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Abstract. This work evaluates the impact of feature selection and enrichment
on the performance of intrusion detection systems (IDS) for smart grids. Seven
feature sets were tested, ranging from basic to enriched versions, including two
application orders: (i) selection after enrichment and (ii) enrichment after selec-
tion. Effectiveness was assessed across seven types of cyberattacks with varying
complexity, using lightweight classifiers. The results show that feature selection
improves detection in simpler attacks, such as Random Replay and Inverse Re-
play, while enrichment enhances performance in more complex scenarios, such
as Masquerade Fake Fault. The best results were obtained by combining both
techniques, especially when enrichment was applied before selection — which
helped preserve critical derived features, such as delay.

Resumo. Este trabalho avalia o impacto da seleção e do enriquecimento de
features no desempenho de IDSs para smart grids. Foram testados sete con-
juntos de features, de versões básicas a enriquecidas, incluindo duas ordens de
aplicação: (i) seleção após enriquecimento e (ii) enriquecimento após seleção.
A eficácia foi analisada em sete tipos de ciberataques com diferentes com-
plexidades, por meio de classificadores leves. Os resultados mostram que a
seleção melhora ataques simples, como Random Replay e Inverse Replay, en-
quanto o enriquecimento se destaca em cenários mais complexos, como Mas-
querade Fake Fault. Os melhores ganhos ocorreram com a combinação das
duas técnicas, especialmente quando o enriquecimento foi aplicado antes da
seleção — o que evitou a perda de features derivadas importantes, como delay.

1. Introdução
Os sistemas ciberfı́sicos, do inglês Cyber-Physical Systems (CPS), desempenham um pa-
pel crucial em setores crı́ticos como energia, transporte e manufatura, integrando com-
ponentes fı́sicos e digitais para otimizar operações em larga escala. No contexto de
substações elétricas digitais, ou smart grids, por exemplo, esses sistemas possibilitam
uma gestão eficiente e remota da geração, distribuição e consumo de energia. Contudo,
essa interconexão aumenta a exposição a ciberataques, que podem comprometer tanto a
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integridade das operações quanto a segurança fı́sica de infraestruturas crı́ticas. Um exem-
plo foi o ataque coordenado pelo grupo SandWorm, afiliado à inteligência militar russa,
que comprometeu sistemas de 22 empresas de infraestrutura crı́tica na Dinamarca, in-
cluindo o setor de energia, forçando interrupções nas operações e destacando os riscos
associados à crescente interconectividade desses sistemas [Technologies 2024].

Nesse cenário, os sistemas de detecção de intrusão (do inglês Intrusion Detec-
tion Systems - IDS) são fundamentais para proteger infraestruturas crı́ticas, monito-
rando redes, identificando anomalias e mitigando ameaças [Thakkar and Lohiya 2022,
Horchulhack et al. 2022]. No entanto, para lidar com a complexidade dos ciberataques,
que cresce exponencialmente, fez-se necessário o uso de aprendizado de máquina, que é
bastante custoso. Duas abordagens promissoras visando aumentar a eficiência dos IDSs
na classificação do perfil das atividades analisadas [Quincozes et al. 2024a] são a seleção
de features, que identifica as features mais relevantes e elimina redundâncias nos dados,
e o enriquecimento de features, que adiciona novas features a partir daquelas existentes.

Embora a seleção e o enriquecimento de features sejam amplamente reconhe-
cidos como técnicas promissoras para aumentar a eficácia dos IDSs [Ngo et al. 2024],
ainda existem incertezas sobre como aplicá-las de forma sistemática. Exis-
tem estudos que avaliam os benefı́cios da seleção de features [Zouhri et al. 2024,
Rahim and Manoharan 2024, Kaushik et al. 2023], estudos que avaliam o enriquecimento
de features [Sarhan et al. 2024, Musleh et al. 2023, Quincozes et al. 2024c] e ainda
aqueles que comparam os benefı́cios da seleção versus enriquecimento [Li et al. 2024,
Ngo et al. 2024]. No entanto, ainda é necessário avaliar como essas abordagens se com-
portam em conjunto, particularmente se uma delas é suficiente para alcançar resultados
satisfatórios ou se sua combinação é necessária em cenários mais complexos. Questões
como a ordem de aplicação — seleção antes do enriquecimento ou o inverso — e os
impactos em diferentes cenários permanecem sem respostas claras.

