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Resumo. As redes veiculares enfrentam ameaças cibernéticas que podem preju-
dicar motoristas, passageiros e pedestres. Nesse cenário, uma possı́vel solução
para treinar modelos que detectem ameaças, sem violação da privacidade dos
usuários, é o aprendizado federado. No entanto, o aprendizado federado é par-
ticularmente sensı́vel a atrasos de comunicação, sendo esta uma consequência
natural da alta mobilidade em redes veiculares. Tal problema é comumente
ignorado pela literatura, que não considera a possibilidade de desconexões
na rede. Este trabalho propõe uma estratégia de seleção de clientes proje-
tada para minimizar o tempo de treinamento de um modelo de aprendizado
de máquina para detecção de ameaças veiculares, considerando o tempo de
comunicação que varia de acordo com a movimentação dos clientes. Os re-
sultados demonstram que o TOFL, utilizando apenas 20% do total de clientes
disponı́veis, pode reduzir o tempo necessário para atingir alta acurácia em até
50% em comparação com abordagens do estado da arte, ao mesmo tempo que
diminui o consumo de recursos dos dispositivos clientes.

Abstract. Vehicular networks face cyber threats that can harm drivers, passen-
gers, and pedestrians. In this scenario, federated learning is a possible solution
to train models that detect threats without violating user privacy. However, fe-
derated learning is particularly sensitive to communication delays, which is a
natural consequence of high mobility in vehicular networks. This problem is
commonly ignored in the literature, which does not consider the possibility of
network disconnections. This work proposes a client selection strategy designed
to minimize the training time of a machine learning model for vehicular threat
detection, considering the communication time that varies according to the mo-
vement of clients. The results demonstrate that TOFL, using only 20% of the
total available clients, can reduce the time required to achieve high accuracy by
up to 50% compared to state-of-the-art approaches, while reducing the resource
consumption of client devices.
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1. Introdução
Os veı́culos conectados (Connected Vehicles - CVs) melhoram a experiência

de condução utilizando sensores para compreender as condições de tráfego ao re-
dor e se comunicando com outros veı́culos por meio de uma Rede Ad Hoc Veicu-
lar (Vehicular Ad Hoc Network - VANET). Informações externas são trocadas por
meio de padrões diferentes: Mensagens Básicas de Segurança (Basic Safety Messa-
ges - BSMs) [Committee et al. 2016], Mensagens Descentralizadas de Notificação Am-
biental (Decentralized Environmental Notification Messages - DENM) [ETSI 2014b]
ou Mensagens de Reconhecimento Cooperativo (Cooperative Awareness Messages -
CAMs) [ETSI 2014a], o que permite a seleção otimizada de rotas. Nas VANETs as iden-
tidades dos remetentes podem ser verificadas por meio de assinaturas digitais que depen-
dem de chaves distribuı́das por uma Infraestrutura de Chaves Públicas (Public Key In-
frastructure- PKI). No entanto, verificar a identidade do usuário não garante a veracidade
das mensagens. Como resultado, usuários mal-intencionados podem enviar informações
falsas para causar distúrbios de tráfego.

Atualmente, pesquisadores se concentram no uso de técnicas de aprendizado
de máquina para automatizar a detecção de comportamentos maliciosos em redes
veiculares [Bousalem et al. 2023, Boualouache et al. 2023, Van Der Heijden et al. 2018,
Kamel et al. 2020, Guimaraes et al. 2022]. No entanto, os modelos são dependen-
tes de grandes volumes de dados, que são privados e escassos. Assim, o Apren-
dizado Federado (Federated Learning - FL) surge como uma alternativa ao treina-
mento distribuı́do, sem compartilhamento de dados, preservando a privacidade dos
usuários [McMahan et al. 2017, de Souza et al. 2024].

O FL já é aplicado à detecção de ameaças em VA-
NETs [Boualouache e Engel 2022, Korba et al. 2023, Vinita e Vetriselvi 2023,
Zhong et al. 2023, Yakan et al. 2023, Neto et al. 2024]. Devido à natureza distribuı́da
do FL, muitos trabalhos se concentram em estratégias de seleção otimizada de usuários
a fim de reduzir o tempo de treinamento [Luo et al. 2022, Su et al. 2024]. O tempo
de comunicação entre os clientes e o servidor de agregação do FL é dinâmico em
redes veiculares, pois a mobilidade dos veı́culos impacta as condições do canal de
comunicação [Fittipaldi et al. 2025]. No entanto, muitas propostas consideram o tempo
de comunicação durante o treinamento como um parâmetro fixo ou o excluem da
formulação. [Buyukates e Ulukus 2021] propõem a estratégia m-fastest para selecionar o
subconjunto de clientes que respondem mais rápido, considerando todos os atrasos envol-
vidos no processo de treinamento. Porém, a proposta desperdiça recursos computacionais
dos clientes ao descartar os mais lentos do processo de agregação.

