personaliza-
tion, anticipatory services, and patient engagement through the adoption of technologies
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such as smart sensors, ML, and the IoMT. Devices like wearable biosensors and fitness
monitors support continuous health tracking, enabling both remote diagnostics and im-
proved clinical insights through real-time data processing. The convergence of ML and
IoMT facilitates early diagnosis, data-driven decision-making, and precision medicine,
thereby enhancing healthcare delivery and patient well-being [Tandel et al. 2024].

At the same time, the widespread deployment of networked medical devices in-
troduces new security challenges. The interconnected nature of digital health infrastruc-
tures increases vulnerability to cyberattacks, underscoring the need for effective protective
measures. Leveraging Al for cybersecurity enables the detection of abnormal behavior,
threat identification, and maintenance of device reliability. These measures are vital to
safeguard patient information and uphold trust, ensuring that Healthcare 5.0 achieves its
goals without compromising security [Khan et al. 2024].

2.2. Explainable Al

In recent years, deep learning models have achieved remarkable performance but their
complex, non-linear structure often renders their decision processes opaque and difficult
to interpret. XAl addresses this challenge by offering model-agnostic, post-hoc methods
that quantify how input features contribute to individual predictions, without requiring
access to internal weights or gradients [Okada et al. 2025]. These techniques range from
local explanations — highlighting feature importances for a single instance — to global
explanations that summarize patterns across a dataset, supporting tasks such as regula-
tory auditing, model debugging, and scientific discovery [Baniecki and Biecek 2024]. By
illuminating the “black box,” XAl methods foster greater transparency, trust, and account-
ability in Al systems.

2.3. Intrusion Detection Systems

Intrusion Detection Systems (IDS) for networks are deployed at strategic points to inspect
all traffic and have progressively shifted from purely signature-based approaches to ad-
vanced advanced deep learning methods capable of detecting both known and unknown
threats [Okada et al. 2025]. These deep learning—powered NIDS can operate in binary
or multiclass modes, learning signatures automatically from mixed benign and malicious
datasets, or in anomaly-detection mode by modeling only legitimate traffic to flag devia-
tions. Machine learning frameworks grounded in computational statistics and optimiza-
tion combine misuse detection via learned signatures with anomaly detection to identify
zero-day attacks by learning normal patterns in network and biometric data. In healthcare
contexts such as Enhanced Healthcare Monitoring Systems, IDS modules analyze sensor-
derived biometric signals and network traffic metrics, employing algorithms like Random
Forest, K-Nearest Neighbors, Support Vector Machines, and Artificial Neural Networks
to detect packet alteration, spoofing, and other irregularities, thereby safeguarding patient
data integrity and system availability [Hady et al. 2020].

2.4. XAI-Driven Adversarial Attacks

XAl techniques, designed to interpret machine learning decisions, can also be misused to
guide adversarial behavior. Attackers can analyze outputs such as saliency maps or feature
attributions to identify key input features and apply minimal perturbations to craft adver-
sarial examples or extract sensitive information [Okada et al. 2025]. These XAl-driven
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attacks apply across white-box and gray-box settings, and have enabled model inversion
and membership inference. A typical adversarial example (AE) attack seeks a perturbed
input that minimally deviates from the original while inducing misclassification:

minimize ||z’ — z||
subjectto  f(2') =1,

f(z) =1, (1)
141,
' e [0,1]™,

where x € [0, 1]™ is an m-dimensional input to classifier f, [ is the true label, and I’ # [
is the target label. The adversarial input 2’ = = + r is crafted to fool the model while re-
maining as close as possible to z, ideally with imperceptible changes [Bayer et al. 2024].

Adversarial attacks are typically classified as white-box (full access to the
model’s architecture, parameters, activations, and loss), black-box (only query/test-
set access and output observations), or gray-box (partial knowledge in between)
[Véazquez-Hernandez et al. 2024].

