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Abstract. Conventional DGAs use fixed pseudo-random seeds, whereas adver-
sarial DGAs adapt by incorporating the lexical and statistical features of benign
domains. We present TITAN DGA, an adversarial domain-generation GAN that
integrates a transformer-based autoencoder and Kullback–Leibler divergence
to stabilize training. We tokenize benign domains via SentencePiece and use
a transformer encoder–decoder to model character dependencies, aligning la-
tent distributions with KL for realistic samples. In evaluations against FANCI,
LSTM.MI, and Bilbo—and compared to CDGA, CharBot, Deception DGA, De-
epDGA, and MaskDGA—TITAN DGA achieved superior results on evasion.

Resumo. DGAs convencionais usam sementes pseudoaleatórias fixas, en-
quanto os adversariais se adaptam, absorvendo traços léxicos e estatı́sticos de
domı́nios benignos. Apresentamos o TITAN DGA, uma GAN adversarial que
combina autoencoder transformer e divergência de Kullback–Leibler para es-
tabilizar o treinamento. Tokenizamos domı́nios benignos com SentencePiece e
empregamos um encoder–decoder transformer para modelar dependências de
caracteres, alinhando distribuições latentes via KL para gerar amostras rea-
listas. Em avaliações com os classificadores FANCI, LSTM.MI e Bilbo, e em
comparação com CDGA, CharBot, Deception DGA, DeepDGA e MaskDGA, o
TITAN DGA obteve desempenho superior em evasão.

1. Introdução

Botnets, usadas tanto para planejar ataques de Distributed Denial-of-Service (DDoS),
quanto para roubar informações dos equipamentos infectados, usam nomes de domı́nio
para dificultar o bloqueio da comunicação entre os bots e o servidor de Comando e Con-
trole (C&C) [Alieyan et al. 2017]. Porém, com o aumento do compartilhamento de In-
dicators of Compromise (IOCs) em geral pela comunidade e a adição destes domı́nios
a blacklists [Antonakakis et al. 2012], surgiram os Algoritmos de Geração de Domı́nios
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(DGAs). Tais algoritmos permitem que malwares mantenham comunicação com seus ser-
vidores (C&C) enquanto evitam a detecção por medidas tradicionais de cibersegurança.
Sua expansão tem fomentado a geração e exploração maliciosa de milhares de domı́nios
pseudorrandômicos por hora, sustentando ameaças como o trojan bancário GameOver
Zeus e o Mirai que orquestra ataques DDoS. Os DGAs também desempenham uma função
na facilitação de ataques de ransomware — como o CryptoLocker — e Ameaças Persis-
tentes Avançadas (APTs).

DGAs tradicionais empregam uma semente (seed) pré-compartilhada — uma
sequência numérica ou outro dado comum [Plohmann et al. 2016] — permitindo que
hosts infectados e servidores de C&C compartilhem uma mesma sequência de domı́nios.
Esse avanço expôs a fragilidade das defesas contra botnets e motivou a pesquisa de
classificadores automáticos de DGAs explorando diferentes técnicas tradicionais de
aprendizado de máquina [Schüppen et al. 2018], [Li et al. 2019] e de aprendizado pro-
fundo [Tran et al. 2018], [Woodbridge et al. 2016], [Highnam et al. 2020]. Com o au-
mento da eficácia destes detectores, uma nova ameaça surge: o DGA adversarial. Esta
técnica é baseada em modelos de aprendizado de máquina que produzem DGAs base-
ados em domı́nios benignos, feitos especialmente para burlar os classificadores exis-
tentes, alcançando alta evasão em modelos treinados em datasets com famı́lias DGA
já definidas. Nos modelos onde o retreinamento adversarial é aplicado, o desempe-
nho dos detectores tende a um crescimento. Esse ciclo de ataque e defesa caracteriza
uma “corrida armamentista“ [Spooren et al. 2019], que evidencia a falta de robustez
dos detectores em capturar certas caracterı́sticas especı́ficas na relação entre caracteres
[Hu et al. 2023], [Zhai et al. 2022].

Nesse contexto, o objetivo deste trabalho é a criação de domı́nios maliciosos que
sejam realistas, além de serem projetados para apresentar alta evasividade perante detec-
tores, independentemente de seu funcionamento. Em especı́fico, investigamos a aplicação
de métodos de aprendizado de máquina na geração de dados, especialmente Redes Ge-
nerativas Adversárias (GANs), com a incorporação de arquiteturas baseadas em transfor-
mers, de forma a permitir modelagem precisa de relações semânticas e estruturais com-
plexas em sequências de texto. Propomos o TITAN DGA, cujas principais contribuições
são:

• A proposição de uma nova arquitetura para geração de domı́nios maliciosos que
une GANs com um autoencoder baseado em transformers – substituı́mos co-
dificadores LSTM por um autoencoder transformer com estabilização por di-
vergência de Kullback-Leibler (KL), com treinamento conjunto da GAN e do
autoencoder, a fim de incentivar maior diversidade nas amostras geradas;

• Ao utilizar tokenização com SentencePiece e uma arquitetura transformer, o mo-
delo é capaz de capturar dependências de curto e longo alcance entre tokens, ge-
rando domı́nios mais difı́ceis de distinguir de domı́nios reais, demonstrando mo-
delagem semântica e estrutural aprimorada;