Este trabalho propõe o Time Optimized Federated Learning (TOFL)1, uma es-
tratégia de otimização para seleção de clientes no aprendizado federado em redes sem fio
para reduzir o tempo de treinamento de cada época global. A proposta reduz o tempo de
treinamento a partir da formulação de um problema de otimização que seleciona os me-
lhores usuários para minimizar o atraso total de cada época. O problema de otimização
toma como entrada o tempo de comunicação e o tempo de processamento observado pelos
usuários, o número de clientes para selecionar e retorna os clientes selecionados. A esti-
mativa dos atrasos de comunicação é realizada a partir do armazenamento dos 10 atrasos

1Disponı́vel em https://github.com/AiramL/TimeOptimizedFederatedLearning.
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anteriores de mensagens keep alive no servidor. Essa informação é utilizada como en-
trada de um modelo Long Short-Term Memory (LSTM). Os tempos de comunicação são
obtidos executando uma simulação que implementa um padrão de comunicação FL em
uma rede 5G com um padrão de mobilidade gerado a partir da Simulação de Mobilidade
Urbana (Simulation of Urban MObility - SUMO). Considera-se o problema de detecção
de ameaças em redes veiculares por meio de CAM como a tarefa de aprendizado. O ob-
jetivo dos invasores é interromper as condições de tráfego, enquanto o modelo treinado
determina se as mensagens são reais ou contêm informações falsas. Os resultados mos-
tram que, com 20% do número total de clientes disponı́veis, o TOFL é capaz de reduzir
até 50% do tempo de treinamento em comparação com a abordagem de seleção aleatória
e 33% quando comparado com o m-fastest. O TOFL apresenta o menor tempo até con-
vergência, reduzindo o tempo total de treinamento com alto desempenho. Além disso, o
TOFL é mais eficiente em relação aos recursos computacionais usados para treinar o mo-
delo global quando comparado com o m-fastest, pois ele calcula o modelo global usando
todas as respostas dos clientes.

As principais contribuições deste trabalho são:

• a proposta do TOFL, uma estratégia de seleção de clientes de aprendizado fe-
derado para reduzir o tempo de treinamento. O TOFL minimiza o tempo de
treinamento e torna o modelo disponı́vel mais rapidamente aos usuários, selecio-
nando o subconjunto de clientes com as melhores condições computacionais e de
comunicação.

• A abordagem dos padrões de mobilidade dos clientes, uma lacuna existente no
estado da arte em seleção de clientes usados pelo FL.

• A disponibilização de código que reproduz o padrão de comunicação do apren-
dizado federado em uma rede 5G. Isso permite a outros pesquisadores avaliar
propostas considerando as condições de comunicação no aprendizado federado.

Este trabalho está organizado da seguinte forma. A Seção 2 discute os trabalhos
relacionados. A Seção 3 apresenta a formulação matemática do problema e a proposta do
TOFL, enquanto a Seção 4 apresenta o modelo de atacante usado no artigo. A metodolo-
gia e resultados dos experimentos com o TOFL são apresentados na Seção 5. Finalmente,
a Seção 6 conclui este trabalho e fornece perspectivas futuras.

2. Trabalhos Relacionados
Esta seção apresenta os principais trabalhos que visam identificar ameaças em

redes veiculares. Além disso, discute-se também os trabalhos que otimizam o aprendizado
federado reduzindo o tempo total de treinamento.

2.1. Detecção de Ameaças em Redes Veiculares

[Bousalem et al. 2023] propõem uma estratégia de aprendizado por reforço para
mitigar ataques DDoS em redes veiculares. O cenário proposto permite instanciar fatias
de rede com recursos de comunicação baixos para isolar invasores ou clientes com com-
portamento suspeito. No entanto, esses nós isolados devem recuperar recursos após o fim
da ameaça. Assim, os autores propõem um algoritmo de aprendizado por reforço para de-
terminar quando reduzir os recursos dos usuários atribuindo-os a uma fatia com recursos
limitados ou quando aumentar seus recursos novamente. No entanto, a proposta carece de
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mecanismos de preservação de privacidade, como treinamento por meio de aprendizado
federado e um conjunto de dados disponı́vel publicamente.

[Korba et al. 2023] propõem uma solução de detecção de ameaças em redes vei-
culares 5G. Os autores focam as comunicações V2X e usam o aprendizado federado para
treinar os modelos para detectar ataques. A proposta usa um modelo de autoencoder
para executar treinamento não supervisionado, pois o objetivo é não depender de dados
rotulados e detectar ataques de dia zero. A suposição é que o tráfego benigno é o tipo
de dado mais comum. Assim, o autoencoder aprende a representar essa classe em um
espaço latente com um erro de representação menor do que as classes anômalas. Por-
tanto, o sistema gera uma nova representação do fluxo de tráfego e compara a entrada
com a saı́da para determinar o erro de representação que pode identificar ataques. No
entanto, os autores desconsideram a mobilidade dos clientes.