2.5. Adversarial Attacks

Classic adversarial attacks typically exploit model gradients to craft imperceptible pertur-
bations that lead to misclassification. The Fast Gradient Sign Method (FGSM) perturbs
every input dimension by applying a small, uniform step in the direction of the loss gradi-
ent sign for each feature, resulting in a dense one-step modification of the entire input with
minimal computational overhead [Goodfellow et al. 2014]. In contrast, HopSkipJumpAt-
tack is a decision-based, black-box approach: it begins by finding a point on the model’s
decision boundary via binary search from a large initial perturbation, then approximates
the local gradient direction by sampling random unit vectors and using finite-difference
estimates, and finally updates the adversarial example by stepping along that estimated
gradient and projecting back onto the boundary [Chen et al. 2020]. Both FGSM and Hop-
SkipJumpAttack demonstrate that, whether in white-box or black-box settings, carefully
designed perturbations can induce misclassification.

Adversarial attacks can be distinguished by whether they operate in an uncon-
strained or a constrained domain [Alhajjar et al. 2021]. In an unconstrained setting —
common in fields like image recognition — attackers are assumed to have the freedom to
adjust every feature of the input without limitation, allowing them to craft perturbations
that subtly alter the entire sample to induce errors. In contrast, constrained domains im-
pose strict rules on which features can be modified (for example, some attributes may be
binary or categorical), enforce interdependencies among features, and include elements
that cannot be changed at all. Under these conditions, adversaries must carefully select
and adjust only those characteristics that influence the model’s decision and respect the
domain’s inherent value ranges, correlations and immutable constraints.

3. Related Works

In recent years, there has been growing scholarly interest in combining Healthcare 5.0
concepts with cybersecurity mechanisms, particularly in the context of XAl and adversar-
1al strategies that leverage XAl techniques. This section surveys the existing literature in
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Table 1. Comparison to the Related Works.

XAI-Driven | Classic Adversarial | Comparison

Attack (A) Attack (B) (A) x (B) IDS | Healthcare 5.0

Reference

[Okada et al. 2025]

[Yan et al. 2024]

[Kuppa and Le-Khac 2021]
[Bayer et al. 2024]
[Rosenberg et al. 2020]
[Alhajjar et al. 2021]
[Imam 2024]

[Agrawal et al. 2024]
[Brohi and Mastoi 2025]
[Baniecki and Biecek 2024]
[Asiri et al. 2024]
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this interdisciplinary area. A comparative overview is also provided in Table 1, highlight-
ing the methods and shortcomings of prior studies in contrast with the present work.

Building on prior research that developed XAl-driven white-box adversarial at-
tacks against DL-based NIDS, the research [Okada et al. 2025] advances the approach
to a practical black-box scenario. By leveraging XAI to identify critical features with-
out requiring internal model details, the proposed method generates adversarial examples
(AEs) that evade multiple NIDS models with high efficacy (95.7-100% evasion rates)
across diverse attack scenarios. Experimental validation in real-world networks demon-
strates the method’s generalizability and practicality, enabling robust assessment of NIDS
vulnerabilities while preserving the malicious intent of attack traffic. This contribution
underscores the dual role of XAl in enhancing both adversarial robustness evaluation and
attack mitigation strategies in cybersecurity.

The work [Yan et al. 2024] proposes MEAttack, a model-agnostic explanation-
driven method for query-efficient black-box adversarial attacks, addressing limitations
of optimization and transfer-based approaches. By leveraging model explanations to
interpret decision boundaries and strategically perturb inputs, MEAttack achieves non-
targeted success rates 4.54%—47.42% higher than AutoZOOM while reducing queries by
2.6-4.2x, notably attaining 20.8x higher success rates with 10x fewer queries on MNIST.
Despite computational overhead in local model training, MEAttack establishes a query-
efficient benchmark for label-only black-box attacks.

