Anais do SBSeg 2025: Artigos Completos

TITAN DGA: Uma GAN Otimizada por Divergéncia KL com
Autoencoder Baseado em Transformers para Geracao de
Dominios Maliciosos

Rafael C. Pregardier!, Luiz A. C. Bianchi Jr.!, Alfredo Cossetin Neto'
Vinicius Fulber-Garcia?, Luis A. L. Silva!, Carlos R. P. dos Santos!

! Departamento de Computagdo Aplicada (DCOM)
Universidade Federal de Santa Maria (UFSM)
Av. Roraima, 1000, Bairro Camobi, CEP 97.105-900 — Santa Maria, RS — Brasil

?Departamento de Informatica
Universidade Federal do Parana (UFPR)
Jardim das Américas, CEP 81530-900 - Curitiba, PR - Brasil

{rcpregardier, acneto, luisalvaro, csantos}@inf.ufsm.br,
bianchijr@gmail.com, vinicius@inf.ufpr.br

Abstract. Conventional DGAs use fixed pseudo-random seeds, whereas adver-
sarial DGAs adapt by incorporating the lexical and statistical features of benign
domains. We present TITAN DGA, an adversarial domain-generation GAN that
integrates a transformer-based autoencoder and Kullback—Leibler divergence
to stabilize training. We tokenize benign domains via SentencePiece and use
a transformer encoder—decoder to model character dependencies, aligning la-
tent distributions with KL for realistic samples. In evaluations against FANCI,
LSTM.MI, and Bilbo—and compared to CDGA, CharBot, Deception DGA, De-
epDGA, and MaskDGA—TITAN DGA achieved superior results on evasion.

Resumo. DGAs convencionais usam sementes pseudoaleatorias fixas, en-
quanto os adversariais se adaptam, absorvendo tracos léxicos e estatisticos de
dominios benignos. Apresentamos o TITAN DGA, uma GAN adversarial que
combina autoencoder transformer e divergéncia de Kullback—Leibler para es-
tabilizar o treinamento. Tokenizamos dominios benignos com SentencePiece e
empregamos um encoder—decoder transformer para modelar dependéncias de
caracteres, alinhando distribuicées latentes via KL para gerar amostras rea-
listas. Em avaliacoes com os classificadores FANCI, LSTM.MI e Bilbo, e em
comparacdo com CDGA, CharBot, Deception DGA, DeepDGA e MaskDGA, o
TITAN DGA obteve desempenho superior em evasdo.

1. Introducao

Botnets, usadas tanto para planejar ataques de Distributed Denial-of-Service (DDoS),
quanto para roubar informag¢des dos equipamentos infectados, usam nomes de dominio
para dificultar o bloqueio da comunicacao entre os bots e o servidor de Comando e Con-
trole (C&C) [Alieyan et al. 2017]. Porém, com o aumento do compartilhamento de In-
dicators of Compromise (I0OCs) em geral pela comunidade e a adi¢do destes dominios
a blacklists [Antonakakis et al. 2012], surgiram os Algoritmos de Geracdao de Dominios
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(DGASs). Tais algoritmos permitem que malwares mantenham comunica¢ao com seus ser-
vidores (C&C) enquanto evitam a deteccdo por medidas tradicionais de ciberseguranca.
Sua expansdo tem fomentado a geracao e exploragdo maliciosa de milhares de dominios
pseudorranddomicos por hora, sustentando ameacas como o trojan bancario GameOver
Zeus e o Mirai que orquestra ataques DDoS. Os DGAs também desempenham uma fungao
na facilitacdo de ataques de ransomware — como o CryptoLocker — e Ameacas Persis-
tentes Avancadas (APTs).

DGAs tradicionais empregam uma semente (seed) pré-compartilhada — uma
sequéncia numérica ou outro dado comum [Plohmann et al. 2016] — permitindo que
hosts infectados e servidores de C&C compartilhem uma mesma sequéncia de dominios.
Esse avanco exp0s a fragilidade das defesas contra botnets e motivou a pesquisa de
classificadores automaticos de DGAs explorando diferentes técnicas tradicionais de
aprendizado de mdaquina [Schiippen et al. 2018], [Li et al. 2019] e de aprendizado pro-
fundo [Tran et al. 2018], [Woodbridge et al. 2016], [Highnam et al. 2020]. Com o au-
mento da eficicia destes detectores, uma nova ameaga surge: 0 DGA adversarial. Esta
técnica € baseada em modelos de aprendizado de miquina que produzem DGAs base-
ados em dominios benignos, feitos especialmente para burlar os classificadores exis-
tentes, alcancando alta evasdo em modelos treinados em datasets com familias DGA
jé definidas. Nos modelos onde o retreinamento adversarial € aplicado, o desempe-
nho dos detectores tende a um crescimento. Esse ciclo de ataque e defesa caracteriza
uma ‘“‘corrida armamentista® [Spooren et al. 2019], que evidencia a falta de robustez
dos detectores em capturar certas caracteristicas especificas na relacdo entre caracteres
[Hu et al. 2023], [Zhai et al. 2022].