[Vinita e Vetriselvi 2023] propõem um sistema para identificar a veracidade de
mensagens de emergência transmitidas em redes veiculares. Por um lado, a comunicação
V2X traz oportunidades para aumentar a eficiência da direção ao enviar uma atualização
sobre as condições de tráfego local, como informar acidentes. Por outro lado, os inva-
sores podem difundir mensagens falsas para degradar as condições de tráfego. Assim,
o artigo propõe usar modelos de aprendizado de máquina para detectar esse comporta-
mento malicioso, por exemplo, ataques Sybil. Além disso, a proposta usa o paradigma de
aprendizado federado para preservar a privacidade dos usuários.

[Gong et al. 2022] investigam como o desequilı́brio de amostras causa maiores
valores de função de perda das abordagens de agrupamento em FL. Clientes com poucas
amostras têm mais dificuldade em treinar o modelo, o que incorre em perdas maiores. O
oposto ocorre com clientes que têm muitas amostras. Como as técnicas de agrupamento
aplicadas em FL geralmente usam como entrada os pesos da rede neural ou as perdas para
definir o agrupamento, o desequilı́brio dos conjuntos de dados compromete a definição
do agrupamento. No entanto, as perdas locais podem ser reduzidas executando mais
épocas de treinamento local. Assim, os autores propõem equalizar as perdas dos clientes
executando um número adaptativo de épocas locais dependendo do número de amostras
que cada cliente detém. Os resultados mostram que a proposta reduz o número necessário
de rodadas de comunicação global e atribui corretamente clientes com dados semelhantes
ao mesmo grupo.

[Zhong et al. 2023] propõem um modelo BiGAN baseado em LSTM para detectar
ameaças de rede veicular baseadas em mensagens CAM. Os autores usam o conjunto de
dados Vehicular Reference Misbehavior Dataset (VeReMi) [Van Der Heijden et al. 2018]
para treinar e testar seu modelo. Devido ao seu alto desempenho no problema de
classificação, o TOFL usa a mesma estratégia de pré-processamento para identificar
os ataques no conjunto de dados. [Yakan et al. 2023] também propõe um sistema de
detecção de intrusão para identificar ataques em mensagens CAM. Os autores aplicam
um modelo LSTM e uma transformação de caracterı́sticas no conjunto de dados VeReMi
Extension [Kamel et al. 2020] para identificar um conjunto mais amplo de ameaças em
redes veiculares. No entanto, ambas as propostas ignoram que a seleção do cliente tem o
potencial de minimizar o tempo de treinamento.
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2.2. Otimização do Aprendizado Federado
[Luo et al. 2022] propõem um algoritmo de seleção de clientes para aumentar a

eficiência do aprendizado federado. A proposta considera que os clientes têm diferentes
dispositivos e também heterogeneidade de dados, o que impõe um desafio para selecio-
nar o melhor subconjunto de clientes para treinar o modelo durante uma época global.
Assim, os autores formulam um problema de otimização para selecionar os clientes mini-
mizando o tempo total de treinamento, considerando a relevância dos dados e capacidade
dos dispositivos. O tempo de comunicação porém é desconsiderado na formulação, sendo
importante especialmente em cenários com clientes móveis, como redes veiculares.

[Su et al. 2024] propõem um algoritmo de seleção de clientes para o Online Fede-
rated Learning (OFL), chamado algoritmo Low-Cost Client Selection (LCCS). Os autores
formulam um problema de otimização para maximizar a utilidade do modelo e minimizar
o custo de comunicação. No entanto, a avaliação considera apenas a largura de banda
necessária para determinar o custo de comunicação. Assim, os autores desconsideram o
tempo de convergência, que é particularmente sensı́vel para aplicações como detecção de
intrusão.

[Buyukates e Ulukus 2021] consideram um cenário de aprendizado federado onde
o servidor de agregação realiza uma seleção aleatório e descarta parte dos modelos trei-
nados pelos clientes. O objetivo é aumentar a velocidade de treinamento do aprendizado
federado selecionando os primeiros m clientes que enviam o modelo de volta ao servidor
de agregação. A vantagem da proposta é utilizar uma formulação simples que dispensa a
formulação de um problema de otimização para a seleção de clientes. No entanto, a pro-
posta introduz energia desnecessária e desperdı́cio computacional para os clientes com
maior tempo de resposta selecionados.

Diferentemente das propostas acima, o TOFL é uma estratégia de seleção de cli-
entes de aprendizado federado que considera as variações de atraso dos clientes causadas
pela mobilidade e evitando o desperdı́cio de recursos computacionais. O TOFL é adap-
tado para redes veiculares onde os clientes estão se movendo e experienciam diferentes
condições de rede.

