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Abstract. The exponential growth of the Internet of Things (IoT) has led to the
emergence of substantial security concerns, with IoT networks becoming the pri-
mary target for cyberattacks. This study examines the potential of Kolmogorov-
Arnold Networks (KANs) as an alternative to conventional machine learning
models for intrusion detection in IoT networks. The study demonstrates that
KANs, which employ learnable activation functions, outperform traditional
MLPs and achieve competitive accuracy compared to state-of-the-art models
such as Random Forest and XGBoost, while offering superior interpretability
for intrusion detection in loT networks.
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1. Introduction

The Internet of Things (IoT) is a rapidly expanding network of interconnected devices
that enable smart functionality in various applications, from healthcare and industrial au-
tomation to smart cities and home systems [Atzori et al. 2017]. Although IoT offers
significant advantages in terms of automation, efficiency, and convenience, it also intro-
duces substantial security challenges. As IoT devices become more integral to critical
infrastructure, they are increasingly targeted by malicious actors, exposing sensitive data
and systems to cyberattacks. As a result, manufacturers and academics now have the top
priority of improving the security of IoT devices. In recent years, significant efforts have
been made to address security concerns in the IoT paradigm [Sarker et al. 2022, Sasi
et al. 2024]. Traditional Intrusion Detection Systems (IDS) often struggle to keep up
with the scale and complexity of IoT environments. These systems typically rely on fixed
feature sets and predefined patterns to detect threats, making them ill-suited to handle the

dynamic and evolving nature of IoT attacks [Abd Elaziz et al. 2024].

One of the most effective methods to enhance the intelligence of data analysis and
processing in the Internet of Things (IoT) is to integrate Machine Learning (ML) into its
operations [Liu et al. 2024a]. ML systems, as shown in Fig.1, are designed to automat-
ically learn models from training data and use these models to make predictions. They
find extensive applications across numerous fields, including ML-based 10T device iden-
tification, ML-based 1oT Malware, etc. ML serves as a crucial technology, not only for
analyzing IoT-generated data, but also for diverse applications within the IoT ecosystem.
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Figure 1. Typical scenarios and ML-based loT visions [Liu et al. 2024a].

For example, ML finds utility in IoT device recognition, anomaly detection, and even in
uncovering malicious activities. [oT attacks are cyberattacks that use any IoT device to
access sensitive consumer data. As IoT devices are not projected with adequate safety
mechanisms, they are one of the weakest links in an organization and offer a significant
risk of security [Waqas Khan et al. 2024, Kaur et al. 2023].

The study of existing methods to find attacks on IoT shows that scientists and
experts in the area are actively involved in solving the vulnerability in the field of security.
However, some obstacles in the field of threat detection strategies require the development

of more innovative approaches and additional research [Neto et al. 2023, Neto et al. 2024,
Cvitic et al. 2022].

This work explores the use of Kolmogorov-Arnold networks (KAN) [Liu et al.
2024b], a novel machine learning architecture inspired by the Kolmogorov-Arnold rep-
resentation theorem, to improve intrusion detection in IoT networks. Unlike MLPs with
fixed activation functions, KANSs use spline-based learnable activations, enabling dynamic
adaptation to complex data patterns, a critical advantage for evolving 10T threat land-
scapes. Using feature selection and KANSs, this research aims to optimize both detection
performance and computational efficiency in real-time IoT environments.

Due to the fact that accurate detection of anomalies is crucial in IDS, and KANs
offers a promising alternative to MLP-based approaches, this paper proposed using the
rebuilding of the CNN model by replacing all MLP layers with KAN layers [Abd Elaziz
et al. 2024]. The ability of KANs to approximate complex functions aligns well with
the needs of IDS in 10T environments, where computational limitations are critical con-

siderations [Elsaid et al. 2024]. The primary objectives of this study can be listed as
follows:

* Evaluate the performance of various machine learning models (Logistic Regres-
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sion, Random Forest, Decision Trees, K-Nearest Neighbors, Gradient Boosting,
XGBoost, Naive Bayes, Multi-Layer Perceptron, AdaBoost) in terms of precision,
recall, Fl-score, training time, and prediction time for [oT intrusion detection.

* Implement and evaluate the KAN model, focusing on its ability to detect intrusions
in IoT networks, particularly through its use of learnable activation functions and
feature selection.

* Analyze the impact of feature selection on model performance, particularly in
relation to reducing computational overhead without sacrificing accuracy.