• Avaliamos extensivamente o TITAN DGA contra três classificadores de referência
de naturezas distintas (FANCI, LSTM.MI e Bilbo) e comparamos com cinco
DGAs adversários estado-da-arte (CDGA, CharBot, DeceptionDGA, DeepDGA
e MaskDGA). A arquitetura proposta apresentou os menores valores de F1-Score
encontrados e altos ı́ndices de diversidade (Self-BLEU baixo), evidenciando sua
superior capacidade de evadir a detecção e gerar domı́nios altamente distintos.
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Este artigo está organizado da seguinte forma: Seção II revisa trabalhos relaciona-
dos e desafios na aplicação de GANs a DGAs; Seção III detalha o TITAN DGA; a Seção
IV apresenta experimentos e resultados; e, por fim, a Seção V discute conclusões e aponta
direções para trabalhos futuros.

2. Revisão da Literatura
2.1. Geração de Domı́nios Sintéticos
Redes Generativas Adversárias (GANs) vêm se destacando por sua capacidade de sinteti-
zar tráfego de rede realista, fundamental para treinar e validar modelos de aprendizado de
máquina em detecção de anomalias, otimização de desempenho e avaliação de robustez
[Afifi et al. 2024]. O PAC-GAN [Lin et al. 2018] adapta arquiteturas de visão compu-
tacional: cada pacote é mapeado numa matriz 28×28 (bytes divididos em “nibbles”) e
reconstruı́do por deconvolução (com checksums recalculados). O [Bianchi et al. 2025]
emprega transfer learning, pré-treinando um WGAN-GP em um protocolo “fonte” volu-
moso e, em seguida, afinando-o (dropout, redução de taxa de aprendizado, penalidade de
gradiente) em um protocolo “alvo“; a qualidade é avaliada pelo Fréchet Inception Dis-
tance. Esses trabalhos mostram como métodos utilizados em outras áreas de pesquisa,
como imagens, podem ser reaproveitados para gerar tráfego em múltiplos protocolos. Já
trabalhos como o TITAN DGA utilizam GANs para criar domı́nios sintéticos com dife-
rentes enfoques, explorando a afinidade léxica entre nomes de domı́nio e texto comum
através de técnicas NLP que se assemelham aos padrões reais.

Arquiteturas que integram transformers e GANs têm sido exploradas para geração
de texto. O Style Transformer-GAN [Zeng et al. 2020] utiliza codificadores distintos
para estilo e conteúdo, combinando essas representações em um gerador baseado em
transformer, avaliado por um discriminador que considera fluência e fidelidade ao es-
tilo. O modelo aprende estilos implicitamente, sem dados paralelos, e apresenta bons
resultados em BLEU [Papineni et al. 2002], perplexidade e acurácia de estilo. Já o TIL-
GAN [Diao et al. 2021] adota uma estrutura latente implı́cita, na qual um autoencoder
gera embeddings intermediários processados por um decodificador transformer, permi-
tindo maior controle e diversidade na geração. Esses avanços motivam a adoção de es-
tratégias semelhantes no TITAN DGA proposto.

O DeepDGA [Anderson et al. 2016] adota um autoencoder para compactar
domı́nios reais e um gerador treinado adversariamente para produzir representações se-
melhantes a domı́nios legı́timos, mas não captura dependências de longo alcance entre
caracteres. O Khaos [Yun et al. 2020] propõe uma WGAN com técnicas baseadas em n-
grams e um filtro similar ao do TITAN DGA, mas com geração mais restrita, favorecendo
evasão em detrimento da diversidade. O CDGA [Zhai et al. 2022] emprega uma WGAN-
GP com blocos ResNet, tokenização via SentencePiece, embeddings Word2Vec e redes
LSTM, com treinamento separado entre autoencoder e GAN. Em contraste, o TITAN
DGA integra ambos os treinamentos e adota transformers para modelar dependências
longas entre tokens, incorporando ainda a divergência de Kullback-Leibler para estabili-
zar e diversificar o espaço latente, gerando domı́nios difı́ceis de detectar.

Abordagens alternativas à geração direta também exploram a manipulação
de domı́nios existentes para criar DGAs adversariais. O Deception
DGA [Spooren et al. 2019] modifica domı́nios gerados por DGAs ajustando padrões
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linguı́sticos, como o equilı́brio entre vogais e consoantes. De forma similar, o Char-
Bot [Peck et al. 2019] substitui aleatoriamente dois caracteres em domı́nios benignos
para enganar classificadores, sem recorrer a técnicas de aprendizado de máquina.
CLETer [Liu et al. 2021] e MaskDGA [Sidi et al. 2019] refinam essa ideia ao aplicar
substituições baseadas em informações extraı́das dos próprios classificadores: o CLETer
altera os caracteres mais relevantes para a decisão, enquanto o MaskDGA usa transferi-
bilidade adversária a partir de uma CNN substituta. Embora eficazes, essas abordagens
dependem do acesso ao modelo de detecção ou da similaridade entre modelos. Em
contraste, o TITAN DGA gera domı́nios com GANs, assegurando diversidade e realismo
sem depender de informações internas dos classificadores.