The work [Kuppa and Le-Khac 2021] demonstrates that counterfactual XAl meth-
ods, despite enhancing transparency, expose systems to attacks like membership infer-
ence, model extraction, evasion, poisoning, and backdoors. Their four black-box attacks,
leveraging three explanation methods, compromise classifier confidentiality and privacy
through anti-virus evasion, sensitive data inference, and model extraction on real-world
datasets. The study underscores XAl’s security-usability trade-off, cautioning against un-
intended attack surface expansion.

Recent research has demonstrated how XAI can be leveraged not only to inter-
pret model behavior but also to craft more effective adversarial attacks. One line of work
utilizes XAl techniques to identify features that models rely on most, enabling the con-
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struction of targeted attacks that exploit these dependencies. For example, one approach
enhances adversarial training by identifying falsely learned indicators in incorrectly pre-
dicted instances and balancing decision rule complexity to boost robustness and mitigate
shortcut learning behaviors in NLP transformers [Bayer et al. 2024]. Similarly, in the cy-
bersecurity domain, XAl has been used to guide feature modifications in malware to evade
detection, revealing a security-transparency trade-off by showing how explainability can
assist attackers in modifying critical parts of executable files without compromising func-
tionality [Rosenberg et al. 2020].

[Alhajjar et al. 2021] explored adversarial attacks on ML-based Network Intru-
sion Detection Systems (NIDS), using algorithms (particle swarm optimization, genetic
algorithm) and GANs to generate evasive perturbations. Evaluated on NSL-KDD and
UNSW-NBI15 datasets, their methods induced high misclassification rates in 11 ML mod-
els and a voting classifier, surpassing Monte Carlo simulations. Key results highlighted
extreme vulnerability of SVM and DT classifiers, transferability of adversarial examples
(e.g., PSO-generated perturbations evaded gradient boosting and bagging classifiers at
more than 97%), and a functionality-preserving feature modification strategy, diverging
from prior approaches. The work underscores ML-based NIDS susceptibility to evolu-
tionary and deep learning-driven adversarial manipulation.

In the healthcare domain, studies emphasize the interplay between adversar-
ial robustness and explainability, recognizing both as essential for trustworthy Al de-
ployment. One body of work investigates how adversarial attacks undermine the re-
liability of the explanation, even in robustly trained models, and proposes combined
detection-classification frameworks using XAl methods such as SHAP and Grad-CAM
to localize the influence of the attack and assess the degradation of interpretability
[Agrawal et al. 2024]. Another effort explores adversarial threats targeting XAl-enabled
digital twin systems for smart healthcare, where label-flipping attacks significantly distort
model explanations in clinical settings such as stroke prediction. A resilient digital twin
framework is proposed to protect interpretability and preserve the integrity of decision-
making-making [Imam 2024]. Complementing these studies, a separate evaluation of an
optimized MLP model for breast cancer classification under FGSM attacks shows dra-
matic accuracy loss, underscoring the necessity for lifecycle-wide integration of adver-
sarial defenses and XAl tools to ensure clinical Al robustness [Brohi and Mastoi 2025].

Studies reveal that XAl methods (e.g., SHAP, Grad-CAM) themselves are sus-
ceptible to adversarial attacks, which can skew explanations or fairness evaluations
[Baniecki and Biecek 2024]. Key gaps include vulnerabilities in transformer-based ex-
plainers and fairness metrics, underscoring the need for standardized benchmarks and
robust XAl practices. Empirical work shows that FGSM perturbations degrade Saliency
Map accuracy and explanation quality (via PIQE) on image datasets — suggesting expla-
nation breakdowns can signal adversarial activity [Asiri et al. 2024].