Nesse contexto, o objetivo deste trabalho € a criagdo de dominios maliciosos que
sejam realistas, além de serem projetados para apresentar alta evasividade perante detec-
tores, independentemente de seu funcionamento. Em especifico, investigamos a aplica¢ao
de métodos de aprendizado de maquina na geracdo de dados, especialmente Redes Ge-
nerativas Adversarias (GANs), com a incorporagdo de arquiteturas baseadas em transfor-
mers, de forma a permitir modelagem precisa de relacdes semanticas e estruturais com-
plexas em sequéncias de texto. Propomos o TITAN DGA, cujas principais contribui¢des
sao:

* A proposicdao de uma nova arquitetura para geragao de dominios maliciosos que
une GANs com um autoencoder baseado em transformers — substituimos co-
dificadores LSTM por um autoencoder transformer com estabilizagdo por di-
vergéncia de Kullback-Leibler (KL), com treinamento conjunto da GAN e do
autoencoder, a fim de incentivar maior diversidade nas amostras geradas;

* Ao utilizar fokenizagdo com SentencePiece € uma arquitetura transformer, 0 mo-
delo € capaz de capturar dependéncias de curto e longo alcance entre tokens, ge-
rando dominios mais dificeis de distinguir de dominios reais, demonstrando mo-
delagem semantica e estrutural aprimorada;

* Avaliamos extensivamente o TITAN DGA contra trés classificadores de referéncia
de naturezas distintas (FANCI, LSTM.MI e Bilbo) e comparamos com cinco
DGAs adversdrios estado-da-arte (CDGA, CharBot, DeceptionDGA, DeepDGA
e MaskDGA). A arquitetura proposta apresentou os menores valores de F1-Score
encontrados e altos indices de diversidade (Self-BLEU baixo), evidenciando sua
superior capacidade de evadir a detec¢do e gerar dominios altamente distintos.
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Este artigo estd organizado da seguinte forma: Secdo Il revisa trabalhos relaciona-
dos e desafios na aplicacao de GANs a DGAs; Secdo III detalha o TITAN DGA; a Se¢ao
IV apresenta experimentos e resultados; e, por fim, a Se¢do V discute conclusdes e aponta
direcoes para trabalhos futuros.

2. Revisao da Literatura

2.1. Gerac¢ao de Dominios Sintéticos

Redes Generativas Adversarias (GANs) vém se destacando por sua capacidade de sinteti-
zar trafego de rede realista, fundamental para treinar e validar modelos de aprendizado de
maquina em detec¢do de anomalias, otimizacdo de desempenho e avaliagdo de robustez
[Afifi et al. 2024]. O PAC-GAN [Lin et al. 2018] adapta arquiteturas de visao compu-
tacional: cada pacote ¢ mapeado numa matriz 28x28 (bytes divididos em “nibbles”) e
reconstruido por deconvolucao (com checksums recalculados). O [Bianchi et al. 2025]
emprega transfer learning, pré-treinando um WGAN-GP em um protocolo “fonte” volu-
moso e, em seguida, afinando-o (dropout, reducao de taxa de aprendizado, penalidade de
gradiente) em um protocolo “alvo®; a qualidade € avaliada pelo Fréchet Inception Dis-
tance. Esses trabalhos mostram como métodos utilizados em outras dreas de pesquisa,
como imagens, podem ser reaproveitados para gerar trafego em multiplos protocolos. Ja
trabalhos como o TITAN DGA utilizam GANs para criar dominios sintéticos com dife-
rentes enfoques, explorando a afinidade 1éxica entre nomes de dominio e texto comum
através de técnicas NLP que se assemelham aos padrdes reais.

Arquiteturas que integram transformers € GANs t€m sido exploradas para geracao
de texto. O Style Transformer-GAN [Zeng et al. 2020] utiliza codificadores distintos
para estilo e conteiido, combinando essas representacdes em um gerador baseado em
transformer, avaliado por um discriminador que considera fluéncia e fidelidade ao es-
tilo. O modelo aprende estilos implicitamente, sem dados paralelos, e apresenta bons
resultados em BLEU [Papineni et al. 2002], perplexidade e acuracia de estilo. Ja o TIL-
GAN [Diao et al. 2021] adota uma estrutura latente implicita, na qual um autoencoder
gera embeddings intermedidrios processados por um decodificador transformer, permi-
tindo maior controle e diversidade na geracdo. Esses avangos motivam a adogao de es-
tratégias semelhantes no TITAN DGA proposto.

O DeepDGA [Anderson et al. 2016] adota um autoencoder para compactar
dominios reais e um gerador treinado adversariamente para produzir representagcdes se-
melhantes a dominios legitimos, mas ndo captura dependéncias de longo alcance entre
caracteres. O Khaos [Yun et al. 2020] propde uma WGAN com técnicas baseadas em n-
grams e um filtro similar ao do TITAN DGA, mas com geracdo mais restrita, favorecendo
evasao em detrimento da diversidade. O CDGA [Zhai et al. 2022] emprega uma WGAN-
GP com blocos ResNet, tokenizacdo via SentencePiece, embeddings Word2Vec e redes
LSTM, com treinamento separado entre autoencoder ¢ GAN. Em contraste, o TITAN
DGA integra ambos os treinamentos e adota transformers para modelar dependéncias
longas entre tokens, incorporando ainda a divergéncia de Kullback-Leibler para estabili-
zar e diversificar o espaco latente, gerando dominios dificeis de detectar.

Abordagens alternativas a geracdo direta também exploram a manipulagio
de dominios existentes para criar DGAs adversariais. O Deception
DGA [Spooren et al. 2019] modifica dominios gerados por DGAs ajustando padrdes
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linguisticos, como o equilibrio entre vogais e consoantes. De forma similar, o Char-
Bot [Peck et al. 2019] substitui aleatoriamente dois caracteres em dominios benignos
para enganar classificadores, sem recorrer a técnicas de aprendizado de mdquina.
CLETer [Liu et al. 2021] e MaskDGA [Sidi et al. 2019] refinam essa ideia ao aplicar
substituicdes baseadas em informacdes extraidas dos préprios classificadores: o CLETer
altera os caracteres mais relevantes para a decisdo, enquanto o MaskDGA usa transferi-
bilidade adversaria a partir de uma CNN substituta. Embora eficazes, essas abordagens
dependem do acesso ao modelo de deteccdo ou da similaridade entre modelos. Em
contraste, o TITAN DGA gera dominios com GANSs, assegurando diversidade e realismo
sem depender de informacdes internas dos classificadores.