Abordagens baseadas em séries temporais também são exploradas. O Repla-
ceDGA [Hu et al. 2023] utiliza uma rede BiLSTM para substituir caracteres de domı́nios
benignos de forma informada, gerando domı́nios semanticamente similares, porém ad-
versários. Apesar da alta taxa de evasão contra classificadores tradicionais, sua de-
pendência de domı́nios legı́timos limita a diversidade estrutural e a adaptabilidade. Além
disso, ao alterar apenas dois caracteres por domı́nio, tende a produzir padrões previsı́veis.
Em contraste, o TITAN DGA gera domı́nios inteiramente novos, com maior complexi-
dade e variedade, alcançando evasão robusta mesmo frente a múltiplos classificadores.

Após anos de desenvolvimento de DGAs, cada vez mais mostrou-se que os
métodos de detecção baseados em block-lists e correlação entre requisições DNS esta-
vam defasados. Então, juntamente com a criação de DGAs baseados em machine lear-
ning, surgiram também detectores DGA com a mesma base, buscando minimizar o tempo
necessário para a classificação de um domı́nio. Esses classificadores são divididos em
dois subgrupos: baseados em machine learning e baseados em deep learning.

2.2. Detectores
O FANCI [Schüppen et al. 2018] utiliza uma Random Forest com 21 caracterı́sticas
linguı́sticas para classificar domı́nios como benignos ou DGAs, com alta precisão e
baixa taxa de falsos positivos, permitindo detecção em tempo real. No entanto, con-
forme [Spooren et al. 2019], seu desempenho é inferior ao de modelos baseados em
aprendizado profundo. O B-RF [Sivaguru et al. 2018], também com Random Forest,
adota 26 caracterı́sticas, incluindo entropia, consoantes consecutivas e mediana de n-
grams circulares. Embora eficaz em cenários simples, enfrenta limitações sob variações
nas sementes dos DGAs. Avaliações comparativas revelam que seu recall é infe-
rior ao de modelos como o B-LSTM.MI, que detectam o dobro de domı́nios malicio-
sos [Sivaguru et al. 2018], evidenciando a superioridade e a robustez dos métodos basea-
dos em aprendizado profundo, que dispensam engenharia manual de caracterı́sticas.

O trabalho em [Tran et al. 2018] propôs um detector de DGA baseado em redes
LSTM, capaz de lidar com desbalanceamento de classes e alcançar altos F1-Scores em
domı́nios benignos. Complementarmente, o Bilbo [Highnam et al. 2020] introduziu uma
arquitetura hı́brida com LSTM e CNN em paralelo, voltada à detecção de DGAs ba-
seados em dicionário, com desempenho consistente em métricas como AUC, F1-Score
e acurácia, superando modelos clássicos em generalização e resiliência temporal. Em-
bora ambos explorem o potencial do aprendizado profundo, nosso trabalho gera domı́nios
sintéticos mais diversos e evasivos, elevando a adaptabilidade frente a classificadores he-
terogêneos.
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Figura 1. TITAN DGA - Arquitetura Geral

2.3. Discussão

Em conclusão, trabalhos apresentados na literatura revelam a evolução das técnicas de
geração de domı́nios maliciosos, desde abordagens baseadas em LSTM e manipulação
de domı́nios legı́timos até modelos adversariais com GANs. Trabalhos como o De-
epDGA [Anderson et al. 2016] e o CDGA [Zhai et al. 2022] avançaram ao integrar au-
toencoders e tokenização para emular domı́nios legı́timos, mas ainda sofrem com a
separação entre geração e reconstrução e dependências de longo alcance mal captura-
das [Hu et al. 2023]. O TITAN DGA, por sua vez, propõe uma integração direta entre
autoencoder e GAN, utilizando transformers e divergência KL para estabilização, ge-
rando domı́nios mais coesos e evasivos sem ajustes especı́ficos para cada classificador,
superando limitações anteriores.

3. Geração de Domı́nios Maliciosos Usando Transformers
Esse trabalho propõe a geração de DGAs utilizando uma GAN baseada em transformers.
O emprego dessa abordagem possibilita aprender relações de curto e longo alcance entre
os diferentes tokens, o que possibilita a maior evasão e diversidade de domı́nios gerados.
Este trabalho utiliza datasets de DGAs disponı́veis, junto a listas de domı́nios benignos,
onde o modelo proposto é capaz de enganar classificadores existentes na literatura.

O framework proposto do TITAN DGA, ilustrado na Figura 1, é composto por
quatro módulos principais:

1. Dataset de treinamento: essa etapa é composta pela escolha e preparação dos
dados a serem utilizados no treinamento da GAN, juntando DGAs de diferentes
famı́lias com domı́nios benignos, provenientes de datasets conhecidos na litera-
tura.

2. Pré-processamento: neste estágio, os domı́nios benignos têm seus TLDs removi-
dos. Em seguida, são tokenizados utilizando dois métodos: o tokenizador Senten-
cePiece e um tokenizador simplificado que insere os tokens especiais. Isso prepara
os dados para entrada no autoencoder e reduz a complexidade do vocabulário.

3. Autoencoder: este módulo é responsável por codificar os domı́nios tokenizados
em um espaço latente de menor dimensionalidade. O codificador (encoder) trans-
forma os domı́nios em vetores latentes compactados, que são utilizados pelo dis-
criminador da GAN como amostras reais. O decodificador (decoder), por sua vez,
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reconstrói os domı́nios a partir desses vetores, tanto os oriundos do codificador
quanto os gerados pelo gerador da GAN. O treinamento do autoencoder ocorre de
forma conjunta com o da GAN, sendo ambos otimizados com base na divergência
de Kullback-Leibler.