3. Time Optimized Federated Learning (TOFL)
O Time Optimized Federated Learning é uma estratégia de seleção de clientes FL

que considera as condições de rede dos usuários para reduzir o tempo de treinamento em
ambientes veiculares. Esta seção descreve as principais hipóteses, como modelar para
obter os atrasos de comunicação e o problema de otimização.

3.1. Hipóteses Consideradas
Neste trabalho, assume-se que os clientes do aprendizado federado são veı́culos

conectados com recursos computacionais suficientes para participar do treinamento do
modelo. Os recursos computacionais e a carga de trabalho dos dispositivos dos clientes
são homogêneos. A tarefa de aprendizado é a detecção de informações falsas ou ata-
ques executados por meio de Mensagens de Reconhecimento Cooperativo (Cooperative
Awareness Messages - CAMs), que são transmitidas na rede veicular. No inı́cio do trei-
namento, assume-se que cada cliente detém um conjunto de dados privado, rotulado, para
ajustar o modelo durante o treinamento federado de forma supervisionada. Além disso,
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Tabela 1. Notações usadas no artigo.

e Índice da época global.
k Índice do cliente.
E Eficiência do sistema.
T e,k
G Tempo total de época para o k-ésimo cliente na e-ésima época.

T e,k
D Tempo de receber o modelo para o k-ésimo cliente na e-ésima época.

T e,k
C Tempo computacional para o k-ésimo cliente na e-ésima época.

T e,k
U Tempo de enviar o modelo para o k-ésimo cliente na e-ésima época.

K Subconjunto de clientes disponı́veis.
N Subconjunto de clientes selecionados.
M Subconjunto de clientes usados para agregação pelo algoritmo M-Fastest.
A Subconjunto de clientes usados para agregação.
Ttimeout Atraso máximo tolerado para encerrar a época global.
dk Variável binária que indica se o i-ésimo cliente é selecionado para participar da época global atual.

os veı́culos enviam mensagens keep alive para o servidor de agregação para utilizar como
entrada de uma rede neural LSTM e estimar as condições de rede futura para seleção de
clientes. Devido à mobilidade dos veı́culos, as condições de rede variam com o tempo.
Assume-se ainda que a distribuição de dados dos veı́culos é Independente e Distribuı́da
Identicamente (IID)

3.2. Problema de Otimização
O diagrama de execução de uma época global do cenário é ilustrado na Figura 1

e a notação matemática utilizada é apresentada na Tabela 1. O cliente Ki no diagrama
inicialmente se conecta com o servidor de aprendizado federado S. Uma vez conectado,
o cliente pode ser selecionado para treinar o modelo na t-ésima época global. O servidor
transmite o modelo para o cliente selecionado, o que leva T e,k

D unidades de tempo para
concluir a transmissão (“download” do modelo). Então, o cliente leva T e,k

C unidades de
tempo para treinar e atualizar os parâmetros do modelo local. Após concluir, o cliente
transfere o modelo para o servidor em T e,k

U unidades de tempo (“upload” do modelo).
Esse processo se repete até o fim do treinamento do modelo no aprendizado federado
sempre que o cliente for selecionado.

Cada veı́culo tem três atrasos associados em cada época global: receber, atualizar
e enviar o modelo. O tempo para executar uma época global no tempo t para um cliente i
é definido como a soma dos três atrasos TGt,i

= T e,k
D + T e,k

C + T e,k
U , onde T e,k

D é o tempo
para um cliente i receber o modelo do servidor, T e,k

C é o tempo necessário para executar as
épocas locais e T e,k

U representa o tempo necessário para enviar o modelo local atualizado
para o servidor. T e,k

D e T e,k
C são fáceis de estimar dada uma época, no entanto, T e,k

U é difı́cil
de determinar devido à variabilidade das condições de rede e mobilidade dos clientes ao
longo do tempo, principalmente quando o tempo de computação é longo. No entanto,
os usuários geralmente têm padrões de mobilidade especı́ficos, tornando possı́vel pre-
ver melhor a taxa de transferência [do Couto Teixeira et al. 2021, Gonzalez et al. 2008]
e, consequentemente, estimar um valor para T e,k

U próximo ao real. Dessa forma, o tempo
de enviar o modelo pode ser aproximado pelo tempo estimado de receber o modelo.