Para responder essas questões, esse trabalho propõe uma análise aprofundada do
impacto da seleção e do enriquecimento de features no desempenho de IDSs em sistemas
ciberfı́sicos, com ênfase em smart grids. As principais contribuições deste estudo são:

1. Uma avaliação extensiva envolvendo sete conjuntos de features, inclusive aqueles
obtidos a partir dos processos de enriquecimento e seleção de features;

2. Investigação dos processos de seleção e enriquecimento de features em múltiplos
tipos de ataques a fim de analisar o impacto desses processos;

3. A demonstração de como a interação entre seleção e enriquecimento de features
pode otimizar o desempenho de IDS em ataques complexos, oferecendo insights
para a construção de IDS mais eficientes; e

4. Integração de uma análise de explicabilidade com a ferramenta SHAP (SHapley
Additive exPlanations) para identificar causas de desempenho inesperado, reve-
lando limitações da seleção univariada de features e orientando futuras melhorias.

O restante deste trabalho está organizado da seguinte forma: A Seção 2 apresenta
a fundamentação teórica. A Seção 3 discute os trabalhos relacionados. Na Seção 4,
são detalhados os aspectos metodológicos adotados para a análise proposta. A Seção 5
apresenta os resultados obtidos e as respectivas discussões. A Seção 6 analisa resultados
fora dos padrões por meio de uma ferramenta de XAI. Por fim, a Seção 7 apresenta a
conclusão e direções para pesquisas futuras.
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2. Fundamentação Teórica

Em CPSs, como smart grids, a integração de dispositivos fı́sicos e cibernéticos am-
plia significativamente a superfı́cie de ataques, tornando os IDSs uma necessidade
crı́tica [Mariani et al. 2024]. Nesses ambientes, além de monitorar padrões de tráfego
e atividades de sistemas, IDSs precisam identificar anomalias que possam indicar tentati-
vas de intrusão. A complexidade dos protocolos especı́ficos para smart grids, tais como
GOOSE (Generic Object Oriented Substation Event) e SV (Sampled Values), definidos
pelo padrão IEC-61850 [Mackiewicz 2006], exige técnicas mais avançadas (e.g., apren-
dizado de máquina) para que os IDSs consigam operar eficientemente. Em particular,
a qualidade das features utilizadas desempenha um papel crucial, uma vez que features
representativas são essenciais para a eficácia de um IDS [Ngo et al. 2024], mas features
demais podem confundir os algoritmos. Duas abordagens de pré-processamento que são
amplamente utilizadas para otimizar as features processadas por IDSs são a seleção de
features e o enriquecimento de features, conforme ilustrado na Figura 1.

Conjunto Inicial de Features

Seleção de Features

Conjunto de Features Final

A B C D E F

A B C D E F

B F

(a) Seleção de Features.

Conjunto Inicial de Features

Enriquecimeto de Features

Conjunto de Features Final

A B C D E F

A B C D E F

A B C D E F G H

(b) Enriquecimento de Features.

Figura 1. Processos de Seleção e Enriquecimento de Features.

A seleção de features (Figura 1(a)) permite identificar as features mais relevantes e
eliminar redundâncias ou dados com ruı́dos que podem prejudicar o desempenho dos mo-
delos. Por exemplo, o GRASPQ-FS [Quincozes et al. 2024b] é uma metaheurı́stica eficaz
para seleção de features, combinando exploração e refinamento na busca por soluções oti-
mizadas. Sua abordagem inclui duas fases principais: uma fase de construção, que gera
soluções iniciais, e uma fase de busca local, que refina essas soluções para melhorar seu
desempenho. Uma particularidade do GRASPQ-FS consiste no uso de uma fila de priori-
dade, que organiza as soluções (conjuntos de features) com base em critérios de qualidade.
Esse mecanismo reduz significativamente o custo computacional ao limitar o número de
iterações durante a busca por novas soluções, mantendo apenas aquelas mais promissoras
para fase de busca local, que é computacionalmente custosa devido ao grande número de
soluções vizinhas a serem avaliadas. Especificamente, o número de iterações é reduzido
para iterações na fase de construção × N, onde N é o tamanho da fila de prioridade. Isso
torna o GRASPQ-FS especialmente adequado para cenários de alta dimensionalidade.