4. GAN: a GAN é composta por um gerador e um discriminador. O gerador é trei-
nado para produzir vetores no espaço latente que se assemelhem aos gerados pelo
codificador, enquanto o discriminador tenta distinguir entre os vetores latentes
reais (vindos do codificador) e os sintéticos (produzidos pelo gerador). O treina-
mento adversário aprimora progressivamente a qualidade dos vetores sintéticos.

5. Pós-processamento: após a reconstrução dos domı́nios pelo decodificador, é apli-
cado um filtro para garantir que os domı́nios gerados estejam em conformidade
com as RFCs 1034 e 1035. Além disso, um TLD válido é selecionado a partir de
uma lista pré-definida, eliminando a necessidade de geração de TLDs pela GAN
e assegurando a validade estrutural dos domı́nios resultantes.

3.1. Datasets de Treinamento e Teste
No total, três datasets foram utilizados neste trabalho: um para o treinamento da GAN,
outro para o treinamento dos classificadores, e um conjunto de datasets para a inferência
dos geradores de DGA da literatura, incluindo o TITAN DGA.

Para a seleção de domı́nios benignos, este trabalho utiliza o
Tranco [Le Pochat et al. 2019], contendo uma lista dos domı́nios mais acessados
mundialmente, elaborada para evitar manipulações comuns em listas tradicionais
como a Alexa Top-n Domains. Para os domı́nios gerados por DGAs, o DGAr-
chive [Fraunhofer FKIE 2020] é utilizado. Disponibilizado pela Fraunhofer FKIE, esse
dataset contém mais de 9GB de domı́nios de diferentes famı́lias.

O primeiro dataset, denominado GT, foi utilizado para o treinamento da GAN. Ele
é composto por 140 mil domı́nios benignos extraı́dos do Tranco e 140 mil domı́nios DGA
retirados do DGArchive, abrangendo sete famı́lias distintas: Conficker, Gozi, Matsnu,
Pykspa, Simda, Suppobox e Ud2.

O segundo dataset, chamado DB1, foi utilizado para o treinamento
dos classificadores FANCI [Schüppen et al. 2018], LSTM.MI [Tran et al. 2018] e
Bilbo [Highnam et al. 2020]. Ele é composto por 500 mil domı́nios benignos (B1) ex-
traı́dos do Tranco e 500 mil domı́nios DGA (D1) provenientes de 10 famı́lias diferentes,
sendo duas baseadas em hash (Bamital e Dyre), cinco em aritméticas (Banjori, Conficker,
Cryptolocker, Nymaim e Pykspa) e três em listas de palavras (Gozi, Matsnu e Suppobox).

Na fase de inferência dos modelos construı́dos, foram utilizados datasets indivi-
duais para cada gerador de DGA testado, bem como para o TITAN DGA. Cada conjunto
é composto por 10 mil domı́nios benignos e 10 mil domı́nios gerados por cada respec-
tivo DGA, organizados da seguinte forma: CDGA IN (10k CDGA + 10k benignos),
CHAR IN (10k CharBot + 10k benignos), DEEP IN (10k DeepDGA + 10k benignos),
DECE IN (10k DeceptionDGA + 10k benignos), MASK IN (10k MaskDGA + 10k be-
nignos) e TITA IN (10k TITAN DGA + 10k benignos).

3.2. Pré-processamento e Tokenização dos Dados
O pré-processamento dos dados é similar a [Zhai et al. 2022], utilizando o SentencePi-
ece para a tokenização dos domı́nios. Após a criação dos datasets, os domı́nios passam
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Figura 2. Arquitetura do modelo de autoencoder.

por uma etapa de remoção dos Top Level Domains (TLDs). Essas terminações perten-
cem a um conjunto pequeno e fixo de possibilidades, dispensando sua geração direta pela
GAN. Posteriormente, é realizada a segmentação dos domı́nios utilizando o SentencePi-
ece, uma ferramenta desenvolvida pelo Google para a geração de texto em redes neurais,
que permite definir o vocabulário antes do treinamento. Dentre as técnicas disponibili-
zadas, optou-se pelo uso do Unigram Language Model, devido à sua capacidade de lidar
melhor com palavras desconhecidas e variações morfológicas — caracterı́sticas comuns
em nomes de domı́nios. A segmentação permite dividir domı́nios em unidades menores e
mais coerentes, como no exemplo “steamstat.us“, que pode ser separado em “steam“ e
“stat“, aumentando a diversidade e a naturalidade dos domı́nios gerados. Em seguida, os
dados tokenizados são convertidos em sequências de ı́ndices numéricos, adicionando-se
tokens especiais de “inı́cio de sequência“ (sos) e “fim de sequência“ (eos).

3.3. Descrição da Arquitetura da GAN + autoencoder

A arquitetura da GAN investigada neste trabalho é composta por um autoencoder ba-
seado em transformer, demonstrado na Figura 2, com duas camadas de self-attention
e quatro cabeças de atenção, seguido por uma camada feedforward com 512 unidades
e uma dimensão latente comprimida de tamanho 56. Essa dimensão comprimida atua
como um espaço de representação condensado da sequência de entrada, capturando suas
caracterı́sticas mais relevantes em um vetor fixo de tamanho reduzido. O objetivo é que
o modelo aprenda a codificar informações essenciais dos domı́nios nesse espaço latente,
servindo de ponte entre o codificador e o decodificador.