* Investigate the suitability of KANs for real-time IoT applications, evaluating both
their accuracy and computational efficiency.

This research contributes to the growing body of knowledge in IoT security by
demonstrating the effectiveness of KANSs in intrusion detection tasks. Key contributions
include:

» Application of KANs to the CIC IoT 2023 dataset [Neto et al. 2023], showing
how learnable activation functions at the edges can improve the accuracy and in-
terpretability of the model.

* Evaluation of KANs against traditional models (e.g., Random Forest, XGBoost)
to demonstrate their competitive performance and suitability for IoT intrusion de-
tection.

* Demonstration of KANs’ interpretability through symbolic formula generation,
enabling transparent decision-making in security-critical IoT systems.

This work opens new avenues for improving the scalability, interpretability, and
real-time application of intrusion detection systems in [oT environments.

The remainder of this paper is structured as follows: Section 2 presents the back-
ground and related work from the literature, introduces the basics of the IoT architecture,
outlines the types of IoT attacks that can be perpetrated, and provides an overview of
Kolmogorov-Arnold Networks. Section 3 presents the steps of the proposed method. Sec-
tion 4 presents the findings of the developed model and offers a critical analysis thereof.
Finally, Section 5 presents a discussion of the findings, and Section 6 offers conclusions
and suggestions for future research.

2. Background and Related Work

The application of machine learning to threat detection in the Internet of Things is a fast-
growing research area. Despite significant progress, there are several areas in which more
research and development is needed [Wang et al. 2024, Lazzarini et al. 2023, Tsimenidis
et al. 2021, Arnau Muioz et al. 2024, Mohy-Eddine et al. 2023]. With the develop-
ment of 10T, new types of attack are emerging and those existing are constantly evolving.
The emergence of new, more complex and adaptive attacks, difficult to detect by existing
machine learning models, leads to the need to develop models that are capable of contin-
uous learning and adaptation to new types of threats, as well as to use the methods and
Generative models for creating synthetic training data [Arifin et al. 2024,Lim et al. 2024].

There is a problem of lack of quality and quality data for training models, espe-
cially for new types of devices and attacks. The class imbalance (when the number of
normal samples significantly exceeds the number of attacks) worsens the quality of the
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classification [Mahdavifar and Ghorbani 2024, Wang et al. 2021, ANOH et al. 2024].
Furthermore, the difficulty in interpreting solutions obtained from machine learning mod-
els, especially deep neural networks, often makes it difficult to understand the causes of
false positives and lost attacks. The resolution of this problem requires the development
of methods to view and explain model solutions [Qaddos et al. 2024].

Safety problems and possible solutions for IoT systems are constantly being stud-
ied. Several research papers are dedicated to a comprehensive rating of attacks based on
several factors. Real perspectives and perspectives of this research area are being taken
into account [Sasi et al. 2024].

Recent studies explored explainable Al (XAI) techniques in graph-based IDSs
and neural-symbolic systems [Mahdavifar and Ghorbani 2024, Kalutharage et al. 2024].
Ensemble models and deep learning approaches offer strong accuracy, but often lack inter-
pretability [Rane et al. 2024] — a gap that KANs aim to bridge. KANs offer a symbolic,
transparent framework that can be especially beneficial in high-stakes detection scenar-
ios [Kilani 2025].

2.1. IoT architecture

The 10T is a network of smart assets deployed in various locations characterized by its
openness and comprehensiveness. In recent years, significant efforts have been made to
address security concerns within the IoT paradigm. Specific techniques in the realm of
IoT security focus on addressing security concerns at a particular layer, while alternative
approaches strive to ensure comprehensive end-to-end security for IoT systems [Sasi et al.
2024].

The IoT architecture can be categorized into seven levels: perception, transport,
edge, processing, application, business, and security layer. The system operates as a
closed loop, facilitating the production of customized goods tailored to meet each end-
customer’s particular requirements. Rapid growth of the IoT requires the implementation
of robust security and privacy protocols to mitigate potential system vulnerabilities and
threats. In addition, within the IoT realm, factors such as dependability, scalability, and
power consumption emerge as crucial considerations. In the present setting, conventional
security measures may not always be suitable.