A proposta estima o tempo necessário para cada cliente receber o modelo e uti-
liza a estimativa para selecionar os clientes, uma vez que os atrasos de receber e enviar o
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Figura 1. Diagrama de comunicação entre um cliente N k selecionado para parti-
cipar do treinamento na e-ésima época e o servidor de aprendizado fede-
rado.

modelo são correlacionados. Para estimar o atraso, o servidor armazena um vetor com as
taxas de transmissão previamente experienciadas por cada cliente. O vetor é atualizado
a cada 100 ms, extraindo as informações das mensagens keep alive definidas no TOFL.
Quando o servidor precisa selecionar clientes, o vetor é utilizado como entrada de um mo-
delo LSTM para estimar a condição de rede futura de cada cliente. Após esta etapa, o ser-
vidor é capaz de selecionar os clientes que têm os menores atrasos estimados. A seleção
de clientes é modelada como um problema de Facility Location [Owen e Daskin 1998],
que usa a função min-max como um critério de otimização, definido pela Equação 1.

minmax
k∈K

(T e,k
D + T e,k

C + T e,k
U ) · dk,

sujeito a :
∑
k∈K

dk = |N |,

(T e,k
D + T e,k

C + T e,k
U ) · dk ≤ Ttimeout, ∀k ∈ K,

e ∈ N+, T e,k
D , T e,k

C , T e,k
U ∈ R+, dk ∈ {0, 1}.

(1)

O problema possui duas restrições, a primeira indica que o número de clientes se-
lecionados deve ser exatamente igual a |N |. A segunda restrição indica que o atraso total
estimado para um cliente, caso este seja selecionado, deve ser inferior ao tempo máximo
permitido Ttimeout para a execução da época global, para evitar que o cliente desperdice
recursos computacionais.

4. Modelo de Atacante
Assume-se que os atacantes têm acesso a um veı́culo conectado já autenticado na

rede. Assim, um nó atacante é capaz de enviar mensagens CAM na rede, que podem ou
não conter informações falsas. Atacantes também têm a capacidade de armazenar e enviar
mensagens anteriores, ou inundar a rede com mensagens repetidas.
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O objetivo é identificar se um usuário é malicioso ou não, tendo acesso a mensa-
gens passadas difundidas na rede. A detecção de ameaças é realizada usando um modelo
de aprendizado profundo treinado em conjunto com clientes na rede. Ataques ao treina-
mento do modelo são ortogonais ao nosso trabalho atual e podem ser solucionados usando
técnicas de agregação robusta [De Souza et al. 2024, Qi et al. 2024].

Tabela 2. Divisão de amostras de acordo com classes no conjunto de dados
VeReMi.

Classe ID Quantidade de Amostras (#) Percentual

Normal 0 1470668 69.14
Posição constante 1 136959 6.44
Deslocamento de posição constante 2 136959 6.44
Posição aleatória 4 150894 7.09
Deslocamento de posição aleatória 8 107888 5.07
Parada Eventual 16 123608 5.81

Para simular o modelo de atacante, são utilizados dois conjuntos de da-
dos: Vehicular Reference Misbehavior Dataset (VeReMi) e VeReMi Extension.
[Van Der Heijden et al. 2018] apresenta o VeReMi disponı́vel publicamente e avalia me-
canismos para avaliação da plausibilidade das informações contidas nas CAMs enviadas
pelos veı́culos. Todos os ataques estão relacionados à posição do carro, enviando de
alguma forma valores incorretos em relação ao tipo de ataque. O conjunto de dados
consiste em logs de mensagens para cada veı́culo na simulação e um arquivo que es-
pecifica o tipo de comportamento. O VeReMi contém cinco ataques: constante, desloca-
mento constante, posição aleatória, deslocamento aleatório e parada eventual. Além disso,
[Kamel et al. 2020] estende o VeReMi para incluir novos dados e padrões de ataque. As-
sim, o VeReMi Extension contém padrões como mensagens atrasadas, DoS, repetição
de dados, difusão de mensagens de veı́culos falsos e mau funcionamento de velocidade,
além dos ataques de mau funcionamento de posição na primeira versão do conjunto de
dados. As distribuições de ataques do VeReMi e VeReMi Extension são apresentadas nas
Tabelas 2 e 3 respectivamente.

5. Experimentos e Resultados
Esta seção apresenta os experimentos executados para avaliar o TOFL. Primeira-

mente, são descritos o ambiente e os parâmetros usados para executar os experimentos. A
seguir apresenta-se a metodologia, experimentos executados e a discussão dos resultados
obtidos.

5.1. Ambiente de Execução

Este trabalho utiliza a arquitetura do modelo LSTM-BiGAN [Zhong et al. 2023],
descrita na Tabela 4, porque ela captura a dependência temporal das mensagens transmi-
tidas. No entanto, o objetivo é validar a proposta e compará-la com outras técnicas. O
TOFL é suficientemente genérico para ser usado como critério de seleção de clientes para
o treinamento de outros modelos, inclusive aqueles que oferecem melhor desempenho
que o usado na avaliação. Outros modelos podem ser adicionados ao sistema para serem
usados com a estratégia proposta.
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Tabela 3. Divisão de amostras de acordo com classes no conjunto de dados da
extensão VeReMi.