O enriquecimento de features (Figura 1(b)), por outro lado, visa ampliar a uti-
lidade dos dados por meio da geração de novas features derivadas de informações
básicas [Xi et al. 2024]. O objetivo é fornecer ao sistema informações adicionais que
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capturem padrões mais complexos, permitindo maior precisão na detecção de intrusões,
especialmente em cenários sofisticados e dinâmicos. Esse processo pode ser realizado
por meio de diferentes abordagens, cada uma projetada para destacar aspectos especı́ficos
dos dados. Duas técnicas frequentemente utilizadas em sistemas ciberfı́sicos são a análise
interprotocolo e a correlação temporal [Quincozes et al. 2024a]. A análise interprotocolo
integra informações de múltiplos protocolos, combinando features que, quando anali-
sados separadamente, não revelariam interações significativas. Por exemplo, combinar
timestamps de diferentes protocolos pode expor atrasos ou inconsistências causadas por
ataques que exploram falhas de sincronização. Já a correlação temporal consiste em iden-
tificar padrões e relações ao longo do tempo em uma mesma feature ou em múltiplas
features, permitindo que o IDS reconheça anomalias que se desenvolvem em função de
mudanças temporais, como variações de frequência ou atrasos em sinais consecutivos.

Outra abordagem de manipulação de features é a extração de features, que
transforma o espaço de features com o objetivo de reduzir a dimensionalidade do
conjunto de dados, mantendo ou sintetizando a maior parte da informação rele-
vante [Sarhan et al. 2024]. Diferente da seleção, que mantém apenas as features mais
importantes do conjunto original, e do enriquecimento, que gera novas features a
partir das existentes, a extração constrói novas features com base em combinações
ou transformações dos dados originais, frequentemente descartando as features inici-
ais [Latif et al. 2025]. Apesar de suas diferenças, a extração pode ser complementar ao
enriquecimento: enquanto o enriquecimento gera features mais expressivas para captu-
rar comportamentos complexos, a extração pode ser usada para condensar informações
redundantes. No entanto, ela não está no escopo deste artigo.

3. Trabalhos Relacionados

A literatura sobre IDSs explora técnicas de manipulação de features, agrupadas em três
categorias principais: (i) seleção, (ii) enriquecimento ou extração, e (iii) comparações
entre essas abordagens.

Diversos estudos destacam a importância da seleção de features para melhorar
a eficiência dos IDSs. Por exemplo, [Rahim and Manoharan 2024] propuseram o mo-
delo Spiking VGG-16, que utiliza Skill Optimization Algorithm (SOA) para selecionar
features relevantes, demonstrando o impacto positivo dessa abordagem. De forma se-
melhante, o modelo ZESO-DRKFC [Rabie et al. 2022] também utiliza uma técnica de
seleção baseada em otimização (Zaire Ebola Search Optimization - ZESO) para identifi-
car features importantes, aumentando a precisão e reduzindo falsos positivos em sistemas
SCADA. Outros estudos, como o de [Kaushik et al. 2023], avaliaram diferentes técnicas
de seleção, como Chi-Square e Information Gain, comparando seus efeitos em classifi-
cadores tradicionais, enquanto [Zouhri et al. 2024] realizaram uma análise do impacto de
filtros univariados e multivariados, como Double Input Symmetric Relevance (DISR) e
Correlation-based Feature Subset Selection (CFS), demonstrando que filtros multivaria-
dos são mais eficazes para manter ou melhorar o desempenho com conjuntos reduzidos
de features. Esses trabalhos enfatizam que a seleção de features é uma técnica eficiente
para otimizar IDSs, mas não abordam como combiná-la com técnicas de enriquecimento
ou extração, o que representa uma lacuna na literatura.

Além desses trabalhos, estudos recentes investigaram técnicas de enrique-
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cimento e extração de features como estratégias para melhorar o desempenho de
IDSs. [Sarhan et al. 2024] exploraram algoritmos de extração como Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA) e Auto-Encoder, destacando que o
desempenho dessas técnicas varia de acordo com o dataset utilizado, sem uma abordagem
universalmente superior. De forma complementar, [Musleh et al. 2023] analisaram um
dataset de tráfego de rede convertido em imagens binárias e utilizaram redes neurais pro-
fundas, como DenseNet e VGG-16, para extrair features automaticamente. Essa aborda-
gem permitiu capturar padrões complexos a partir das representações visuais dos pacotes
de rede, alcançando uma acurácia de até 98,3%. Já [Quincozes et al. 2024c] focaram no
enriquecimento de features para redes IEC-61850, criando 39 novas caracterı́sticas inter-
protocolo e temporais, o que resultou em um aumento no F1-score de 95,6% para 99,4%.
Recentemente, [Xi et al. 2024] introduziram o IDS-MTran, que utiliza um módulo de en-
riquecimento cruzado de features (Cross Feature Enrichment) para integrar informações
em múltiplas escalas, causando melhorias no desempenho ao capturar interações comple-
xas entre nı́veis de abstração. Esses estudos ressaltam a eficácia de técnicas avançadas
de extração e enriquecimento, mas geralmente as aplicam de forma isolada, sem explorar
como sua integração com seleção de features pode potencializar os resultados.