The absence of standardized protocols in the IoT architecture poses more chal-
lenges regarding interoperability, security, and several other concerns. The IoT architec-
ture has the potential to encompass a maximum of seven layers [Simmons 2022]. The
perception layer of an loT system architecture, also known as the device layer, consists
of multiple elements: sensors, cameras, actuators, and similar devices that collect data
and perform tasks. The transport layer of an [oT system architecture transmits data from
multiple devices (e.g., on-site sensors, cameras, actuators) to an on-premise or cloud data
center. As IoT networks grow on a scale, to process and analyze data as close as possible
to the source, the edge layer of the architecture of the IoT Edge Computing system is
used. A fundamental component of an IoT system architecture is its processing layer,
also called the middleware layer, which typically leverages many connected computers
simultaneously, in the form of cloud computing, to deliver superior compute, storage,
networking, and security performance. The application layer of an IoT system architec-
ture involves decoding promising patterns in [oT data and compiling them into summaries
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that are easy for humans to understand, such as graphs and tables.

Patterns decoded at the application level can be used to further distill business
insights, project future trends, and drive operational decisions that improve efficiency,
safety, cost effectiveness, customer experience, and other important aspects of business
functionality. In fact, all this can be achieved at the business layer of an IoT system
architecture. The IoT security layer comprises three main aspects: (1)Equipment Secu-
rity involves actual IoT devices and protects these endpoints from malware and hijacks;
(2)Cloud Security with most 10T data being processed in the cloud, cloud security is cru-
cial to prevent data leaks; (3)Connection Security focused on securing data transmitted
across networks, primarily with encryption. The Transport Layer Security (TLS) proto-
col is considered the benchmark for the security of 10T connections.

2.2. IoT attacks

IoT attacks bring new problems that require specialized security solutions to fully guard
against these dangers. Some of the different ways are [Sasi et al. 2024]:

Attack Surface IoT devices often have low processing speeds and resources.

Diversity of Devices The types of IoT devices differ significantly in form factor, operat-
ing systems, and network connection.

Physical Impact IoT devices are frequently used in crucial infrastructure or life-
sustaining systems, such as medical equipment; therefore, a cyberattack on these
devices might have very harmful physical consequences.

Legacy devices [oT devices usually have a longer lifespan. Older devices cannot get
software updates or security patches, making them more vulnerable to attacks or
compromises.

2.3. Kolmogorov-Arnold Networks (KANs)

KANSs are an advanced alternative to MLP [Liu et al. 2024b]. The theoretical foundation
of KANS is based on the Kolmogorov-Arnold representation theorem [Kolmogorov 1957,
Arnold 1957], which shows that any continuous multivariate function can be represented
as a superposition of univariate functions and addition. It seeks to overcome limitations in
MLPs through a new architecture where each weight parameter is replaced by a learnable
one-dimensional function, most often parametrized as a spline. It overcomes the rigidity
of MLPs through flexibility and adaptability at the level of a single connection within the
network [Liu et al. 2024b].

Although MLPs use fixed activation functions at the nodes, they use a linear trans-
formation across layers. KANs apply the learnable activation functions directly on the
network edges. This, in turn, removes the complete requirement for linear weight matri-
ces. Instead, the nodes in KANs add up the incoming signals to produce a result, making
it less computationally expensive and enhancing the model for precise approximations of
functions. KANs inspired by this mathematical framework [Liu et al. 2024b].

2n+1

flan,..m) =) @, (Z D (xp)> . (1)

Here ®, and ¢,, are univariate learnable functions that collectively handle the input-
to-output mapping of the network. This setup allows KANs to handle high-dimensional
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data by breaking down the complexity into manageable, one-dimensional operations, thus
sidestepping the curse of dimensionality that plagues MLPs. KANs use splines for the
activation functions on network connections.

Spline Activation Functions: Each connection in the network uses a spline function de-
fined by the following formula [Liu et al. 2024b]

2)

where B;(t) are the spline basis functions and ¢; are coefficients learned during
training. Fig. 2 depicts the splines function. It shows a network diagram with
nodes connected by functions ¢; ; where each function processes input from the
preceding nodes and the outputs are summed at the subsequent nodes.

Network Function Representation: The network is described by the function [Liu et al.
2024b]

m

fl@) =" ajo;(wlz+1)),

j=1

3)
where o represent the spline-based activation functions, w; are the input weights,
b; are biases, and a; are output weights.

Table 1 presents a comparison of the main aspects of the KAN model with other
ML algorithms. KANs uniquely combine symbolic interpretability and effective dimen-
sionality handling through learnable splines, making them suitable in IoT contexts.