Abordagens baseadas em séries temporais também sdo exploradas. O Repla-
ceDGA [Hu et al. 2023] utiliza uma rede BiLSTM para substituir caracteres de dominios
benignos de forma informada, gerando dominios semanticamente similares, porém ad-
versarios. Apesar da alta taxa de evasdo contra classificadores tradicionais, sua de-
pendéncia de dominios legitimos limita a diversidade estrutural e a adaptabilidade. Além
disso, ao alterar apenas dois caracteres por dominio, tende a produzir padrdes previsiveis.
Em contraste, o TITAN DGA gera dominios inteiramente novos, com maior complexi-
dade e variedade, alcancando evasdo robusta mesmo frente a multiplos classificadores.

Apo6s anos de desenvolvimento de DGAs, cada vez mais mostrou-se que os
métodos de detec¢do baseados em block-lists e correlagdo entre requisicoes DNS esta-
vam defasados. Entdo, juntamente com a criagdo de DGAs baseados em machine lear-
ning, surgiram também detectores DGA com a mesma base, buscando minimizar o tempo
necessdrio para a classificacdo de um dominio. Esses classificadores sdao divididos em
dois subgrupos: baseados em machine learning e baseados em deep learning.

2.2. Detectores

O FANCI [Schiippen et al. 2018] utiliza uma Random Forest com 21 caracteristicas
linguisticas para classificar dominios como benignos ou DGAs, com alta precisio e
baixa taxa de falsos positivos, permitindo detec¢do em tempo real. No entanto, con-
forme [Spooren et al. 2019], seu desempenho € inferior ao de modelos baseados em
aprendizado profundo. O B-RF [Sivaguru et al. 2018], também com Random Forest,
adota 26 caracteristicas, incluindo entropia, consoantes consecutivas ¢ mediana de n-
grams circulares. Embora eficaz em cendrios simples, enfrenta limitacdes sob variagdes
nas sementes dos DGAs. Avaliagdes comparativas revelam que seu recall € infe-
rior ao de modelos como o B-LSTM.MI, que detectam o dobro de dominios malicio-
sos [Sivaguru et al. 2018], evidenciando a superioridade e a robustez dos métodos basea-
dos em aprendizado profundo, que dispensam engenharia manual de caracteristicas.

O trabalho em [Tran et al. 2018] propds um detector de DGA baseado em redes
LSTM, capaz de lidar com desbalanceamento de classes e alcangar altos F1-Scores em
dominios benignos. Complementarmente, o Bilbo [Highnam et al. 2020] introduziu uma
arquitetura hibrida com LSTM e CNN em paralelo, voltada a deteccdo de DGAs ba-
seados em dicionério, com desempenho consistente em métricas como AUC, F1-Score
e acurdcia, superando modelos classicos em generalizacdo e resiliéncia temporal. Em-
bora ambos explorem o potencial do aprendizado profundo, nosso trabalho gera dominios
sintéticos mais diversos e evasivos, elevando a adaptabilidade frente a classificadores he-
terogéneos.
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Figura 1. TITAN DGA - Arquitetura Geral

2.3. Discussao

Em conclusao, trabalhos apresentados na literatura revelam a evolucdo das técnicas de
geracdo de dominios maliciosos, desde abordagens baseadas em LSTM e manipulagcdo
de dominios legitimos até modelos adversariais com GANs. Trabalhos como o De-
epDGA [Anderson et al. 2016] e o CDGA [Zhai et al. 2022] avangaram ao integrar au-
toencoders e tokeniza¢do para emular dominios legitimos, mas ainda sofrem com a
separacdo entre geracdo e reconstrucao e dependéncias de longo alcance mal captura-
das [Hu et al. 2023]. O TITAN DGA, por sua vez, propde uma integracdo direta entre
autoencoder e GAN, utilizando transformers e divergéncia KL para estabilizacdo, ge-
rando dominios mais coesos e evasivos sem ajustes especificos para cada classificador,
superando limitagdes anteriores.

3. Geracao de Dominios Maliciosos Usando Transformers

Esse trabalho propde a geragdao de DGAs utilizando uma GAN baseada em transformers.
O emprego dessa abordagem possibilita aprender relacdes de curto e longo alcance entre
os diferentes tokens, o que possibilita a maior evasao e diversidade de dominios gerados.
Este trabalho utiliza datasets de DGAs disponiveis, junto a listas de dominios benignos,
onde o modelo proposto € capaz de enganar classificadores existentes na literatura.

O framework proposto do TITAN DGA, ilustrado na Figura 1, é composto por
quatro modulos principais:

1. Dataset de treinamento: essa etapa ¢ composta pela escolha e preparacdo dos
dados a serem utilizados no treinamento da GAN, juntando DGAs de diferentes
familias com dominios benignos, provenientes de datasets conhecidos na litera-
tura.

2. Pré-processamento: neste estagio, os dominios benignos tém seus TLDs removi-
dos. Em seguida, sdo tokenizados utilizando dois métodos: o tokenizador Senten-
cePiece e um tokenizador simplificado que insere os fokens especiais. Isso prepara
os dados para entrada no autoencoder e reduz a complexidade do vocabulario.