4. Material & Methods

In this section, we present the methodology behind our proposed adversarial attack in a
Healthcare 5.0 scenario. Also, we present the dataset utilized alongside XAl techniques
to systematically perturb the most influential features.
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4.1. Dataset

The WUSTL-EHMS-2020 dataset [Hady et al. 2020], adopted in this research, provides
a unique resource for evaluating intrusion detection systems in Healthcare 5.0 environ-
ments. It was assembled from a controlled testbed that simulated a medical monitoring
system where Internet of Medical Things (IoMT) sensors transmitted physiological data,
such as heart rate and SpO2, to a server. The transmission path was deliberately exposed
to interception by malicious actors, enabling the collection of data under both normal
conditions and simulated cyberattacks.

Comprising a total of 16,318 samples, the dataset is notable for its composition of
multimodal data: it integrates 35 network-flow features with 8 biometric measurements.
Malicious traffic accounts for 12.5% of the samples and is classified into two distinct
types: spoofing attacks, designed to compromise data confidentiality through packet ma-
nipulation, and data-alteration attacks, which target data integrity by modifying packet
contents. By merging these two data streams, the dataset allows for a comprehensive
analysis of cyber-physical threats, providing a robust foundation for developing and test-
ing intelligent, context-aware security solutions.

4.2. Attacker Model

We consider a realistic threat scenario in which an internal actor — such as a system
administrator, a member of the development team, or a third-party contractor — compro-
mises the IDS by leaking the model and its training data to an external adversary. With
privileged access to implementation details and potentially the original data, the attacker
gains white-box access, including full knowledge of the model architecture, parameters,
and feature preprocessing steps. Leveraging this access, the adversary can apply XAI-
driven adversarial attack techniques to identify the most influential features in the IDS’s
decision-making process. By subtly manipulating only these key features, the attacker
can craft adversarial inputs that preserve malicious behavior while evading detection.

Although our work focuses on white-box attacks reflecting insider threats, black-
box attacks, where the adversary has limited or no knowledge of model internals, remain
highly relevant in real-world scenarios due to hidden datasets and restricted model access.
In particular, [Okada et al. 2025] applied a similar XAl-driven adversarial methodology
in a black-box setting, demonstrating the potential to generate adversarial inputs without
full transparency. Future work may extend our approach to cover such black-box scenar-
ios, enhancing its applicability and robustness.

4.3. Methodology

In this subsection, we outline the structured pipeline (Figure 1) used to implement
XAl-driven adversarial attacks on the WUSTL-EHMS-2020 dataset. Our approach un-
folds in five key stages: data preprocessing, model development, performance evaluation,
explainability analysis, and the generation and assessment of adversarial perturbations.

Dataset preprocessing began with manual cleaning to remove non-contributory
features. The SrcMac attribute was excluded because the testbed used only one ma-
chine to simulate benign traffic and another for malicious traffic, making this feature
redundant. The Dir and Flgs attributes were also removed, as they lacked meaning-
ful information and were not described in the original dataset documentation. Addition-
ally, Packet _num, which serves merely as a sequential counter for each sample, was
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Figure 1. Methodology Flow Chart.

discarded. Three anomalous samples (with indexes 10633, 7923, and 8412) were re-
moved due to the presence of missing (NaN) values and categorical characters in a nu-
merical feature. After these steps, the Attack Category — comprising the classes
Benign, Data Alteration, and Spoofing — was retained as the target variable for classifi-
cation.

Next, using scikit-learn’s Python library!, categorical variables were converted to
numeric values via the LabelEncoder function and all features were standardized with
StandardScaler. The processed data were then split 80%/20% into training and test-
ing sets, and an XGBoost gradient-boosting classifier — known for its learning efficiency
and built-in regularization — was trained [Chen and Guestrin 2016]. Figure 1 illustrates
three distinct pathways that follow the completion of the Machine Learning Preprocessing
phase. In the first pathway, the baseline dataset was utilized to compute precision, recall,
and F1-score for each class using scikit-learn’s classification_report function,
along with the confusion matrix, to assess the model’s performance prior to exposure to
adversarial attacks.