O gerador e o discriminador são implementados como redes Multi Layer Percep-
tron (MLP) de uma camada com 128 neurônios, o que reduz a complexidade sem compro-
meter a capacidade de aprendizado. A ativação LeakyReLU é utilizada para garantir esta-
bilidade no treinamento, e a função de perda baseada na divergência de Kullback-Leibler
foi escolhida por favorecer a geração de amostras diversificadas e distribuı́das de forma
semelhante às observações reais. A divergência de Kullback-Leibler é utilizada neste tra-
balho como parte da função de perda adversária no treinamento da TITAN GAN, atuando
diretamente sobre a distribuição das representações latentes geradas. O gerador latente
transforma amostras de uma distribuição simples ε ∼ N (0, I) por meio da rede MLP
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gβ(ε), resultando em uma distribuição implı́cita pβ(z). O objetivo é que essa distribuição
se aproxime da distribuição agregada do codificador qϕ(z) = Ex∼pr(x)[qϕ(z|x)], o que é
alcançado minimizando a divergência KL:

Lg(ϕ, β) = DKL(qϕ(z) ∥ pβ(z)) =
∫

qϕ(z) log

(
qϕ(z)

pβ(z)

)
dz (1)

Esse termo é incorporado à função de perda total com um coeficiente de
ponderação, incentivando que o gerador latente cubra toda a diversidade presente nas
distribuições codificadas. É importante destacar que, diferentemente de modelos variaci-
onais (VAEs), o autoencoder da TITAN GAN não utiliza a divergência KL para regulari-
zar a aproximação entre q(z|x) e um prior explı́cito p(z). Em vez disso, a divergência KL
atua no nı́vel da distribuição marginal, reforçando a diversidade e compatibilidade entre
os espaços latentes do gerador e do codificador.

Além disso, uma segunda divergência KL é introduzida com o objetivo de aprimo-
rar o decodificador. Ela mede a discrepância entre a distribuição do codificador aplicada
sobre amostras reconstruı́das z̃ = E(G(g(ε))) e a distribuição original qϕ(z):

Ldec = DKL(qϕ(z) ∥ p̃g(z)) (2)

Essa penalização adicional assegura que o decodificador aprenda a lidar com
representações provenientes do gerador, promovendo maior fidelidade na geração textual,
mesmo quando confrontado com vetores latentes nunca vistos durante o treinamento.

3.4. Treinamento do modelo
Durante o treinamento do modelo, foi adotado o otimizador Adam para todos os compo-
nentes da arquitetura, incluindo o gerador, o discriminador e o autoencoder. Essa escolha
se deve à sua eficácia em estabilizar e acelerar a convergência de modelos baseados em
aprendizado profundo, especialmente em arquiteturas adversárias, como as GANs. Além
disso, uma taxa de dropout de 30% foi aplicada em diferentes partes do autoencoder,
como após as cabeças de atenção e após a camada feedforward. Isso é realizado para
regularizar a atenção, mas também a transformação não linear aplicada dos embeddings.

O treinamento foi realizado com um tamanho de lote (batch size) de 256 amos-
tras, valor que oferece um bom equilı́brio entre estabilidade da atualização dos gradientes
e utilização eficiente da memória. Em relação às taxas de aprendizado (learning rates),
diferentes valores foram empregados para cada componente da arquitetura: o gerador foi
treinado com uma taxa de 0,0004, o discriminador com 0,0002, e o autoencoder com uma
taxa relativamente mais alta de 0,06. A escolha desses hiperparâmetros se deu após uma
extensa análise empı́rica, na qual diversos experimentos foram conduzidos para avaliar
o impacto de diferentes combinações de taxas de aprendizado e tamanhos de lote sobre
o desempenho do modelo. Durante essa fase exploratória, observou-se que valores mais
altos de learning rate para o discriminador e o autoencoder levavam ao sobreajuste (over-
fitting), fazendo com que esses componentes memorizassem os padrões de treinamento e
perdessem a capacidade de generalização. Por outro lado, uma taxa de aprendizado muito
baixa para o autoencoder resultava em subajuste (underfitting), impedindo que a rede
aprendesse representações úteis dos dados de entrada. Assim, os valores finais adotados
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Tabela 1. Exemplos de nomes de domı́nios gerados por modelos de DGAs ad-
versariais diferentes (com o TLD removido).

TITAN DGA CDGA MaskDGA CharBot Deception DGA DeepDGA
tradeworkreporter uqlzfdfd semapisimtda banzhew ntrvenker thellehm

bike10life brotherlicwo uoruiddvwdwuihkul sancopatvgonia motuseroure shtrunoa
brainmagazine thethethmmili sfqjkbu63r1hyfa8543 puttpandroid wolan290451 vietips

saubrasil theworkliimoarview sooackgeicesmsgi matctendgrect olyuchedu statpottxy

refletem um equilı́brio alcançado empiricamente entre estabilidade no treinamento, boa
capacidade de generalização e eficiência computacional. A diferenciação entre os valores
de learning rate busca atender às distintas sensibilidades e dinâmicas de otimização de
cada módulo, sendo comum em GANs atribuir ao discriminador um learning rate menor
que o do gerador para evitar o sobreajuste precoce e manter a competição equilibrada
entre os dois.