Classe ID Quantidade de Amostras (#) Percentual

Normal 0 1900539 59.49
Posição constante 1 43653 1.37
Deslocamento de posição constante 2 43567 1.36
Posição aleatória 3 43857 1.37
Mudança de posição aleatória 4 42575 1.33
Velocidade constante 5 41925 1.31
Mudança de velocidade constante 6 44359 1.39
Velocidade aleatória 7 42258 1.32
Mudança de velocidade aleatória 8 42583 1.33
Parada Eventual 9 42790 1.34
Disruptivo 10 43264 1.35
Repetição de dados 11 44337 1.39
Mensagens atrasadas 12 43118 1.35
Denial of Service (DoS) 13 131305 4.11
DoS aleatório 14 126724 3.97
DoS disruptivo 15 129270 4.05
Grade Sybil 16 175391 5.49
Repetição Sybil 17 44310 1.39
DoS Sybil aleatório 18 86883 2.72
DoS Sybil disruptivo 19 82100 2.57

O FL está configurado de acordo com os parâmetros da Tabela 5. O modelo de
aprendizado profundo é implementado usando o framework TensorFlow v2.15.0. O trei-
namento é executado no flower v1.7.02. Antes de iniciar o treinamento, há uma fase de
pré-processamento onde calcula-se a correlação de Pearson para remover dos conjuntos
de dados atributos com caracterı́sticas altamente correlacionadas, amostras com valores
ausentes e identificadores. Além disso, normaliza-se as caracterı́sticas e divide-se alea-
toriamente os conjuntos de dados em 80% de treinamento e 20% de teste para todos os
clientes em ambos conjuntos de dados. Os clientes possuem os mesmos conjuntos de
dados, de forma a evitar que as distribuições sejam não independentes e identicamente
distribuı́das.

O modelo de mobilidade veicular é implementado usando o SUMO v1.21.0, com o
modelo de mobilidade de Manhattan [Patanè et al. 2024]. O tráfego de veı́culos é gerado
pela ferramenta randomTrips em um comprimento de grade de 600 x 600 m2, a uma

Tabela 4. Arquitetura do modelo LSTM usada nos experimentos para detectar
ameaças à rede veicular.

Camada Formato da saı́da Quantidade de parâmetros (#)

LSTM (None, None, 100) 43,600
LSTM (None, 49) 29,400
Dense (None, 6) 300

2o flower é um arcabouço de código aberto para aprendizado federado que permite treinar modelos de
aprendizado de máquina de forma distribuı́da sem compartilhar os dados dos usuários.
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Tabela 5. Parâmetros do aprendizado federado usados nos experimentos.

Parâmetro Valor

Modelo LSTM-BiGAN [Zhong et al. 2023]
Tamanho do modelo (kB) 573
Número de épocas globais (#) 40
Número de épocas locais (#) 2

velocidade constante de 30 km/h e em uma única faixa. A comunicação 5G dos clientes
usa um modelo de canal, que aloca igualmente a largura de banda de 10 Gbps e 20 Gbps de
upload e download, respectivamente, para os usuários e considera a distância dos usuários
da estação base [Zhu et al. 2021, Chatzoulis et al. 2023]. Uma única estação base é usada
para todos os usuários, que se conectam a um servidor de agregação remoto.

Os clientes do aprendizado federado são simulados por meio de múltiplos pro-
cessos em um servidor. O servidor utilizado nos experimentos consiste em uma CPU
AMD EPYC 7452 com 64 núcleos e 32 GB de RAM e equipada com duas GPUs NVI-
DIA Tesla V100S de 8 GB. Executa-se 10 vezes os mesmos experimentos para exi-
bir os resultados dentro de um intervalo de confiança de 95%. Os resultados com-
param cinco estratégias de seleção de clientes: aleatória [McMahan et al. 2017], M-
Fastest [Buyukates e Ulukus 2021], TOFL oráculo, TOFL estimador e TOFL com M-
Fastest. A seleção aleatória retorna exatamente |N | clientes diferentes amostrados de K.
A M-Fastest executa uma seleção aleatória de |N | clientes, no entanto, ele usa apenas os
|M| primeiros clientes que enviam o modelo de volta ao servidor para agregar o modelo.
O TOFL oráculo é a estratégia proposta com o conhecimento de todos os atrasos para
estabelecer o melhor caso, enquanto o estimador é uma abordagem realista, onde o pro-
blema de otimização tem acesso aos atrasos estimados por meio da rede neural LSTM.
Por fim, o estimador TOFL com M-Fastest, estima os atrasos dos clientes e seleciona
exatamente |M| clientes.