In the second pathway, we interpret and pinpoint the drivers of False Negatives
in our target attack class, applying SHAP’s TreeExplainer [Lundberg and Lee 2017]
to the trained XGBoost model. SHAP values were computed for each test instance; we
then filtered for samples whose true label matched the target attack but were misclassified
by the model. By aggregating the mean absolute SHAP value per feature, we ranked
features by their influence on misclassification. The top three most influential features
were selected to guide subsequent adversarial perturbations.

Inspired by the approach of [Okada et al. 2025], we visualized True Positive and
False Negative samples using a 3D scatter plot based on the top three SHAP-ranked fea-
tures. We also analyzed the F1-score for each of these features to better understand their
individual impact on model performance. To ensure independence between features, we
generated a correlation matrix. This combined analysis guided the selection of a single
feature for targeted perturbation — one that was both highly influential and relatively
uncorrelated with the others.

During the adversarial attack phase, we first compute the standard deviation of the
selected feature over the normalized test set using the std () function from the pandas
library. We then define a small perturbation factor (9), which serves as a scalar to control

IScikit-learn library. Available at: https://scikit—-learn.org/
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the attack’s subtlety. The actual perturbation magnitude (A) is computed by multiplying
the perturbation factor by the standard deviation of the selected feature, representing the
amount by which the adversarial inputs will be altered. Next, we create a copy of the
test dataset and apply the perturbation magnitude to the selected feature for all samples
belonging to the target class (i.e., malicious instances), thereby generating the adversarial
examples. To evaluate the effectiveness of the attack, we employ confusion matrices for
all experimental scenarios, the F1-Score as implemented in scikit-learn.

In contrast to the XAl-driven attack, the third pathway employs the Adversarial
Robustness Toolbox (ART)’s [Nicolae et al. 2018] XGBoostClassifier to imple-
ment a targeted HopSkipJump attack aimed at misclassifying samples as Benign. Using
parameters max_iter=10, max eval=1000, and init _eval=10, adversarial ex-
amples were generated based on the model’s outputs. We then evaluated baseline versus
adversarial accuracy and targeted success rates on Data Alteration and Spoofing scenarios.

5. Results

The methodology outlined in Section 4.3 is applied here to analyze the two Attack Cate-
gory classes from the WUSTL-EHMS-2020 dataset: Data Alteration and Spoofing. Using
XAI techniques, we systematically identify the most vulnerable features for targeted ad-
versarial perturbations through manual analysis of model interpretation results.

5.1. XAI Analysis
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Figure 2. (a) SHAP summary plot under Data Alteration attack, and (b) corre-
sponding correlation matrix of the most impactful features.

Figure 2 and Figure 3 summarize the explainability evaluation of our XGBoost
model, highlighting the three most influential features — SrcLoad, DIntPkt, and
SrcJitter — by mean absolute SHAP value. In Figure 2(a), low SrcLoad values
(blue) and high DIntPkt values both drive up SHAP scores, signaling a higher proba-
bility of Data Alteration attacks, while SrcJitter exerts a consistent, moderate effect
indicative of benign traffic. The correlation heatmap in Figure 2(b) confirms minimal in-
terdependence among these features, with only a moderate positive correlation between
DIntPkt and SrcJitter, suggesting that manipulating one feature is unlikely to un-
duly perturb the others. Finally, the 3D plots of True Positives (Figure 3(a)) and False
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Negatives (Figure 3(b)) reveal distinct clusters and boundary-adjacent misclassifications,
underscoring SrcLoad as the most discriminative — and thus the prime target for ad-

versarial experiments.
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©S H N W s &

(a) TP vs FN in Top-3 Features. (b) FN in Top-3 Features.

Figure 3. 3D scatter plots under Data Alteration attack with (a) TP vs FN samples
and (b) only FN samples.
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Figure 4. (a) SHAP summary under Spoofing attack, and (b) corresponding cor-
relation matrix of the most impactful features.