A dimensão latente de entrada do gerador foi definida como um vetor de 100
dimensões, amostrado a partir de uma distribuição normal padrão N (0, I). Essa escolha
visa fornecer um espaço latente suficientemente expressivo para capturar a diversidade
das distribuições dos dados reais, sem comprometer a estabilidade do treinamento.

Por fim, foi adicionado ruı́do gaussiano controlado tanto no processo de treina-
mento quanto na inferência do autoencoder. Essa técnica visa aumentar a robustez do
modelo, encorajando o aprendizado de representações latentes que sejam mais genera-
lizáveis, mesmo sob pequenas perturbações nos dados de entrada.

3.5. Pós-processamento
A etapa do pós-processamento apresentada neste trabalho é dividida em duas tarefas me-
nores: a filtragem de domı́nios válidos e a adição de TLD aos domı́nios gerados. A
filtragem dos domı́nios ocorre em conformidade com os RFCs 1034 e 1035, que definem
caracterı́sticas básicas de como um domı́nio deve ser formado. Sendo assim, domı́nios
fora do intervalo de tamanho válido são descartados, assim como domı́nios que terminam
em hı́fen; além disso, a probabilidade de geração de domı́nios semelhantes é reduzida.
Na Tabela 1 podemos ver alguns exemplos dos domı́nios gerados pelo TITAN DGA após
o pós-processamento, porém sem o TLD, apenas para fins de comparação entre eles.

Dessa forma, para finalizar a criação dos novos domı́nios, a escolha de um TLD é
realizada a partir de uma lista de dezenas de TLDs. A escolha é feita de maneira aleatória,
a fim de proporcionar uma maior diversidade de domı́nios que podem ser gerados.

4. Experimentos e Resultados
O objetivo dos experimentos realizados é avaliar o desempenho e a adaptabilidade dos
dados gerados pelo TITAN DGA, com base em classificadores utilizados na literatura.
Além disso, buscou-se investigar métricas que capturam a diversidade das amostras gera-
das, bem como a incidência de repetições nos domı́nios sintetizados. Essa análise permite
compreender tanto a eficácia da geração quanto o seu potencial para enganar detectores
de DGA e enriquecer conjuntos de dados sintéticos.

Inicialmente, foi construı́do um conjunto de dados representativo, com instâncias
suficientes das principais famı́lias de DGA, a fim de garantir o treinamento eficaz dos
classificadores. Para conduzir os experimentos, as seguintes etapas foram realizadas:
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1. Treinamento dos modelos classificadores: foram utilizados três classifica-
dores distintos, baseados em abordagens da literatura [Schüppen et al. 2018,
Tran et al. 2018, Highnam et al. 2020]. Esses classificadores foram treinados in-
dividualmente usando 80% dos dados disponı́veis no dataset DB1. O classifi-
cador FANCI [Schüppen et al. 2018] conta originalmente com 21 caracterı́sticas
(features) para a classificação. No nosso trabalho, os TLDs são selecionados de
uma lista fixa. Logo, somente 16 caracterı́sticas foram utilizadas nos experimen-
tos. Cada modelo foi configurado conforme especificações originalmente pro-
postas, respeitando as arquiteturas e hiperparâmetros sugeridos nos trabalhos de
referência.

2. Inferência e avaliação de classificadores: após o treinamento, os classificado-
res foram submetidos ao processo de inferência, utilizando os dados gerados pelo
TITAN DGA. O objetivo foi verificar a capacidade de evasão dos domı́nios sinte-
tizados, observando o percentual de domı́nios que não foram corretamente classi-
ficados ou que foram erroneamente atribuı́dos a outra classe.

3. Comparação com outros DGAs da literatura: os DGAs gerados pelos mo-
delos propostos neste trabalho foram comparados a outros cinco modelos dis-
ponı́veis da literatura: CDGA [Zhai et al. 2022], CharBot [Peck et al. 2019],
DeceptionDGA [Spooren et al. 2019], DeepDGA [Anderson et al. 2016] e
MaskDGA [Sidi et al. 2019].

4. Cálculo das métricas complementares: métricas complementares foram explo-
radas, incluindo a diversidade lexical dos domı́nios gerados (Self-BLEU) e o ta-
manho médio dos domı́nios gerados. Essas métricas são essenciais para avaliar a
utilidade do modelo gerador na construção de amostras realistas, porém difı́ceis
de detectar.

A validação dos experimentos foi realizada de acordo com diferentes métricas.
Primeiramente, foi executada a verificação do treinamento dos classificadores com base
em duas métricas de validação de classificadores binários: a área sob a curva (AUC) e a
curva ROC (Receiver Operating Characteristic). Essas duas métricas são quantificadas
entre 0 e 1, onde o resultado mais próximo de 1 é melhor. Essa métrica foi empregada
para assegurar que os classificadores alcançaram um bom desempenho nos dados reais.
Além disso, para a avaliação do desempenho dos detectores nos dados sintéticos, foram
utilizadas outras 4 métricas: a precisão, a acurácia, o recall e o F1-Score. Note que, para
a habilidade de anti-detecção, quanto menores os valores dessas métricas, melhores os re-
sultados. Como métrica final, este trabalho explora o Self-BLEU [Papineni et al. 2002] na
comparação qualitativa dos dados gerados. Importante destacar que quanto mais próximas
de 0 são as relações entre os n-grams, mais diverso é o texto. Essa métrica foi empre-
gada devido à sua ampla utilização em avaliações de modelos mais gerais voltados para a
geração de texto, pois explora a verificação de repetição de n-grams nos textos gerados.