Table 1. Comparison of Machine Learning Models for loT Intrusion Detection

Aspect KANs MLPs Tree-Based Models kNN Logistic Regression

Activation Learnable  splines Fixed functions N/A N/A (distance-  Sigmoid (output
(edges) (nodes) based) layer only)

Interpretability High (symbolic for- Low (black-box) Moderate  (feature Moderate (instance- High (coefficients)
mulas) importance) based)

Training Time High Moderate Low Low (lazy learner) Low

Prediction Time Moderate Moderate Low High Low

Curse of Dimen- Mitigated via uni- Struggles Handles well with Severe degradation = Moderate (with reg-

sionality variate functions selection ularization)

3. Methodology

The first part of this study investigates the performance of different machine learning
models to detect intrusions in IoT networks. We explored both classical and advanced
techniques, considering not only their predictive accuracy, but also their computational
efficiency in terms of training and prediction times, as well as interpretability.

3.1. Data selection and Preprocessing

The dataset used in this experiment is the CIC IoT 2023 Dataset, which contains both
benign and malicious network traffic data. This dataset is from the Center for Cyberse-
curity of the University of New Brunswick. Presented by Neto et al. 2023, the dataset
supports the development and evaluation of intrusion detection systems. This dataset is
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Figure 2. Activation function that flow via the network [Abd Elaziz et al. 2024].

very detailed and provides a broad and practical testbed to assess the effectiveness of se-
curity solutions tailored to the diverse range of loT-specific cyber threats. It has extracted
CSV features from network traffic in 105 IoT devices with 33 cyberattacks running on
them. Seven types of attacks were present: distributed denial of service (DDoS), denial of
service (DoS), reconnaissance, web-based, brute force, spoofing and Mirai botnet, as sum-
marized in Table 2. In our study, data binarization is applied to facilitate the analysis of
the classification task. The dataset contains a categorical target variable with two classes:
"BenignTraffic" (representing normal traffic) and "MaliciousTraffic" (rep-
resenting attack traffic). These labels are converted into binary form:

{1, if the sample belongs to BenignTraffic @)
y =

0, if the sample belongs to MaliciousTraffic

This binarization process ensures that the data are properly formatted, allowing it to effi-
ciently learn and distinguish between normal and malicious network traffic.

Table 2. Description of the CICloT2023 Dataset

Property Value
Number of Classes | 2 (combination of all attack classes and the benign class)
Number of Samples 1048 575
Number of Features 47

The dataset is loaded using libraries such as Pandas, PyTorch and Scikit-Learn
[The pandas development team 2020, Wes McKinney 2010]. The data were split into a
training set (67%) and a test set (33%) using the train_test_split function to consistently
evaluate model performance.

3.2. Models Evaluated

To compare results with KAN network, we evaluated the following machine learning
algorithms: Logistic Regression, Random Forest, Decision Trees, K-Nearest Neighbors
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(KNN), Gradient Boosting, XGBoost, Naive Bayes, Multi-Layer Perceptron (MLP), and
AdaBoost.

For each trained model, we generate a classification performance that includes the
precision, recall, F1 score, and overall accuracy of the measures. These metrics provide
a comprehensive insight into the model’s capability to classify intrusions in IoT envi-
ronments. We also measure the computational efficiency, in terms of training time and
prediction time. For each machine learning model, the training and prediction processes
are timed and followed by a performance report on the test set.

3.3. Building of KAN model

The second part of the research is devoted to building a model of the KAN [Liu et al.
2024a]. The network topology is defined as follows:

e Input Layer: the number of neurons is equal to the number of features selected
(input_ dim).

* Hidden Layers: two hidden layers with 16 and 8 neurons, respectively, using the
MultiKAN architecture to allow for both additive and multiplicative interactions
between features.

* Qutput Layer: a final layer with 2 neurons, representing the classification into
”BenignTraffic” and ”MaliciousTraffic”.

Mathematically, the structure of the model can be represented as: model =
KAN (width = [input_dim, [16,8],2]) where each functional unit within the network
follows the Kolmogorov-Arnold representation, allowing for a more expressive function
approximation compared to conventional neural networks.

The features are first normalized using StandardScaler, which transforms each
feature to have zero mean and unit variance, regardless of whether feature selection is

applied or not:
X —
Xicaled = K ) )
o

where 1 is the mean and o is the standard deviation of each feature in the dataset.