The XAl-driven analysis of the Spoofing attack (Figures 4-5) highlights two pri-
mary drivers — Source Port (Sport) in network traffic and Temperature (Temp) in
biomedical data — whose SHAP values span —3 to +2, indicating bidirectional influence
depending on feature interactions. Lesser contributors such as DIntPkt, DstJitter,
and SrcJitter exhibit weaker overall impacts, although low SrcJitter corre-
lates with false negatives. A correlation heatmap of the top three false-negative drivers
(Sport, Temp, SrcJitter; Figure 4(b)) confirms negligible pairwise dependencies,
while the 3D scatter plot (Figure 5) shows true positives and false negatives clustering in
regions of sparse Sport and Temp values with particularly low SrcJitter.

We therefore focus our Data Alteration attack on the highly discriminative
SrcLoad feature and our Spoofing attack on Sport, whose pronounced SHAP impacts
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Figure 5. 3D scatter plots under Spoofing attack with (a) TP vs FN samples and
(b) only FN samples.

and distinct true-positive and false-negative separation make them ideal for probing the
XGBoost model’s vulnerabilities.

5.2. Evaluation

After identifying the key characteristics, we probed their vulnerabilities individually by
plotting F1-score degradation curves for the most susceptible candidates on the original,
unaltered dataset. We then repeated the same evaluation after applying each adversarial
attack, including HopSkipJump, to quantify their impact using correlation matrices to
quantify feature inter-dependencies and compare attack success rates.

Figure 6(a) illustrates the impact of the perturbation factor () on the model’s
performance when applied individually to each of the top three features selected for the
Data Alteration attack. As the perturbation factor increases up to 25%, the F1-score for
SrcLoad and SrcJitter drops sharply—from 99% to 10% and 8%, respectively.
Notably, SrcJitter performance stabilizes beyond this point, while SrcLoad con-
tinues to decline, reaching an F1-score of zero when the perturbation exceeds 50%. Fig-
ure 6(b) shows how targeted perturbations of the top three XAl-selected features affect
Spoofing detection. Without any perturbation, all three features achieve an Fl-score of
81%. As the perturbation factor grows, SrcJitter remains unchanged at 65% across
tested magnitudes (10% through 100%), demonstrating robustness. In contrast, the Temp
feature — representing human sensor data — shows a steady decline in detection per-
formance as perturbation increases, indicating only moderate vulnerability. On the other
hand, the Sport feature proves significantly more fragile, with detection accuracy drop-
ping sharply even under small perturbations. This suggests that Sport is the most effective
single-feature vector for evading spoofing detection, making it a key target for adversarial
manipulation.

Then we apply our XAl-driven perturbation exclusively to SrcLoad on Data
Alteration samples. Figure 7(a) illustrates how the Fl-score and recall deteriorate as
the adversarial perturbation magnitude increases, targeting the single most vulnerable
feature for each attack class. The attack achieves 100% evasion — misclassifying all
malicious instances as benign — once the perturbation factor reaches 33%. The post-
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Figure 6. F1-Score degradation with increasing perturbation size for (a) Data
Alteration and (b) Spoofing attacks.

attack confusion matrix (Figure 9(a)) demonstrates that perturbing SrcLoad alone, with
this level of modification, is sufficient to cause successful evasion.

In the case of the XAI-Driven manipulation on Spoofing attack (Sport fea-
ture) 7(b), the performance degradation follows a different trend. The F1-score drops
rapidly from 81% to around 30% when the perturbation factor reaches approximately
10%, while recall similarly decreases from about 75% to 2%. However, beyond this
point, both metrics show a degree of saturation and oscillate between 1% and 3% as the
perturbation factor increases up to 100% leading to F1-score of 12%. This plateau effect
suggests a partial robustness to spoofing attacks, where initial perturbations are effective,
but further increases yield only marginal gains in evasion.