3. Autoencoder: este modulo é responsdvel por codificar os dominios fokenizados
em um espaco latente de menor dimensionalidade. O codificador (encoder) trans-
forma os dominios em vetores latentes compactados, que sdo utilizados pelo dis-
criminador da GAN como amostras reais. O decodificador (decoder), por sua vez,
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reconstréi os dominios a partir desses vetores, tanto os oriundos do codificador
quanto os gerados pelo gerador da GAN. O treinamento do autoencoder ocorre de
forma conjunta com o da GAN, sendo ambos otimizados com base na divergéncia
de Kullback-Leibler.

4. GAN: a GAN € composta por um gerador e um discriminador. O gerador ¢é trei-
nado para produzir vetores no espaco latente que se assemelhem aos gerados pelo
codificador, enquanto o discriminador tenta distinguir entre os vetores latentes
reais (vindos do codificador) e os sintéticos (produzidos pelo gerador). O treina-
mento adversario aprimora progressivamente a qualidade dos vetores sintéticos.

5. Pés-processamento: apés a reconstrugdo dos dominios pelo decodificador, é apli-
cado um filtro para garantir que os dominios gerados estejam em conformidade
com as RFCs 1034 e 1035. Além disso, um TLD valido € selecionado a partir de
uma lista pré-definida, eliminando a necessidade de geracdo de TLDs pela GAN
e assegurando a validade estrutural dos dominios resultantes.

3.1. Datasets de Treinamento e Teste

No total, trés datasets foram utilizados neste trabalho: um para o treinamento da GAN,
outro para o treinamento dos classificadores, e um conjunto de datasets para a inferéncia
dos geradores de DGA da literatura, incluindo o TITAN DGA.

Para a selecio de dominios benignos, este trabalho utiliza o
Tranco [Le Pochatet al. 2019], contendo uma lista dos dominios mais acessados
mundialmente, elaborada para evitar manipulacdes comuns em listas tradicionais
como a Alexa Top-n Domains. Para os dominios gerados por DGAs, o DGAr-
chive [Fraunhofer FKIE 2020] € utilizado. Disponibilizado pela Fraunhofer FKIE, esse
dataset contém mais de 9GB de dominios de diferentes familias.

O primeiro dataset, denominado GT, foi utilizado para o treinamento da GAN. Ele
¢ composto por 140 mil dominios benignos extraidos do Tranco e 140 mil dominios DGA
retirados do DGArchive, abrangendo sete familias distintas: Conficker, Gozi, Matsnu,
Pykspa, Simda, Suppobox e Ud?2.

O segundo dataset, chamado DB1, foi utilizado para o treinamento
dos classificadores FANCI [Schiippen et al. 2018], LSTM.MI [Tran et al. 2018] e
Bilbo [Highnam et al. 2020]. Ele é composto por 500 mil dominios benignos (B1) ex-
traidos do Tranco e 500 mil dominios DGA (D1) provenientes de 10 familias diferentes,
sendo duas baseadas em hash (Bamital e Dyre), cinco em aritméticas (Banjori, Conficker,
Cryptolocker, Nymaim e Pykspa) e trés em listas de palavras (Gozi, Matsnu e Suppobox).

Na fase de inferéncia dos modelos construidos, foram utilizados datasets indivi-
duais para cada gerador de DGA testado, bem como para o TITAN DGA. Cada conjunto
¢ composto por 10 mil dominios benignos e 10 mil dominios gerados por cada respec-
tivo DGA, organizados da seguinte forma: CDGA_IN (10k CDGA + 10k benignos),
CHAR_IN (10k CharBot + 10k benignos), DEEP_IN (10k DeepDGA + 10k benignos),
DECE_IN (10k DeceptionDGA + 10k benignos), MASK_IN (10k MaskDGA + 10k be-
nignos) e TITA_IN (10k TITAN DGA + 10k benignos).

3.2. Pré-processamento e Tokenizacao dos Dados

O pré-processamento dos dados € similar a [Zhai et al. 2022], utilizando o SentencePi-
ece para a tokenizacdo dos dominios. Apds a criagdo dos datasets, os dominios passam
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Figura 2. Arquitetura do modelo de autoencoder.

por uma etapa de remog¢do dos Top Level Domains (TLDs). Essas terminacOes perten-
cem a um conjunto pequeno e fixo de possibilidades, dispensando sua geracdo direta pela
GAN. Posteriormente, € realizada a segmentacao dos dominios utilizando o SentencePi-
ece, uma ferramenta desenvolvida pelo Google para a geracao de texto em redes neurais,
que permite definir o vocabuldrio antes do treinamento. Dentre as técnicas disponibili-
zadas, optou-se pelo uso do Unigram Language Model, devido a sua capacidade de lidar
melhor com palavras desconhecidas e variacdes morfolégicas — caracteristicas comuns
em nomes de dominios. A segmentagdo permite dividir dominios em unidades menores e
mais coerentes, como no exemplo “steamstat.us“, que pode ser separado em “steam‘ e
“stat“, aumentando a diversidade e a naturalidade dos dominios gerados. Em seguida, os
dados rokenizados sao convertidos em sequéncias de indices numéricos, adicionando-se
tokens especiais de “inicio de sequéncia® (sos) e “fim de sequéncia® (eos).