O estimador de atraso, que possui a arquitetura 6, é treinado com um conjunto de
dados com a vazão nominal de um cliente. É utilizada uma janela deslizante (de tamanho
10) para estimar os atrasos futuros. Uma vez que o modelo é treinado, os parâmetros
são congelados para executar apenas previsões durante a operação TOFL. O primeiro
experimento analisa o tempo necessário para treinar modelos de aprendizado profundo
usando aprendizado federado. O segundo experimento compara a acurácia dos modelos
e, por fim, discute-se o uso de recursos computacionais para cada estratégia.

Tabela 6. Arquitetura do modelo LSTM usada para estimar atrasos de clientes.

Camada Formato de saı́da Quantidade de parâmetros (#)

LSTM (10 50) 10,600
Linear (10, 1) 51
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5.2. Tempo de Treinamento dos Modelos

Conforme dito anteriormente, os clientes têm três tempos diferentes para treinar
um modelo usando aprendizado federado: receber, atualizar e enviar o modelo. O tempo
de receber e enviar o modelo estão relacionados com a comunicação e os valores são
obtidos executando simulações para cada cliente. Assume-se o tempo de processamento
igual a zero para todos os clientes e a variação de tempo está relacionada apenas com as
condições de comunicação.

Figura 2. Tempo necessário para treinar o modelo de aprendizado federado de
acordo com o número de clientes selecionados durante 40 épocas globais.

No primeiro experimento, avalia-se o atraso total para treinar um modelo de apren-
dizado profundo usando os parâmetros da Tabela 5. A Figura 2 mostra o resultado deste
experimento. Para este experimento, varia-se a quantidade de clientes que participam
do treinamento FL no intervalo de [1, 100]. Inicialmente, é possı́vel observar que com
|N | <= 35, o TOFL é melhor do que todas as abordagens em termos de tempo necessário
para treinar o modelo, mais de 200% e 100% menos tempo do que a abordagem aleatória
e M-Fastest, respectivamente, ao estimar e selecionar 5 clientes, conforme mostrado pela
linha vermelha na Figura 2. A Figura 3 mostra o tempo médio de cada época global ao se-
lecionar 16 clientes. No entanto, para 55 <= |N | <= 75, apenas o estimador TOFL com
a mesma quantidade de clientes que o M-Fastest apresenta um tempo menor que as ou-
tras propostas. Isso ocorre porque nessa abordagem são selecionados menos clientes para
participar do treinamento, enquanto as outras abordagens, até mesmo o TOFL Oráculo,
são forçadas a selecionar um número maior de clientes.

Além disso, com mais de 95 clientes, o M-Fastest apresenta o menor tempo para
treinar o modelo, como mostrado no tempo médio de época global na Figura 4. De fato,
quando aumenta-se o número de clientes selecionados na primeira seleção aleatória do M-
Fastest, aumenta-se a probabilidade de selecionar os clientes mais rápidos. Portanto, se
os melhores clientes forem escolhidos na seleção aleatória, o M-Fastest atuará como um
oráculo. O mesmo não ocorre com o TOFL porque o estimador tem um erro de precisão
inevitável, como é possı́vel observar comparando o oráculo TOFL e o estimador TOFL,
as linhas verde e vermelha na Figura 2. O estimador TOFL tem um tempo médio sempre
maior que o oráculo, mostrando que a estimativa não está exatamente selecionando os
melhores clientes.
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Figura 3. Duração média de cada época usando 16 clientes.

O resultado mostra que, para um número razoavelmente pequeno de clientes, por
exemplo, 20% do número total de clientes disponı́veis, o estimador TOFL é capaz de
reduzir em até 50% do tempo de treinamento em comparação com a abordagem de seleção
aleatória e 33% quando comparado com o M-Fastest.

Figura 4. Duração média de cada época usando 95 clientes.

No entanto, uma comparação importante a ser feita é o tempo até convergência
das diferentes estratégias. Portanto, na seção a seguir, é discutido quanto tempo leva para
o modelo global convergir.

5.3. Tempo até a Convergência

Neste experimento, avalia-se o tempo até a convergência dentro de um número
máximo de épocas, utilizando diferentes estratégias de seleção de clientes para os dois
conjuntos de dados, com 16 e 95 clientes selecionados para participar do treinamento. Os
números de clientes selecionados utilizados são baseados no experimento anterior.

As Figuras 5 e 6 mostram que, para ambos os conjuntos de dados, o TOFL apre-
senta o menor tempo para uma alta acurácia em comparação com outras propostas ao usar
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Figura 5. Tempo até a convergência da acurácia dentro de 35 épocas no conjunto
de dados VeReMi com 16 clientes selecionados.

Figura 6. Tempo até a convergência da acurácia dentro de 30 épocas no conjunto
de dados VeReMi Extension com 16 clientes selecionados.

16 clientes para participar do treinamento. Além disso, usar menos clientes, a linha roxa
M-Fastest, é suficiente para atingir um bom nı́vel de acurácia em um curto perı́odo de
tempo, pois as estratégias baseadas no M-Fastest utilizam metade do conjunto de clientes
selecionados.