Por fim, existem alguns trabalhos que realizam análises comparativas entre as
técnicas de seleção e extração de features para IDSs [Li et al. 2024, Ngo et al. 2024].
Especificamente, [Li et al. 2024] avaliaram essas técnicas no dataset TON-IoT, demons-
trando que a extração apresenta melhor desempenho em cenários com poucas features, en-
quanto a seleção é mais eficiente computacionalmente em conjuntos maiores de dados. Já
em [Ngo et al. 2024], foi realizada uma análise no dataset UNSW-NB15, destacando que
a seleção de features oferece maior acurácia e menor tempo de processamento para valo-
res altos de K (i.e., número de features reduzidas), enquanto a extração se mostrou mais
robusta na detecção de ataques variados em cenários com valores baixos de K. Embora
ambos os trabalhos forneçam diretrizes práticas para a escolha entre essas abordagens,
eles não exploram as potenciais vantagens de combinar seleção e extração de features.

4. Metodologia
Neste trabalho, o dataset IEC-61850 [Quincozes et al. 2024a] foi adotado, o qual inclui
amostras de tráfego normal e ataques às Smart Grids (Tabela 1). A divisão de amostras por
classe e a proporção de treinamento e teste foram preservados, mantendo as caracterı́sticas
do dataset original para representar situações reais de tráfego de rede. Esse dataset foi
escolhido por ser recente, conter um grande volume de amostras, diversos tipos de ataque
e features enriquecidas bem documentadas.

O dataset contém um total de 2.955.738 amostras no conjunto de treinamento e
2.955.648 no conjunto de teste, sendo cada amostra caracterizada por 69 features. As
features são divididas em 35 básicas e 34 enriquecidas. As features básicas incluem 22
extraı́das diretamente do protocolos GOOSE e 13 provenientes do protocolo SV. As 34
features enriquecidas resultam de correlações temporais e interprotocolo, com 10 featu-
res enriquecidas a partir do GOOSE e 24 do SV. A feature stNum do protocolo GOOSE,
por exemplo, origina a feature enriquecida stDiff, que calcula a diferença entre va-
lores consecutivos da stNum. Além disso, algumas features enriquecidas combinam
informações de múltiplas features individuais ou protocolos. Por exemplo, a feature
delay é calculada como a diferença entre o gTimestamp do GOOSE e o time do
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Classe/Ataque Treinamento Teste

Normal (sem ataque) 2.759.425 2.755.139
Random Replay 39.000 39.000
Injection 39.000 39.000
High StNum 39.000 39.000
Inverse Replay 26.033 30.319
Poisoned High Rate 18.574 18.570
Masquerade Fake Normal 17.419 17.420
Masquerade Fake Fault 17.287 17.200

Tabela 1. Classes e Número de Amostras do Dataset IEC-61850.

SV, representando um comportamento interprotocolo. A relação completa das features e
seus respectivos processos de enriquecimentos estão na Figura 2 e disponı́veis no trabalho
original que propõe o dataset IEC-61850 [Quincozes et al. 2024a].

isbA
isbB
isbC
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vsmB
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time
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gooseTTL
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test
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protocol
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gooseLen
APDUSize
t
gTimestamp

Features GOOSE
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Features SV
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Features SV
Enriquecidas (24)
isbARmsValue
isbBRmsValue
isbCRmsValue
ismARmsValue
ismBRmsValue
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vsbATrapAreaSum
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vsmBTrapAreaSum
vsmCTrapAreaSum

stDiff
sqDiff
cbStatusDiff
frameLengthDiff
gooseLengthDiff
apduSizeDiff
tDiff
timeFromLastChange
timestampDiff
delay

Features GOOSE
Enriquecidas (10)

Figura 2. Features Básicas e Enriquecidas do Dataset IEC-61850.

O fluxo de experimentos adotado neste trabalho compreende três etapas princi-
pais, conforme a Figura 3: Pré-processamento, Pipeline de análise e Avaliação. No pré-
processamento, os dados do dataset IEC-61850 são preparados, incluindo a normalização
das colunas numéricas, a codificação das colunas categóricas e a configuração de análises
binárias para cada classe de ataque (i.e., cada ataque foi avaliado isoladamente, mantendo-
se as mesmas amostras normais para todos os experimentos). Para cada dataset reduzido
resultante, foram gerados três conjuntos de features, incluindo GOOSE básicas (22 featu-
res), GOOSE + SV básicas combinadas (35 features) e GOOSE + SV básicas enriquecidas
(69 features) para fins comparativos.
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Figura 3. Fluxo Experimental para Avaliação do Desempenho do IDS no Dataset
IEC-61850.