In addition to our targeted XAl-driven perturbations, we evaluated the resilience
of the Healthcare and IDS merged system against HopSkipJump attack. Unlike single-
feature manipulations guided by feature-importance explanations, HopSkipJump indis-
criminately perturbs all input dimensions, although with heterogeneous magnitudes,
across both the data-alteration and spoofing threat models. This complementary analysis
not only benchmarks our method against a well-established adversarial strategy but also
elucidates how targeted explanation-guided perturbations compare with global, gradient-
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free optimization approaches in a Healthcare 5.0 context. By subjecting both attack
paradigms to identical network and data preprocessing pipelines, we ensure a fair com-
parison that highlights the unique advantages and limitations of each technique.

We begin by presenting the confusion matrix for the baseline input data, where
baseline refers to the original, unaltered test sample (Figure 8). Before the generation
of adversarial examples, the model demonstrates high classification accuracy. However,
after being subjected to an XAl-driven targeted attack on the Data Alteration class, the
model misclassifies all test samples (Figure 9(a)). Similarly, under a Spoofing attack, the
model achieves an evasion rate of 93% with a perturbation magnitude of approximately
90%. In contrast, our instantiated HopSkipJump attacks achieve 100% evasion when
targeting both the Data Alteration class (Figure 9(c)) and the Spoofing class (Figure 9(d)).

The X Al-guided attack achieved perfect evasion in the data alteration scenario and
maintained a high success rate in the spoofing scenario, all while modifying only a single
input feature and requiring minimal runtime per sample. In contrast, the HopSkipJump
attack achieved 100% evasion across both scenarios; however, it operated by perturbing
multiple input features simultaneously, as illustrated by the multidimensional perturbation
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Figure 9. Confusion matrices showing misclassification after XAl-driven pertur-
bation for (a) data alteration and (b) spoofing scenarios.

factors in Figure 10. This contrast reveals an important insight for adversarial planning
in resource-constrained environments like healthcare: explanation-based attacks can pro-
vide near-optimal stealth with low latency, whereas high-dimensional attacks, although
more powerful, may be impractical under strict time or compute constraints. Moreover,
the HopSkipJump scenario illustrates that crafting multidimensional adversarial examples
can be more complex and resource-intensive than single-feature perturbations, depending
on the context. These results suggest that XAl-driven adversarial strategies are a viable
and efficient alternative for evading advanced IDS, and emphasize the need for defenses
that can withstand both broad-spectrum and targeted, explanation-informed attacks.

6. Conclusion and Future Works

In this study, we reveal that the shift toward Healthcare 5.0 — marked by pervasive
machine-driven decision systems — significantly amplifies the risk of cyberattacks, as
adversaries can leverage XAl tools to probe and exploit critical model features. Although
interpretability methods aim to improve transparency, they can be manipulated through
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Figure 10. Comparison of average perturbation factor (5) under different attack
strategies. Subfigure (a) shows the perturbation factor when a single,
most influential feature is altered (unidimensional XAl-driven attack), while
(b) presents the perturbation factors resulting from the multidimensional
HopSkipJump attack, which perturbs multiple features simultaneously to
achieve successful misclassification.

single-feature perturbations to achieve complete evasion, confirming similar observations
in recent work [Okada et al. 2025]. Our experiments uncover a clear trade-off between
stealth and complexity of attack: an XAl-guided strategy alters just one pivotal attribute
to evade detection entirely and corrupt downstream decisions, whereas the HopSkipJump
approach must tamper with every input dimension to match that level of evasion. These
outcomes not only spotlight a new class of threats to patient safety and data integrity but

also underscore the necessity of extending adversarial assessments to diverse healthcare
datasets and realistic testbed scenarios.

These findings present the imperative to extend the study of XAl-driven adver-
sarial attacks across diverse datasets and realistic testbed environments, and to devise
resilient countermeasures — such as training regimes that reinforce critical features, dy-
namic filtering of explanation outputs, and continuous anomaly monitoring — to protect
full packet-level integrity under real-world bandwidth, latency, and protocol constraints.
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