Com base nos resultados obtidos no dataset de validação DB1 na Figura 3, po-
demos observar que os classificadores Bilbo e LSTM MI apresentaram um desempenho
excepcional, ambos alcançando um AUC (Área Sob a Curva) de 0.98. Esse resultado in-
dica uma alta capacidade de discriminação entre os domı́nios benignos e DGAs, demons-
trando elevada eficácia na tarefa de classificação. Por outro lado, o classificador FANCI
obteve um AUC de 0.83. Embora este resultado ainda possa ser considerado bom, está
significativamente abaixo dos outros dois modelos. Isso é explicado pelo FANCI ser um
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Figura 3. Curva ROC e AUC dos 3 classificadores distintos treinados e validados
nos 20% de validação do dataset DB1.

modelo de Random Forest, que é mais simplificado do que modelos de Deep Learning ba-
seados em CNNs ou LSTMs, os quais são capazes de identificar padrões mais complexos
presentes em alguns DGAs.

A análise da curva ROC reforça esses achados, pois tanto Bilbo quanto LSTM.MI
apresentam taxas de verdadeiros positivos (TVP) elevadas em relação às taxas de falsos
positivos (TFP), o que é desejável em um classificador robusto. O FANCI demonstra uma
relação menos favorável entre TVP e TFP, o que pode indicar uma maior tendência a erros
de classificação em cenários com dados desbalanceados ou ruidosos.

Com relação à inferência dos dados sintéticos no classificador FANCI, os resul-
tados apresentados na Tabela 2 indicam que o TITAN DGA apresenta o maior impacto
negativo sobre o desempenho do classificador, destacando-se como o modelo com maior
capacidade de evasão entre os DGAs analisados. O TITAN DGA obteve os menores va-
lores em todas as métricas, indicando que seus domı́nios são os mais difı́ceis de serem
corretamente identificados como maliciosos. Esse comportamento evidencia uma habili-
dade acentuada de camuflagem frente aos mecanismos de detecção do FANCI, especial-
mente na relação entre precisão e F1-score. Embora sua precisão (0,4411) seja aproxi-
madamente 37,5% inferior à do MaskDGA (0,7058), a diferença no F1-score se amplia
para 42,6% (0,3915 contra 0,6816). Comparando com o DeceptionDGA, que obteve um
F1-score de 0,4470, o TITAN DGA ainda apresenta um desempenho de classificação
pior, o que reforça sua habilidade de evadir detecção, mesmo quando comparado a um
modelo projetado especificamente para burlar o FANCI. Esse comportamento compro-
mete o trade-off entre falsos positivos e falsos negativos, tornando mais difı́cil distinguir
domı́nios legı́timos dos gerados pelo TITAN DGA.

Resultados semelhantes foram observados na inferência sobre o classificador
BILBO (Tabela 4). O TITAN DGA novamente apresenta os menores resultados entre os
modelos, com destaque para o F1-score de apenas 0,2117, frente a valores significativa-
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Tabela 2. Resultados de avaliação obtidos na inferência dos datasets de in-
ferência dos DGAs da literatura no classificador FANCI.

Métricas CharBot DeceptionDGA MaskDGA CDGA DeepDGA TITAN DGA
Precisão 0.5980 0.5129 0.7058 0.6342 0.6467 0.4411
Acurácia 0.5710 0.5073 0.6884 0.6057 0.6205 0.4724

Recall 0.5710 0.5073 0.6884 0.6057 0.6205 0.4724
F1-Score 0.5393 0.4470 0.6816 0.5836 0.6028 0.3915

Tabela 3. Resultados de avaliação obtidos na inferência dos datasets de in-
ferência dos DGAs da literatura no classificador LSTM.MI.

Métricas CharBot DeceptionDGA MaskDGA CDGA DeepDGA TITAN DGA
Precisão 0.8317 0.7673 0.9503 0.9045 0.9304 0.7271
Acurácia 0.5890 0.5500 0.8767 0.6838 0.7748 0.5354

Recall 0.2233 0.1434 0.7950 0.4111 0.5939 0.1135
F1-Score 0.3521 0.2416 0.8657 0.5653 0.7250 0.1963

mente mais altos dos demais DGAs, como o MaskDGA (0,8776) e o DeepDGA (0,6235).
A baixa pontuação de recall (0,1234) também reforça a hipótese de que os domı́nios ge-
rados pelo TITAN DGA escapam à detecção da arquitetura, mesmo em classificadores
baseados em mecanismos distintos, como o BILBO, que combina aprendizado de em-
beddings com técnicas supervisionadas. Essa repetição do padrão de evasão sugere que a
capacidade de disfarce do TITAN DGA é, de fato, transversal a diferentes abordagens de
modelagem.