No pipeline de análise, primeiro realizamos a classificação binária para os três pri-
meiros conjuntos de features: 1) GOOSE básicas, 22 features, 2) GOOSE e SV básicas
combinadas, 35 features, e 3) GOOSE e SV básicas enriquecidas, 69 features, utilizando
algoritmos padronizados, que no nosso caso são Decision Tree e Naive Bayes. Essa
avaliação gerou um F1-Score inicial que serviu como baseline para comparações futu-
ras (representado pelas setas vermelhas na Figura 3). Na etapa seguinte, aplicamos a
seleção de features utilizando o GRASPQ-FS [Quincozes et al. 2024b], que gerou mais
três conjuntos de features: 4) GRASPQ-FS aplicado em GOOSE básicas, 5 features, 5)
GRASPQ-FS aplicado em GOOSE e SV básicas combinadas, 5 features, e 6) GRASPQ-
FS aplicado em GOOSE e SV básicas enriquecidas, 5 features. Foram avaliadas filas de
prioridade de tamanhos 10 e 100, gerando, respectivamente, 1.000 e 10.000 iterações de
busca local, com base em 100 iterações na fase de construção [Quincozes et al. 2024b].
O F1-Score obtido após a seleção foi utilizado para avaliar os ganhos proporcionados por
essa redução (representado pelas setas azuis na Figura 3). Por fim, avaliamos o impacto
da combinação entre seleção e enriquecimento de features, gerando o último conjunto
de features, 7) onde as features resultantes da seleção no conjunto GOOSE e SV básicas
foram enriquecidas, resultando em um número variável de features (representado pelas
setas verdes na Figura 3).

A avaliação final dos resultados foi conduzida com base no F1-Score, calculado
para os três cenários experimentais: classificação binária inicial, após a seleção de featu-
res e após o enriquecimento das features selecionadas. Esse fluxo experimental permitiu
analisar detalhadamente como as técnicas de seleção e enriquecimento contribuem, indi-
vidual e conjuntamente, para melhorar o desempenho do IDS em cenários complexos.

5. Resultados e Discussões
Inicialmente, foi avaliado o impacto do tamanho da fila de prioridade do GRASPQ-FS
(Subseção 5.1) no dataset IEC-61850. Em seguida, foram analisados os efeitos da seleção
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e do enriquecimento de features (Subseção 5.2). Por fim, foi investigado o impacto da
ordem de execução desses dois processos (Subseção 5.3).

5.1. Avaliação do Tamanho da Fila de Prioridade no GRASPQ-FS

Para avaliar a eficiência do GRASPQ-FS no dataset IEC-61850, foram realizados ex-
perimentos com o classificador Naive Bayes, comparando filas de prioridade (PQ) de
tamanhos 10 e 100. Estudos anteriores já indicavam que filas menores reduzem o custo
computacional com impacto mı́nimo no F1-Score [Quincozes et al. 2024b]. Contudo, de-
vido à complexidade do dataset, foi necessário verificar essa hipótese em nossos cenários.

100%

80%

60%

40%

20%

0%

Básicas GOOSE  (PQ 10) 

Básicas GOOSE (PQ 100) 

Masquerade
Fake Normal

Masquerade
Fake FaultInverse ReplayRandom

Replay Injection High StNum Poisoned 
High Rate

F1
-S

co
re

Básicas + Enriquecidas GOOSE e SV (PQ 10)

Básicas + Enriquecidas GOOSE e SV (PQ 100)

Básicas GOOSE + SV (PQ 10)

Básicas GOOSE + SV (PQ 100)

Figura 4. Comparação do F1-Score do GRASPQ-FS com Fila de Prioridade de
Tamanho 10 versus 100.

A Figura 4 apresenta os F1-Scores para cada classe do dataset e para os diferentes
conjuntos de features. Os resultados indicam que a diferença de desempenho entre as filas
de tamanho 10 e 100 é mı́nima em todos os ataques. Em casos como Injection, Random
Replay, High StNum e Poisoned High Rate, os F1-Scores foram praticamente idênticos,
independentemente do conjunto de features. Já os baixos desempenhos em ataques da
classe Masquerade refletem limitações do próprio classificador Naive Bayes em capturar
padrões complexos, e não da estratégia de seleção ou do tamanho da fila.