3.3. Descricao da Arquitetura da GAN + autoencoder

A arquitetura da GAN investigada neste trabalho € composta por um autoencoder ba-
seado em transformer, demonstrado na Figura 2, com duas camadas de self-attention
e quatro cabegas de atengdo, seguido por uma camada feedforward com 512 unidades
e uma dimensao latente comprimida de tamanho 56. Essa dimensdo comprimida atua
como um espacgo de representacdo condensado da sequéncia de entrada, capturando suas
caracteristicas mais relevantes em um vetor fixo de tamanho reduzido. O objetivo é que
o modelo aprenda a codificar informagdes essenciais dos dominios nesse espago latente,
servindo de ponte entre o codificador e o decodificador.

O gerador e o discriminador sao implementados como redes Multi Layer Percep-
tron (MLP) de uma camada com 128 neurdnios, o que reduz a complexidade sem compro-
meter a capacidade de aprendizado. A ativagdo LeakyReLU ¢€ utilizada para garantir esta-
bilidade no treinamento, e a funcio de perda baseada na divergéncia de Kullback-Leibler
foi escolhida por favorecer a geracdo de amostras diversificadas e distribuidas de forma
semelhante as observacgdes reais. A divergéncia de Kullback-Leibler € utilizada neste tra-
balho como parte da funcdo de perda adverséria no treinamento da TITAN GAN, atuando
diretamente sobre a distribui¢do das representacOes latentes geradas. O gerador latente
transforma amostras de uma distribui¢do simples ¢ ~ N(0,I) por meio da rede MLP
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gs(e), resultando em uma distribuigio implicita pg(z). O objetivo € que essa distribuigao
se aproxime da distribui¢do agregada do codificador q,(2) = Eyp, (2)[0s(2]2)], 0 que é
alcancado minimizando a divergéncia KL:

£4(6.8) = Dualas(2) 192(:1) = [ o) 1o (22 ) n
ps(2)

Esse termo é incorporado a fungdo de perda total com um coeficiente de
ponderacgdo, incentivando que o gerador latente cubra toda a diversidade presente nas
distribui¢des codificadas. E importante destacar que, diferentemente de modelos variaci-
onais (VAESs), o autoencoder da TITAN GAN nio utiliza a divergéncia KL para regulari-
zar a aproximagdo entre ¢(z|x) e um prior explicito p(z). Em vez disso, a divergéncia KL
atua no nivel da distribui¢do marginal, reforcando a diversidade e compatibilidade entre
os espacos latentes do gerador e do codificador.

Além disso, uma segunda divergéncia KL € introduzida com o objetivo de aprimo-
rar o decodificador. Ela mede a discrepancia entre a distribui¢ao do codificador aplicada
sobre amostras reconstruidas Z = E(G(g(¢))) e a distribuigao original g,(2):

Liec = Dxr(qs(2) || By(2)) (2)

Essa penalizacdo adicional assegura que o decodificador aprenda a lidar com
representacdes provenientes do gerador, promovendo maior fidelidade na geracao textual,
mesmo quando confrontado com vetores latentes nunca vistos durante o treinamento.

3.4. Treinamento do modelo

Durante o treinamento do modelo, foi adotado o otimizador Adam para todos os compo-
nentes da arquitetura, incluindo o gerador, o discriminador e o autoencoder. Essa escolha
se deve a sua eficdcia em estabilizar e acelerar a convergéncia de modelos baseados em
aprendizado profundo, especialmente em arquiteturas adversarias, como as GANs. Além
disso, uma taxa de dropout de 30% foi aplicada em diferentes partes do autoencoder,
como apods as cabecas de atencdo e apds a camada feedforward. Isso é realizado para
regularizar a aten¢do, mas também a transformacgdo ndo linear aplicada dos embeddings.

O treinamento foi realizado com um tamanho de lote (batch size) de 256 amos-
tras, valor que oferece um bom equilibrio entre estabilidade da atualizacao dos gradientes
e utilizacdo eficiente da memoria. Em relacdo as taxas de aprendizado (learning rates),
diferentes valores foram empregados para cada componente da arquitetura: o gerador foi
treinado com uma taxa de 0,0004, o discriminador com 0,0002, e o autoencoder com uma
taxa relativamente mais alta de 0,06. A escolha desses hiperparametros se deu apds uma
extensa andlise empirica, na qual diversos experimentos foram conduzidos para avaliar
o impacto de diferentes combinacdes de taxas de aprendizado e tamanhos de lote sobre
o desempenho do modelo. Durante essa fase exploratdria, observou-se que valores mais
altos de learning rate para o discriminador e o autoencoder levavam ao sobreajuste (over-
fitting), fazendo com que esses componentes memorizassem os padrdes de treinamento e
perdessem a capacidade de generalizacdo. Por outro lado, uma taxa de aprendizado muito
baixa para o autoencoder resultava em subajuste (underfitting), impedindo que a rede
aprendesse representacoes uteis dos dados de entrada. Assim, os valores finais adotados
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Tabela 1. Exemplos de nomes de dominios gerados por modelos de DGAs ad-
versariais diferentes (com o TLD removido).

TITAN DGA CDGA MaskDGA CharBot Deception DGA | DeepDGA
tradeworkreporter uqlzfdfd semapisimtda banzhew ntrvenker thellehm
bike10life brotherlicwo voruiddvwdwuihkul | sancopatvgonia motuseroure shtrunoa
brainmagazine thethethmmili sfqjkbu63rlhyfa8543 | puttpandroid wolan290451 vietips
saubrasil theworkliimoarview | sooackgeicesmsgi matctendgrect olyuchedu statpottxy

refletem um equilibrio alcangado empiricamente entre estabilidade no treinamento, boa
capacidade de generalizagao e efici€éncia computacional. A diferenciacdo entre os valores
de learning rate busca atender as distintas sensibilidades e dindmicas de otimizacdo de
cada médulo, sendo comum em GANSs atribuir ao discriminador um learning rate menor
que o do gerador para evitar o sobreajuste precoce € manter a competicao equilibrada
entre os dois.