Por outro lado, as Figuras 7 e 8 mostram que ao aumentar o número de clientes
selecionados, o M-Fastest apresenta o menor tempo para acurácia em comparação com
outras propostas e muito próximo ao tempo do TOFL com M-Fastest. No entanto, o
melhor desempenho do M-Fastest é acompanhado de maior consumo de recursos compu-
tacionais.

5.4. Eficiência de Recursos Utilizados

Neste experimento, compara-se os recursos computacionais usados por cada abor-
dagem. O objetivo é avaliar as estratégias em relação ao recursos utilizados e não apro-
veitados durante o treinamento. O desperdı́cio de recursos abordado nesse experimento
compreende o conjunto de recursos necessários para o treinamento federado, como CPU,
memória, disco, energia e comunicação. Isso é especialmente interessante para comparar
a proposta atual com a estratégia M-Fastest, pois esta proposta força alguns clientes a uti-
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Figura 7. Tempo até a convergência da acurácia dentro de 35 épocas no conjunto
de dados VeReMi ao selecionar 95 clientes.

Figura 8. Tempo até a convergência da acurácia dentro de 30 épocas no conjunto
de dados VeReMi Extension ao selecionar 95 clientes.

lizar desnecessariamente os recursos computacionais sem usar seus resultados no modelo
global. Além disso, quando um cliente falha sem enviar seus resultados para agregação,
também seus recursos computacionais são desperdiçados. Dessa forma, a Equação 2 des-
creve a eficiência E do sistema ao utilizar uma para selecionar os clientes. Por sua vez,
cada estratégia possui uma quantidade |A| de recursos que são realmente usados para
treinar o modelo global sobre os recursos totais |N | usados no sistema. Além disso, R
representa um fator de escala que pode mudar em relação ao modelo de aprendizado de
máquina usado no treinamento, ao tamanho dos conjuntos de dados dos clientes e à tec-
nologia de comunicação.

E =
|A|
|N |

.R. (2)

A Figura 9 exibe os resultados do experimento, fixando o valor de R = 1 e vari-
ando o percentual de clientes que apresentam falhas em cada rodada. As falhas dos clien-
tes são catastróficas dentro de uma rodada e simuladas de forma aleatória, sem correlação
com a rede dos clientes. Para a abordagem aleatória e abordagens TOFL, |A| = |N |, o
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Figura 9. Eficiência do treinamento das 5 propostas ao variar a taxa de erro dos
clientes.

que significa que não há perdas se os clientes selecionados enviarem o modelo de volta ao
servidor de agregação antes de Ttimeout segundos. Isso explica a eficiência igual a 100%
quando o cenário não apresenta falhas. Por outro lado, M-Fastest tem |A| < |N |, pois usa
apenas 50% dos clientes selecionados para a agregação, o que incorre em desperdı́cio de
recursos dos clientes. Portanto, mesmo para um cenário sem falhas, M-Fastest possui um
eficiência de apenas 50%. Mesmo quando aumenta-se o número de falhas, a eficiência
das demais abordagens é superior ao M-Fastest. Assim, abordagens aleatórias e TOFL são
mais eficientes em relação aos recursos computacionais usados para treinar o modelo glo-
bal. O M-Fastest atinge a mesma eficiência apenas em cenários onde o número de falhas
é superior a 70%. Além disso, o TOFL com M-Fastest pode ser usado para estimar os
clientes mais rápidos, conforme mostrado nos resultados do tempo para treinar o modelo,
e evitar o desperdı́cio imposto por M-Fastest.

6. Conclusão e Trabalhos Futuros

Este trabalho apresentou o TOFL, uma estratégia de seleção de clientes para mi-
nimizar o tempo total de treinamento no cenário de aprendizado federado. Diferente-
mente de outras estratégias de seleção de clientes, o TOFL considera os efeitos da mobi-
lidade dos clientes na comunicação, o que tem impacto significativo no cenário veicular.
Para 20% do número total de clientes disponı́veis, o estimador TOFL foi capaz de re-
duzir até 50% do tempo de treinamento em comparação com a abordagem de seleção
aleatória e 33% quando comparado com o M-Fastest, uma estratégia de seleção do es-
tado da arte. Mostrou-se que o TOFL é mais eficaz quando o sistema tem mais clientes
e o número de clientes selecionados é menor do que o total de clientes disponı́veis, o
que é uma configuração comum em todos os cenários de aprendizado federado. Além
disso, o TOFL é mais eficiente em relação aos recursos computacionais usados para trei-
nar o modelo global quando comparado com o M-Fastest, pois calcula o modelo global
usando todas as respostas dos clientes. Em trabalhos futuros, planeja-se criar um cenário
mais realista usando a previsão de mobilidade dos usuários para estimar os atrasos de
comunicação e investigar os efeitos de dados não-IID.
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