A Figura 5 mostra que, enquanto o tempo com fila de prioridade 10 permaneceu
abaixo de 2.000 segundos para todas as classes, a configuração com fila 100 variou entre
10.000 e 16.000 segundos. Essa diferença significativa no custo computacional reforça a
eficiência da configuração com fila menor, especialmente em contextos de alta dimensi-
onalidade como o IEC-61850. Por esse motivo, os experimentos subsequentes adotam a
fila de tamanho 10, buscando um equilı́brio entre desempenho e eficiência.

5.2. Avaliação do Impacto da Seleção e Enriquecimento de Features

Os resultados obtidos com seis diferentes configurações de features são apresentados a
seguir. Inicialmente, avaliamos os três conjuntos de features: (i) básicas do GOOSE (22
features), (ii) a combinação das features básicas do GOOSE e SV (35 features), e (iii) o
conjunto completo, que inclui as features básicas do GOOSE e SV, além das enriquecidas
(69 features), gerando os resultados baseline. Em seguida, é aplicada a seleção de features
a cada um desses conjuntos. Assim, é possı́vel a avaliação do impacto do enriquecimento
das features básicas GOOSE e SV e da seleção de features em todos os três conjuntos.
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Figura 6. F1-Score do algoritmo Decision Tree.

A Figura 6 ilustra os resultados para o algoritmo Decision Tree. Os resultados
destacam o impacto positivo do enriquecimento de features em comparação aos conjun-
tos básicos. Por exemplo, para o ataque Masquerade Fake Fault, o F1-Score subiu de
12,29% (básicas do GOOSE) para 21,67% (com features básicas do GOOSE e SV) e
finalmente para 98,95% (com o enriquecimento das features básicas do GOOSE e SV),
evidenciando a capacidade das features enriquecidas em capturar padrões mais represen-
tativos em cenários complexos. Para ataques como Masquerade Fake Normal, o conjunto
combinado de features básicas do GOOSE e SV já apresentou um ganho significativo
em relação às features básicas do GOOSE (48,17% para 99,82%), mas o enriquecimento
elevou o desempenho para 100%.

Além disso, a aplicação do GRASPQ-FS para seleção de features apresentou me-
lhorias em vários cenários, como ilustrado pelas barras verdes no gráfico. Por exemplo,
no caso de Random Replay, o F1-Score para o conjunto enriquecido passou de 30,80%
para 100% após a seleção, demonstrando a eficácia da técnica em refinar features rele-
vantes em tal cenário. Outro destaque é o ataque Masquerade Fake Fault, onde a seleção
aumentou o desempenho das features básicas do GOOSE e SV de 21,67% para 95,69%,
um ganho significativo de mais de 70%. No entanto, nem todos os cenários demonstra-
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ram melhorias consistentes. Para o ataque Masquerade Fake Fault, a seleção de features
no conjunto enriquecido reduziu o F1-Score de 98,85% para 64,44%, representando uma
queda de 34,51%. De maneira similar, no conjunto enriquecido, o F1-Score diminiu
de 100% para 97,67% no ataque Masquerade Fake Normal. Esses resultados sugerem
que, em alguns casos, a seleção pode excluir features que capturam padrões importantes,
impactando negativamente o desempenho em ataques mais complexos — algo que será
explorado em mais detalhes na análise de explicabilidade na Seção 6.

Básicas GOOSE               Básicas GOOSE + SV               Básicas + Enriquecidas GOOSE e SV              Melhoria com GRASPQ-FS
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Figura 7. F1-Score do algoritmo Naive Bayes.

Os resultados do algoritmo Naive Bayes são apresentados na Figura 7. Tal algo-
ritmo evidencia um padrão diferente de comportamento em relação ao Decision Tree. De
maneira geral, o desempenho do Naive Bayes foi inferior para diversos ataques. Para o
ataque Random Replay, o F1-Score foi semelhante entre os três conjuntos avaliados an-
tes da seleção de features: 27,83% para as features básicas do GOOSE, 23,43% para a
combinação GOOSE + SV, e 24,61% para o conjunto enriquecido. No entanto, a aplicação
do GRASPQ-FS trouxe uma melhoria significativa, elevando o desempenho para 66,04%
(GOOSE básicas), 70,38% (GOOSE + SV básicas) e 87,82% (enriquecidas). Esses re-
sultados demonstram que, embora o enriquecimento sozinho não tenha gerado ganhos
substanciais, a seleção de features conseguiu capturar e priorizar as features mais rele-
vantes, potencializando o desempenho significativamente.