A dimensao latente de entrada do gerador foi definida como um vetor de 100
dimensdes, amostrado a partir de uma distribui¢do normal padrdao N (0, I). Essa escolha
visa fornecer um espaco latente suficientemente expressivo para capturar a diversidade
das distribui¢des dos dados reais, sem comprometer a estabilidade do treinamento.

Por fim, foi adicionado ruido gaussiano controlado tanto no processo de treina-
mento quanto na inferéncia do autoencoder. Essa técnica visa aumentar a robustez do
modelo, encorajando o aprendizado de representacOes latentes que sejam mais genera-
lizdveis, mesmo sob pequenas perturbacdes nos dados de entrada.

3.5. Pés-processamento

A etapa do pds-processamento apresentada neste trabalho € dividida em duas tarefas me-
nores: a filtragem de dominios validos e a adicdo de TLD aos dominios gerados. A
filtragem dos dominios ocorre em conformidade com os RFCs 1034 e 1035, que definem
caracteristicas basicas de como um dominio deve ser formado. Sendo assim, dominios
fora do intervalo de tamanho vélido sdo descartados, assim como dominios que terminam
em hifen; além disso, a probabilidade de geracdo de dominios semelhantes € reduzida.
Na Tabela 1 podemos ver alguns exemplos dos dominios gerados pelo TITAN DGA apds
o pos-processamento, porém sem o TLD, apenas para fins de comparacgao entre eles.

Dessa forma, para finalizar a criacdo dos novos dominios, a escolha de um TLD ¢é
realizada a partir de uma lista de dezenas de TLDs. A escolha € feita de maneira aleatoria,
a fim de proporcionar uma maior diversidade de dominios que podem ser gerados.

4. Experimentos e Resultados

O objetivo dos experimentos realizados € avaliar o desempenho e a adaptabilidade dos
dados gerados pelo TITAN DGA, com base em classificadores utilizados na literatura.
Além disso, buscou-se investigar métricas que capturam a diversidade das amostras gera-
das, bem como a incidéncia de repeticdes nos dominios sintetizados. Essa andlise permite
compreender tanto a eficicia da geracdo quanto o seu potencial para enganar detectores
de DGA e enriquecer conjuntos de dados sintéticos.

Inicialmente, foi construido um conjunto de dados representativo, com instancias
suficientes das principais familias de DGA, a fim de garantir o treinamento eficaz dos
classificadores. Para conduzir os experimentos, as seguintes etapas foram realizadas:
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1. Treinamento dos modelos classificadores: foram utilizados trés classifica-
dores distintos, baseados em abordagens da literatura [Schiippen et al. 2018,
Tran et al. 2018, Highnam et al. 2020]. Esses classificadores foram treinados in-
dividualmente usando 80% dos dados disponiveis no dataset DB1. O classifi-
cador FANCI [Schiippen et al. 2018] conta originalmente com 21 caracteristicas
(features) para a classificagcdo. No nosso trabalho, os TLDs sdo selecionados de
uma lista fixa. Logo, somente 16 caracteristicas foram utilizadas nos experimen-
tos. Cada modelo foi configurado conforme especificagdes originalmente pro-
postas, respeitando as arquiteturas e hiperparametros sugeridos nos trabalhos de
referéncia.

2. Inferéncia e avaliacao de classificadores: apds o treinamento, os classificado-
res foram submetidos ao processo de inferéncia, utilizando os dados gerados pelo
TITAN DGA. O objetivo foi verificar a capacidade de evasdo dos dominios sinte-
tizados, observando o percentual de dominios que ndo foram corretamente classi-
ficados ou que foram erroneamente atribuidos a outra classe.

3. Comparacao com outros DGAs da literatura: os DGAs gerados pelos mo-
delos propostos neste trabalho foram comparados a outros cinco modelos dis-
poniveis da literatura: CDGA [Zhai et al. 2022], CharBot [Peck et al. 2019],
DeceptionDGA [Spooren et al. 2019], DeepDGA [Anderson et al. 2016] e
MaskDGA [Sidi et al. 2019].

4. Célculo das métricas complementares: métricas complementares foram explo-
radas, incluindo a diversidade lexical dos dominios gerados (Self-BLEU) e o ta-
manho médio dos dominios gerados. Essas métricas sdo essenciais para avaliar a
utilidade do modelo gerador na construcdo de amostras realistas, porém dificeis
de detectar.

A validacdo dos experimentos foi realizada de acordo com diferentes métricas.
Primeiramente, foi executada a verificagdo do treinamento dos classificadores com base
em duas métricas de validacao de classificadores bindrios: a drea sob a curva (AUC) e a
curva ROC (Receiver Operating Characteristic). Essas duas métricas sao quantificadas
entre 0 e 1, onde o resultado mais préximo de 1 é melhor. Essa métrica foi empregada
para assegurar que os classificadores alcancaram um bom desempenho nos dados reais.
Além disso, para a avaliacdo do desempenho dos detectores nos dados sintéticos, foram
utilizadas outras 4 métricas: a precisao, a acurdacia, o recall e o F1-Score. Note que, para
a habilidade de anti-detec¢do, quanto menores os valores dessas métricas, melhores os re-
sultados. Como métrica final, este trabalho explora o Self-BLEU [Papineni et al. 2002] na
comparacao qualitativa dos dados gerados. Importante destacar que quanto mais proximas
de 0 sdo as relagdes entre os n-grams, mais diverso € o texto. Essa métrica foi empre-
gada devido a sua ampla utilizacdo em avaliagdes de modelos mais gerais voltados para a
geracdo de texto, pois explora a verificacdo de repeti¢ao de n-grams nos textos gerados.