Next, feature selection is applied by ranking features according to their importance
and retaining only the top N most relevant ones. The resulting scaled feature set is then
transformed into PyTorch tensors for use in the KAN model:

Xtraim Xval; Xtest S Rme’ (6)

where m is the number of samples and /N is the number of selected features.

The corresponding binary class labels are also converted into long tensors, as
required for classification tasks.

The dataset used in this study [Neto et al. 2023] consists of 1048 575 samples,
each with 47 features (Tab.2). For training and evaluation purposes, the dataset is split
into three parts: training, validation, and test sets, using the train_test_split function from
the scikit-learn library.

The splitting is done in two stages. First, the dataset is divided into training data
(70%) and temporary data (30%):
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* Training set: 70% = 734,002 samples
* Temporary set: 30% = 314,573 samples

Next, the temporary set is equally split into validation and test sets (each 15% of
the total data):

* Validation set: 15% = 157,286 samples
» Test set: 15% = 157,287 samples

The model was initially trained using all the available features in the dataset. The
feature_importances_attribute of the trained Random Forest model was then used to
assess the importance of each feature. The features were ranked according to their impor-
tance and the top 10 features were selected for further analysis. A new training set was
created by selecting only the top 10 features of the original training set. Similarly, the
validation set was created by selecting the corresponding same top 10 features from the
original validation set.

The KAN model is trained using the training dataset, using Adam optimizer
CrossEntropyLoss. The model undergoes multiple training iterations, in which it learns to
minimize the loss function by adjusting its parameters based on the training data. For the
whole learning process, the model performs 114680 iterations. The number of iterations
for the entire learning process is:

N, train

Lot = X num_epochs @)

where: Ny, = 734002 — the number of examples in the training sample, B = 128 — the
size of the batch, num_epochs = 20 — the number of epochs of training (see Tabs.2 and
3). The loss is logged at regular intervals to monitor the training process.

Table 3. Parameters Setting For Model

Parameter | Value
Learning Rate | 0.001
Optimizer Adam
Batch Size 128
Epochs 20
Device CpPU

All baseline machine learning models were implemented using Scikit-learn with
default parameters. This choice ensures reproducibility and avoids the potential bias of
manual tuning. The KAN model was trained using parameters derived from empirical
validation, with no extensive hyperparameter optimization, as the focus was on evaluating
baseline feasibility and interpretability.

4. Experimental Results

This section presents the results of the classification models evaluated for IoT intrusion
detection. The proposed KAN model was implemented using Python 3.12 and the Py-
Torch 12.2 library, running on a Samsung laptop equipped with an Intel Core 17 processor
(1.80 GHz x 8) and Mesa Intel UHD Graphics 620 (KBL GT2). The system runs Linux
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Mint 21.3 Virginia 64-bit, with Linux version 5.15.0-126-generic. All experiments were
carried out with the parameter settings summarized in Table 3, ensuring consistency and
reproducibility between models.

Table 4 compares the performance of several machine learning models for intru-
sion detection in IoT security systems. Two experiments were conducted: one using a
complete set of features (46 features), and the other using the top 10 features selected
based on the importance of the Random Forest feature. The models were evaluated in
terms of precision, recall, Fl-score, training time, and prediction time. The results of
the application of the following methods are given: Logistic Regression (LG), Random
Forest (RF), Decision Tree (DT), K-Nearest Neighbors (KNN), Gradient Boosting (GB),
XGBoost (XGB), Naive Bayes (NB), Multi-Layer Perceptron (MLP), AdaBoost (AB).
For all models implemented using the sklearn library, the default parameters were uti-
lized.

Table 4. Performance Comparison of Different Machine Learning Models (With
Top 10 (T10) Features vs. Full Features (Full))