Outro destaque é a classe Inverse Replay, que apresentou F1-Scores antes da
seleção de features de 24,27% para as features básicas do GOOSE, 27,07% para a
combinação GOOSE + SV, e 11,72% para o conjunto enriquecido. Esse resultado in-
dica que o enriquecimento, nesse caso, introduziu features que não contribuı́ram para
o modelo, possivelmente gerando ruı́doa. No entanto, a aplicação do GRASPQ-FS foi
capaz de refinar as features mais relevantes, resultando em melhorias expressivas: o F1-
Score subiu para 26,21% (GOOSE básicas), 38,18% (GOOSE + SV básicas) e 44,11%
(enriquecidas). Esses resultados demonstram que a seleção de features foi fundamen-
tal para recuperar e aprimorar o desempenho do modelo, mesmo em um cenário onde o
enriquecimento isolado teve impacto negativo.

Já em cenários mais complexos, como os ataques Masquerade Fake Normal e
Masquerade Fake Fault, o impacto do enriquecimento foi limitado, com ganhos modes-
tos nos F1-Scores: de 7,68% para 19,07% em Masquerade Fake Normal e de 10,81% para
20,72% em Masquerade Fake Fault. No entanto, mesmo após a aplicação do GRASPQ-
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FS, os valores permaneceram baixos, indicando que o Naive Bayes encontra maior difi-
culdade em lidar com padrões avançados representados nesses ataques. Esses resultados
reforçam que, embora o Naive Bayes possa ser eficaz em cenários mais simples, sua apli-
cabilidade é limitada em ataques mais sofisticados, como os da classe Masquerade.

Os demais ataques, como Injection, High StNum e Poisoned High Rate, apresen-
taram desempenhos elevados tanto para o Naive Bayes quanto para o Decision Tree, inde-
pendentemente do conjunto de features avaliado. Esses resultados indicam que a natureza
desses ataques facilita sua identificação, possivelmente devido a padrões mais claros e
comportamentos menos complexos, que são capturados de forma eficiente mesmo por
modelos mais simples e em cenários sem enriquecimento ou seleção de features. Esse
desempenho robusto sugere que ataques com caracterı́sticas bem definidas são menos
dependentes de técnicas avançadas de pré-processamento, destacando a necessidade de
concentrar esforços em ataques mais sofisticados, como os das classes Masquerade, onde
os resultados ainda revelam desafios significativos.

5.3. Análise do Impacto da Ordem: Seleção antes do Enriquecimento de Features

Nesta subseção, avaliamos o impacto da ordem de operação entre seleção e enrique-
cimento de features. A análise considera dois cenários principais: (i) aplicação do
GRASPQ-FS após o enriquecimento (como considerado acima), ou seja, a seleção apli-
cada às features básicas e enriquecidas do GOOSE e SV, e (ii) enriquecimento das features
após a seleção, ou seja, o GRASPQ-FS é aplicado ao conjunto básico GOOSE + SV e,
em seguida, as features selecionadas são enriquecidas, caso aplicável, conforme definido
na Figura 2. Por exemplo, suponha que o GRASPQ-FS tenha retornado cinco features:
stNum, sqNum, ethDst, isbA e time. Três novas features podem ser derivadas des-
sas (veja Figura 2), e contribuiriam para um novo conjunto de oito features: stNum,
stDiff (enriquecida de stNum), sqNum, sqDiff (enriquecida de sqNum), ethDst,
isbA, isbARmsValue e isbATrapAreaSum (enriquecidas de isbA) e time.

Seleção após Enriquecimento                      Enriquecimento após Seleção
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Figura 8. Comparação entre Seleção de Features e Seleção seguida de Enrique-
cimento nas Features Básicas GOOSE + SV, com o Decision Tree.

A Figura 8 apresenta a comparação entre o desempenho obtido com as features
retornadas pelo GRASPQ-FS (representadas pelas barras pretas) e o desempenho após o
enriquecimento (representadas pelas barras cinzas), utilizando o algoritmo Decision Tree.
Para o ataque Random Replay, selecionar features após o enriquecimento resultou em
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ganho de desempenho, de 95,76% para 100%. De maneira similar, no caso do Inverse
Replay, o F1-Score subiu de 97,29% para 100%, sugerindo que primeiro enriquecer e
depois selecionar features é mais eficiente para capturar os padrões desses ataques.

Por outro lado, enriquecer as features previamente selecionadas demonstrou ser
vantajoso em cenários mais complexos, como os ataques Masquerade Fake Normal e
Masquerade Fake Fault. Para o ataque Masquerade Fake Normal, o F1-Score aumentou
de 97,67% para 97,87%, representando um ganho de 0,20%. Já para o ataque Masque-
rade Fake Fault, o ganho foi mais expressivo, com um aumento de 64,44% para 74,38%,
ou seja, 9,94%. Esses resultados sugerem que o enriquecimento pode complementar as
features selecionadas em cenários onde a complexidade dos padrões requer informações
adicionais para serem plenamente representadas, destacando a importância de avaliar a
combinação dessas técnicas de forma contextualizada.