Com base nos resultados obtidos no dataset de validacdo DB1 na Figura 3, po-
demos observar que os classificadores Bilbo e LSTM MI apresentaram um desempenho
excepcional, ambos alcancando um AUC (Area Sob a Curva) de 0.98. Esse resultado in-
dica uma alta capacidade de discriminacdo entre os dominios benignos e DGAs, demons-
trando elevada eficdcia na tarefa de classificacdo. Por outro lado, o classificador FANCI
obteve um AUC de 0.83. Embora este resultado ainda possa ser considerado bom, esta
significativamente abaixo dos outros dois modelos. Isso € explicado pelo FANCI ser um
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Figura 3. Curva ROC e AUC dos 3 classificadores distintos treinados e validados
nos 20% de validacao do dataset DB1.

modelo de Random Forest, que € mais simplificado do que modelos de Deep Learning ba-
seados em CNNs ou LSTMs, os quais sdo capazes de identificar padrdes mais complexos
presentes em alguns DGAs.

A andlise da curva ROC reforca esses achados, pois tanto Bilbo quanto LSTM.MI
apresentam taxas de verdadeiros positivos (TVP) elevadas em relagcdo as taxas de falsos
positivos (TFP), o que € desejavel em um classificador robusto. O FANCI demonstra uma
relacdo menos favoréavel entre TVP e TFP, o que pode indicar uma maior tendéncia a erros
de classificacao em cendrios com dados desbalanceados ou ruidosos.

Com relagao a inferéncia dos dados sintéticos no classificador FANCI, os resul-
tados apresentados na Tabela 2 indicam que o TITAN DGA apresenta o maior impacto
negativo sobre o desempenho do classificador, destacando-se como o modelo com maior
capacidade de evasdo entre os DGAs analisados. O TITAN DGA obteve os menores va-
lores em todas as métricas, indicando que seus dominios sd@ao os mais dificeis de serem
corretamente identificados como maliciosos. Esse comportamento evidencia uma habili-
dade acentuada de camuflagem frente aos mecanismos de detec¢cao do FANCI, especial-
mente na relagdo entre precisdo e Fl-score. Embora sua precisio (0,4411) seja aproxi-
madamente 37,5% inferior a do MaskDGA (0,7058), a diferenca no Fl-score se amplia
para 42,6% (0,3915 contra 0,6816). Comparando com o DeceptionDGA, que obteve um
Fl-score de 0,4470, o TITAN DGA ainda apresenta um desempenho de classificacio
pior, o que reforca sua habilidade de evadir detec¢do, mesmo quando comparado a um
modelo projetado especificamente para burlar o FANCI. Esse comportamento compro-
mete o trade-off entre falsos positivos e falsos negativos, tornando mais dificil distinguir
dominios legitimos dos gerados pelo TITAN DGA.

Resultados semelhantes foram observados na inferéncia sobre o classificador
BILBO (Tabela 4). O TITAN DGA novamente apresenta os menores resultados entre os
modelos, com destaque para o F1-score de apenas 0,2117, frente a valores significativa-
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Tabela 2. Resultados de avaliacdao obtidos na inferéncia dos datasets de in-
feréncia dos DGAs da literatura no classificador FANCI.

Métricas | CharBot | DeceptionDGA | MaskDGA | CDGA | DeepDGA | TITAN DGA
Precisdo | 0.5980 0.5129 0.7058 0.6342 0.6467 0.4411
Acurdcia | 0.5710 0.5073 0.6884 0.6057 0.6205 0.4724
Recall 0.5710 0.5073 0.6884 0.6057 0.6205 0.4724
F1-Score | 0.5393 0.4470 0.6816 0.5836 0.6028 0.3915

Tabela 3. Resultados de avaliacao obtidos na inferéncia dos datasets de in-
feréncia dos DGAs da literatura no classificador LSTM.MI.

Métricas | CharBot | DeceptionDGA | MaskDGA | CDGA | DeepDGA | TITAN DGA
Precisdo | 0.8317 0.7673 0.9503 0.9045 0.9304 0.7271
Acurécia | 0.5890 0.5500 0.8767 0.6838 0.7748 0.5354
Recall 0.2233 0.1434 0.7950 0.4111 0.5939 0.1135
F1-Score | 0.3521 0.2416 0.8657 0.5653 0.7250 0.1963

mente mais altos dos demais DGAs, como o MaskDGA (0,8776) e o DeepDGA (0,6235).
A baixa pontuacdo de recall (0,1234) também reforca a hipotese de que os dominios ge-
rados pelo TITAN DGA escapam a deteccao da arquitetura, mesmo em classificadores
baseados em mecanismos distintos, como o BILBO, que combina aprendizado de em-
beddings com técnicas supervisionadas. Essa repeti¢cdo do padrdo de evasdo sugere que a
capacidade de disfarce do TITAN DGA é€, de fato, transversal a diferentes abordagens de
modelagem.