Model Precision Recall F1-score | Training | Prediction
0 \ 1 0 \ 1 0 \ 1 | Time (s) | Time (s)
LR (Full) 0.99 | 0.78 | 1.00 | 0.73 | 0.99 | 0.75 | 60.6060 0.0155
LR (T10) 0.99 | 0.66 | 0.99 | 0.57 | 0.99 | 0.61 | 4.2741 0.0036
RF (Full) 1.00 | 0.93 | 1.00 | 0.94 | 1.00 | 0.94 | 24.2105 0.2301
RF (T10) 1.00 [ 0.93 | 1.00 | 0.94 | 1.00 | 0.94 | 83.1187 0.6880
DT (Full) 1.00 | 0.92 | 1.00 | 0.92 | 1.00 | 0.92 | 3.6391 0.0122
DT (T10) 1.00 | 0.91 | 1.00 | 0.92 | 1.00 | 0.92 | 4.9156 0.0123
kNN (Full) | 1.00 | 0.79 | 0.99 | 0.88 | 1.00 | 0.83 | 0.5305 246.5834
kNN (T10) | 1.00 | 0.79 | 0.99 | 0.88 | 1.00 | 0.83 | 0.0411 204.9660
GB (Full) 1.00 { 0.92 | 1.00 | 0.94 | 1.00 | 0.93 | 289.5622 0.2128
GB (T10) 1.00 | 0.92 | 1.00 | 0.94 | 1.00 | 0.93 | 352.8267 0.1837
XGB (Full) | 1.00 | 0.90 | 1.00 { 0.95 | 1.00 | 0.92 | 3.1733 0.0561
XGB (T10) | 1.00 | 0.91 | 1.00 | 0.95 | 1.00 | 0.93 | 3.9836 0.0729
NB (Full) 1.00 | 0.05 | 0.52 | 1.00 | 0.69 | 0.09 | 1.3125 0.1552
NB (T10) 1.00 | 0.05 | 0.53 | 1.00 | 0.69 | 0.09 | 0.4370 0.0799
MLP (Full) | 1.00 | 0.84 | 1.00 | 0.92 | 1.00 | 0.88 | 793.9634 2.1384
MLP (T10) | 1.00 | 0.83 | 1.00 | 0.92 | 1.00 | 0.87 | 427.7701 1.1884
AB (Full) 1.00 | 0.90 | 1.00 | 0.93 | 1.00 | 0.91 | 72.0482 0.9977
AB (T10) 1.00 | 0.90 | 1.00 | 0.93 | 1.00 | 0.91 | 72.8655 0.9829

Selecting the top 10 features based on the importance of the random forest feature
significantly improved the computational efficiency of most models. For example, the
training time for logistic regression (LR) was reduced by 93% and the prediction time by
77%. However, a decrease in the recall for malicious traffic (from 0.73 to 0.57) suggests
potential information loss.

Based on the analyses, the best overall models for the task of intrusion detection
in IoT networks are Random Forest (RF) and XGBoost (XGB). These models offer a
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strong balance between precision, recall, F1 score, and training time, making them ideal
for detecting benign and malicious traffic effectively. Although feature selection signifi-
cantly improved efficiency for models like Logistic Regression and MLP, but at the cost
of reduced recall to detect malicious traffic in LR.

Both KNN and Naive Bayes had significant drawbacks, with KNN’s high predic-
tion time and Naive Bayes poor recall limiting their practicality for IoT intrusion detec-
tion tasks, even after feature selection. Decision trees were shown to be highly efficient
across both experiments, with stable performance and minimal computational costs, mak-
ing them a viable option for simple classification tasks in IoT systems.

The goal of the next experiment was to evaluate the performance of a KAN archi-
tecture for intrusion detection in IoT systems. The KAN model was tested on a selected
set of features from the dataset, with a focus on analyzing accuracy, loss reduction, and
computational efficiency (training and prediction time). The results of the network con-
struction are shown in Table 5. The results showed a performance comparison between
the KAN model and various traditional machine learning models in terms of recall, F1-
score, training time and prediction time, both using the full set of features (Full) and a
selection of the 10 most relevant features (T10).

Table 5. Training and Evaluation Results for KAN Model (With Top 10 Features
(T10) vs. Full Features (Full))

Model Precision Recall F1-score Training | Prediction
0 | 1 0 | 1 0 | 1 Time (s) | Time (s)

KAN (Full) 1.00 | 0.70 | 0.99 | 1.00 | 0.99 | 0.82 | 26720.4515 3.2056

KAN (T10) 0.99 | 0.61 | 0.99 | 0.48 | 0.99 | 0.54 | 864.4360 0.7326

The KAN model demonstrated strong learning capacity, reducing the loss from
0.0637 to 0.0239 over 20 training steps. For malicious traffic (class 0), KAN achieved
near-perfect precision (1.00) and recall (0.99) with full features, yielding an F1-score of
0.99. For benign traffic (class 1), the precision dropped to 0.70, but the recall remained
perfect (1.00), resulting in an Fl-score of 0.82. With the top 10 characteristics (T10),
the precision for class 0 remained high (0.99), but the recall dropped to 0.48 (F1: 0.54),
highlighting a critical trade-off between efficiency and detection reliability.