Considerando os três classificadores — FANCI, LSTM.MI e BILBO — o TITAN
DGA exibe uma evasão consistente, apresentando os menores valores de F1-score em
todos os casos (0,3915, 0,1963 e 0,2117, respectivamente). Essa consistência reforça a
hipótese de que os domı́nios sintéticos gerados por esse modelo possuem caracterı́sticas
altamente adversariais, capazes de explorar vulnerabilidades comuns entre diferentes es-
tratégias de detecção. Em particular, a combinação de baixos valores de recall e precisão
implica não apenas uma menor taxa de detecção, mas também um desbalanceamento
crı́tico nas classificações, comprometendo a sensibilidade dos sistemas, mesmo com ar-
quiteturas distintas. Esses resultados destacam, sobretudo, o papel da arquitetura baseada
em transformers, que é crucial para a geração de textos coesos e bem estruturados. A
capacidade dos transformers em modelar sequências complexas e gerar domı́nios com
caracterı́sticas adversariais eficazes foi determinante para alcançar esses resultados, evi-
denciando a relevância dessa tecnologia na criação de DGAs difı́ceis de detectar.

A Figura 4 mostra a pontuação Self-BLEU ao longo das épocas de treinamento da

Tabela 4. Resultados de avaliação obtidos na inferência dos datasets de in-
ferência dos DGAs da literatura no classificador BILBO.

Métricas CharBot DeceptionDGA MaskDGA CDGA DeepDGA TITAN DGA
Precisão 0.8564 0.7847 0.9517 0.9077 0.9190 0.7443
Acurácia 0.6079 0.5545 0.8864 0.6860 0.7151 0.5405

Recall 0.2594 0.1502 0.8142 0.4141 0.4718 0.1234
F1-Score 0.3982 0.2522 0.8776 0.5687 0.6235 0.2117
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Figura 4. Self-BLEU score através das épocas do treinamento da GAN.

GAN, evidenciando a diversidade dos dados gerados. Cada linha desenhada no gráfico
representa o número de n-grams considerados para o cálculo do Self-BLEU, por exemplo,
a linha Bleu-2 representa a diversidade textual presente a cada época do treinamento do
modelo, medindo a repetição de 2 n-grams em relação a todos os exemplares gerados na
época. É importante ressaltar que, para o cálculo do BLEU, o TLD não é considerado.
Por volta da época 20, o modelo começou a evitar a repetição de n-gramas de tamanho 3
e 4, destacando sua rápida capacidade de aprender a gerar domı́nios diversificados. Após
a época 25, a geração de domı́nios não apenas se estabilizou, mas também se tornou mais
variada, refletindo a habilidade da GAN em gerar domı́nios diferentes, não apenas no
nı́vel de nomes completos, mas também nos n-grams das palavras. Esse comportamento
ressalta a eficácia do autoencoder em transformar os domı́nios gerados.

Tabela 5. Tamanho médio dos domı́nios e desvio padrão.
Tipo do Domı́nio CDGA CharBot DeceptionDGA DeepDGA MaskDGA TITAN DGA Legı́timos
Tamanho médio 10.98 ± 4.82 10.51 ± 3.24 10.21 ± 3.91 16.53 ± 5.20 15.19 ± 5.30 6.83 ± 3.07 9.63 ± 4.27

Apesar dos domı́nios gerados pelo TITAN DGA apresentarem, em média, um ta-
manho menor, em relação a outros DGAs adversários e domı́nios legı́timos, de acordo
com a Tabela 5, é importante ressaltar que a escolha dos tamanhos médios dos domı́nios
a serem gerados pelo TITAN DGA é feita durante o treinamento. A escolha por domı́nios
menores se deu para a demonstração da capacidade da geração de domı́nios diversos, pois
o gráfico de Self-BLEU (Figura 4) evidencia que, mesmo com nomes mais curtos, a diver-
sidade dos domı́nios gerados é mantida, com a pontuação Self-BLEU continuando baixa,
indicando que o modelo está gerando continuamente domı́nios distintos, sem repetição
significativa.

5. Conclusão

Algoritmos de Geração de Domı́nios (DGAs) desempenham um papel central no cenário
atual de cibersegurança, dada sua importância para a manutenção da comunicação entre
bots e servidores C&C, dificultando a detecção por sistemas tradicionais. A evolução
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constante dos DGAs adversários evidencia a necessidade de soluções inovadoras para
testes de robustez e para o fortalecimento de detectores.

Neste trabalho, abordamos o problema da geração de domı́nios maliciosos alta-
mente realistas e evasivos, com foco na superação dos classificadores existentes. A di-
ficuldade de gerar domı́nios adversários que sejam simultaneamente diversos, realistas e
difı́ceis de detectar, especialmente em cenários sem conhecimento prévio dos detectores,
motivou as contribuições propostas.

O TITAN DGA apresenta avanços relevantes para a área, ao combinar autoen-
coders baseados em transformers e estabilização via divergência KL, promovendo uma
geração de domı́nios sintéticos mais coesa e diversa. Experimentalmente, o TITAN
DGA demonstrou desempenho superior de evasão frente a detectores consagrados como
FANCI, LSTM.MI e Bilbo, alcançando os menores valores de F1-Score em todas as
avaliações. Além disso, métricas como Self-BLEU confirmaram a alta diversidade léxica
dos domı́nios gerados, reforçando a eficácia da arquitetura proposta.

Para trabalhos futuros, pretendemos adicionar módulos de estilo e controle
semântico, expandindo a variabilidade dos domı́nios gerados. Também planejamos ex-
pandir as avaliações apresentadas neste trabalho, além de analisar a eficácia do modelo
contra detectores treinados com dados adversários.
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