Considerando os trés classificadores — FANCI, LSTM.MI e BILBO — o TITAN
DGA exibe uma evasdo consistente, apresentando os menores valores de Fl-score em
todos os casos (0,3915, 0,1963 e 0,2117, respectivamente). Essa consisténcia reforca a
hipétese de que os dominios sintéticos gerados por esse modelo possuem caracteristicas
altamente adversariais, capazes de explorar vulnerabilidades comuns entre diferentes es-
tratégias de deteccdo. Em particular, a combinacao de baixos valores de recall e precisao
implica ndo apenas uma menor taxa de detec¢do, mas também um desbalanceamento
critico nas classificacdes, comprometendo a sensibilidade dos sistemas, mesmo com ar-
quiteturas distintas. Esses resultados destacam, sobretudo, o papel da arquitetura baseada
em transformers, que € crucial para a geracdo de textos coesos € bem estruturados. A
capacidade dos transformers em modelar sequéncias complexas e gerar dominios com
caracteristicas adversariais eficazes foi determinante para alcancar esses resultados, evi-
denciando a relevancia dessa tecnologia na criagdo de DGAs dificeis de detectar.

A Figura 4 mostra a pontuagdo Self-BLEU ao longo das épocas de treinamento da

Tabela 4. Resultados de avaliacao obtidos na inferéncia dos datasets de in-
feréncia dos DGAs da literatura no classificador BILBO.

Métricas | CharBot | DeceptionDGA | MaskDGA | CDGA | DeepDGA | TITAN DGA
Precisdo | 0.8564 0.7847 0.9517 0.9077 0.9190 0.7443
Acurdcia | 0.6079 0.5545 0.8864 0.6860 0.7151 0.5405
Recall 0.2594 0.1502 0.8142 0.4141 0.4718 0.1234
F1-Score | 0.3982 0.2522 0.8776 0.5687 0.6235 0.2117
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Figura 4. Self-BLEU score através das épocas do treinamento da GAN.

GAN, evidenciando a diversidade dos dados gerados. Cada linha desenhada no gréfico
representa o numero de n-grams considerados para o calculo do Self-BLEU, por exemplo,
a linha Bleu-2 representa a diversidade textual presente a cada época do treinamento do
modelo, medindo a repeti¢cdo de 2 n-grams em relagdo a todos os exemplares gerados na
época. E importante ressaltar que, para o cdlculo do BLEU, o TLD néo é considerado.
Por volta da época 20, o modelo comecou a evitar a repeticdo de n-gramas de tamanho 3
e 4, destacando sua rdpida capacidade de aprender a gerar dominios diversificados. Apds
a época 25, a geracdao de dominios ndo apenas se estabilizou, mas também se tornou mais
variada, refletindo a habilidade da GAN em gerar dominios diferentes, ndo apenas no
nivel de nomes completos, mas também nos n-grams das palavras. Esse comportamento
ressalta a eficicia do autoencoder em transformar os dominios gerados.

Tabela 5. Tamanho médio dos dominios e desvio padrao.
Tipo do Dominio CDGA CharBot  DeceptionDGA  DeepDGA  MaskDGA TITAN DGA Legitimos
Tamanho médio | 10.98 £4.82 1051 £3.24 1021391 1653520 1519%530 6.83%3.07 9.63+427

Apesar dos dominios gerados pelo TITAN DGA apresentarem, em média, um ta-
manho menor, em relacdo a outros DGAs adversarios e dominios legitimos, de acordo
com a Tabela 5, € importante ressaltar que a escolha dos tamanhos médios dos dominios
a serem gerados pelo TITAN DGA é feita durante o treinamento. A escolha por dominios
menores se deu para a demonstracao da capacidade da geracdao de dominios diversos, pois
o grafico de Self-BLEU (Figura 4) evidencia que, mesmo com nomes mais curtos, a diver-
sidade dos dominios gerados é mantida, com a pontuacdo Self-BLEU continuando baixa,
indicando que o modelo estd gerando continuamente dominios distintos, sem repeti¢cao
significativa.

5. Conclusao

Algoritmos de Geracao de Dominios (DGAs) desempenham um papel central no cendrio
atual de ciberseguranga, dada sua importancia para a manutencao da comunicagao entre
bots e servidores C&C, dificultando a detec¢ao por sistemas tradicionais. A evolugdo

13



Anais do SBSeg 2025: Artigos Completos

constante dos DGAs adversarios evidencia a necessidade de solugdes inovadoras para
testes de robustez e para o fortalecimento de detectores.

Neste trabalho, abordamos o problema da geracdo de dominios maliciosos alta-
mente realistas e evasivos, com foco na superagao dos classificadores existentes. A di-
ficuldade de gerar dominios adversdrios que sejam simultaneamente diversos, realistas e
dificeis de detectar, especialmente em cendrios sem conhecimento prévio dos detectores,
motivou as contribui¢cdes propostas.

O TITAN DGA apresenta avancos relevantes para a area, ao combinar autoen-
coders baseados em transformers e estabilizacdo via divergéncia KL, promovendo uma
geracdo de dominios sintéticos mais coesa e diversa. Experimentalmente, o TITAN
DGA demonstrou desempenho superior de evasao frente a detectores consagrados como
FANCI, LSTM.MI e Bilbo, alcangcando os menores valores de FI-Score em todas as
avaliagdes. Além disso, métricas como Self-BLEU confirmaram a alta diversidade 1éxica
dos dominios gerados, reforcando a eficdcia da arquitetura proposta.

Para trabalhos futuros, pretendemos adicionar médulos de estilo e controle
semantico, expandindo a variabilidade dos dominios gerados. Também planejamos ex-
pandir as avaliacOes apresentadas neste trabalho, além de analisar a eficicia do modelo
contra detectores treinados com dados adversarios.
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