Training times for KAN were substantial, requiring 7 hours for full features and
14 minutes for T10, far exceeding tree-based models like Random Forest (24 seconds)
or XGBoost. However, KAN’s prediction times remained practical for deployment at 3.2
seconds (full dataset) and 0.73 seconds (T10). While RF and XGBoost outperformed
KAN in class 0 Fl-scores (0.94 and 0.93 vs. 0.82), KAN surpassed simpler models
like Logistic Regression (class 0 F1: 0.61) and K-Nearest Neighbors (class 0 F1: 0.83),
balancing performance with interpretability.

Feature selection reduced computational costs but degraded detection metrics. For
Logistic Regression, recall for malicious traffic dropped sharply from 0.73 to 0.57, low-
ering its F1-score from 0.75 to 0.61. Similarly, KAN’s class 0 F1 score decreased to 0.54
(from 0.82) with T10, although it retained high precision (0.99). This underscores the
challenge of maintaining detection efficacy when prioritizing computational efficiency.
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Figure 3. Representation of the KAN architecture for Model (Top 10).

A key strength of KAN lies in its interpretability. Unlike black-box models such
as RF or XGBoost, KAN’s learnable spline activations generate symbolic formulas, clari-
fying feature interactions critical for diagnosing false positives in malicious traffic predic-
tions. This transparency enables precise tuning of security systems, even when modeling
complex non-linear relationships.

A visual representation of the KAN architecture is shown in Fig. 3 e 4. The lower
row of nodes represents the input features of the data set according to the selected im-
portance of the feature applied (see Sect.,3.3). The thickness and opacity of the links
represent the strength or importance of these learned functions. The top layer represents
the final classification result, whether the traffic is classified as benign or malicious.

Eq.8 represents a symbolic formula generated by the KAN model for the com-
plete dataset. The equations generated by the KAN model demonstrate the ability to cap-
ture complex and non-linear relationships between variables, combining linear, non-linear
and trigonometric terms. This makes it highly effective in detecting complex patterns in
IoT environments, where data can exhibit periodic variations. However, the model also
presents challenges in terms of computational cost, particularly due to the complexity of
the equations, which affects efficiency in large-scale or real-time scenarios. Generaliza-
tion is well balanced, but efficiency improvements are needed to make it more competitive
with traditional ML models.
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Figure 4. Representation of the KAN architecture for Model (Full).

fa1, ..., 246) = —0.1319A - B + 5.9730

@®)
—0.1890A4 - B — 3.5679,

where
A =0.386521 — 0.2209219 + 0.0810x11 + 0.1644x15

+0.2828216 + 0.1019217 4 0.1527215 — 0.1815219
— 0.441425 + 0.1003z59 — 0.1394291 + 0.1011z5;
—0.1073225 — 0.1079w25 — 0.2856234 — 0.12512:35
+0.1145236 — 0.1775239 + 0.079525 + 0.152129
+ 1.0500 sin(0.54902:3 + 8.4495)
+0.3195sin(0.463724, — 0.8215)
+0.2710sin(0.4930245 — 1.2037) — 0.2464,

©)

and
B =0.5147x1 — 0.0708z11 — 0.1260x12 — 0.0617x17

+ 0.4938z18 — 0.2913x2 + 0.0651z20 — 0.2176x25

-+ 0.0609227 — 0.2009x28 + 0.0801xz30 — 0.1499234

+ 0.1205236 — 0.0881x38 + 0.201624 4 0.0629243

+ 0.0723x5 — 0.1280x¢ + 0.0450x7 + 0.1113x5

—0.2193 5in(0.422624, + 1.3504) (10)
+ 0.8037 sin(0.2836245 — 7.4806)

+ 1.3886 cos(0.3002z16 — 2.5864)

+ 0.8571 cos(0.6163x3 — 5.6287)

— 6.6183 cos(0.0921x40 + 6.4281)

+ 0.6129 cos(0.6235z45 — 9.1999) + 8.1104.

For real-time [oT deployments, Random Forest and XGBoost are good choices
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due to their rapid training times and superior class 0 F1-scores (0.94). However, KAN is
ideal for scenarios that prioritize model transparency or require granular analysis of attack
patterns, despite its computational overhead. Future work could explore hybrid architec-
tures that integrate KANSs with tree-based feature selection to optimize both efficiency and
interpretability, bridging the gap between real-time performance and actionable insights
in [oT security systems.

5. Discussion

This study evaluated the performance of a Kolmogorov-Arnold network architecture com-
pared to traditional machine learning models for intrusion detection in Internet of Things
systems. The results provided insight into the accuracy, training time, and prediction time
of different models when applied to a comprehensive dataset of IoT network traffic, with
additional analysis conducted using a reduced feature set based on feature importance.

The results also highlight the potential capabilities of KANs over traditional neural
network architectures. By using learnable activation functions at edges, KANSs can cap-
ture complex, non-linear relationships more effectively than models based on fixed acti-
vation functions such as MLPs. This flexibility and adaptability make KANs a promising
alternative for security applications in the IoT, where network traffic can exhibit a wide
range of behaviors that need to be interpreted dynamically.

The trained KAN model can be used for intrusion detection in real-time IoT sys-
tems, providing a robust and scalable solution for detecting both known and unknown
threats. Future work could focus on refining the model to further reduce training time
through optimization techniques and the use of GPU acceleration. In addition, explor-
ing the application of federated learning could enable collaborative model training across
distributed IoT networks, improving privacy while maintaining high model performance.

Random Forest and XGBoost remain the top choices for 10T intrusion detection,
primarily due to their high accuracy and fast computation times. These models are highly
scalable, making them ideal for real-time IoT security environments where resource con-
straints and real-time response are critical.

Although KAN is highly accurate and capable of approximating complex func-
tions, it is better suited for applications where interpretability and function approximation
are priorities. Its longer training time currently limits its suitability for large-scale or real-
time 10T applications, although its ability to model complex data interactions could be
highly beneficial in scenarios where more intricate relationships in the data need to be
explored.

This work demonstrates that Kolmogorov—Arnold Networks (KANs) are a viable
approach for intrusion detection systems (IDS) due to their inherent interpretability. Un-
like traditional models that require external XAI techniques (e.g., SHAP, LIME), KANs
generate symbolic formulas directly from the model, enabling more transparent and au-
ditable decision-making — a critical requirement in regulated or mission-critical IoT en-
vironments.

Although training time remains a limitation, KANs are particularly valuable in
scenarios where interpretability is as important as accuracy. Their potential is especially
relevant in federated learning or edge-based IoT systems, where privacy, decentralization,
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and explainability must coexist. Future research may explore hardware acceleration (e.g,
the use of Graphics Processing Unit — GPUs) and hybrid pipelines that combine sym-
bolic reasoning with efficient feature selection, helping bridge the gap between theoretical
innovation and real-world applicability.

This work contributes to the growing body of research aimed at improving [oT se-
curity through machine learning, particularly in environments where resource constraints
and real-time requirements are prominent.

This study shows that KANs are accurate and interpretable, which is vital for
transparent, auditable detection processes. While models like Random Forest and XG-
Boost are excellent, they lack the explainability of KANs. This capacity for transparent
decision-making is valuable for scenarios like regulatory compliance, forensic analysis,
or critical infrastructure protection, where understanding the rationale behind alerts is as
important as detection accuracy itself.

6. Conclusion

The study demonstrates that Kolmogorov-Arnold Networks (KANs) are highly effective
at capturing complex, non-linear relationships in IoT environments, significantly outper-
forming traditional machine learning models. The research emphasizes the crucial im-
portance of optimized feature selection, which not only improves model performance by
reducing the number of variables but also minimizes training time and computational
overhead, thereby facilitating real-time application in resource-constrained IoT systems.

The integration of KANs with learnable activation functions represents a signif-
icant advancement in the field of IoT security frameworks. This integration provides a
robust solution that improves both the accuracy and interpretability of network traffic
classification, which is essential for the protection of sensitive data from evolving cyber
threats. As future work, optimizing KANSs via hardware acceleration (GPUs) could bridge
the training efficiency gap, making them viable for large-scale IoT deployments.

In future applications, KANs could be especially beneficial in domains where the
ability to generate interpretable detection rules is critical. Hybrid approaches combin-
ing interpretable symbolic layers with faster detection backends could allow balancing
detection performance with transparency.
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