A Figura 9 compara duas abordagens para combinar seleção e enriquecimento
de features: a seleção após o enriquecimento (barras pretas) e o enriquecimento após a
seleção (barras cinzas), utilizando o Naive Bayes. Esses resultados destacam diferenças
significativas entre as estratégias, variando de acordo com a natureza de cada ataque.
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Figura 9. Comparação entre Seleção de Features e Seleção seguida de Enrique-
cimento nas Features Básicas GOOSE + SV, com o Naive Bayes.

Para a classe Random Replay, a seleção após o enriquecimento produziu o melhor
desempenho, alcançando um F1-Score de 87,82%, enquanto o enriquecimento após a
seleção apresentou um resultado inferior de 31,38%. Essa diferença indica que as features
enriquecidas no conjunto completo capturam melhor os padrões desse ataque e, quando
combinadas com a seleção posterior, resultam em um desempenho mais robusto.

No ataque Inverse Replay, o enriquecimento após a seleção foi a abordagem que
apresentou ganhos, com um aumento no F1-Score de 44,11% (seleção após enriqueci-
mento) para 52,59%. Esse cenário sugere que algumas features enriquecidas adicionadas
ao conjunto reduzido de features selecionadas pelo GRASPQ-FS contribuı́ram para cap-
turar informações relevantes ao ataque.

Por outro lado, ataques como Masquerade Fake Normal e Masquerade Fake Fault
apresentaram resultados mais consistentes com a seleção após o enriquecimento. No
Masquerade Fake Normal, a seleção após enriquecimento resultou em um F1-Score de
19,01%, contra 14,58% do enriquecimento após a seleção. No entanto, no Masquerade
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Fake Fault, a diferença foi menor, com 21,13% para a seleção após enriquecimento, en-
quanto o enriquecimento após a seleção apresentou 19,37%.

Para os ataques Injection, High StNum e Poisoned High Rate, ambas as abordagens
resultaram em F1-Scores próximos de 100%, indicando que a natureza desses ataques é
mais diretamente representada pelas features básicas e enriquecidas, tornando a interação
entre seleção e enriquecimento menos influente.

Portanto, para cinco dos sete cenários avaliados, a abordagem de realizar a seleção
após o enriquecimento foi mais eficaz. No entanto, os ganhos no ataque Inverse Replay
sugerem que, em alguns casos, enriquecer um subconjunto reduzido de features pode
ajudar a capturar padrões especı́ficos que o conjunto completo não reflete com precisão.
Esses achados reforçam que a escolha entre essas abordagens deve considerar a natureza
especı́fica dos ataques e as caracterı́sticas das features disponı́veis.

6. Explicabilidade dos Resultados Fora dos Padrões

Conforme discutido nas seções anteriores, alguns resultados observados não seguiram o
padrão esperado. Um exemplo é o desempenho do algoritmo Decision Tree no ataque
Masquerade Fake Fault, onde o F1-Score foi reduzido de 98,95% (com o conjunto com-
pleto de features) para 64,44% (após a seleção das features utilizando GRASPQ-FS),
como ilustrado na Figura 6. Além disso, foi identificado que, nesse caso especı́fico, a
abordagem de enriquecimento das features após a seleção proporcionou uma melhoria no
F1-Score, que passou de 64,44% para 74,38% (Figura 8).
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Figura 10. Técnica SHAP aplicada ao Maquerade Fake Fault.

Para entender melhor esses resultados atı́picos, utilizamos técnicas de eXplai-
nability Artificial Intelligence (XAI) [Bragança et al. 2023], mais especificamente o
método SHapley Additive exPlanations (SHAP) [Lundberg and Lee 2017], que permite
a explicação das saı́das de modelos de aprendizado de máquina de forma interpretável.
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A Figura 10 apresenta os resultados do SHAP para o Masquerade Fake Fault.
É importante notar que a F1-Score de 64,44% foi obtida através da seleção das se-
guintes features pelo o GRASPQ-FS: cbStatus, timestampDiff, vsbARmsue,
ismCRmsValue e protocol GOOSE. Contudo, conforme mostrado na Figura 10,
as features mais influentes para a detecção do Masquerade Fake Fault são cbStatus,
delay e timestampDiff, com valores médios de SHAP superiores a 0,01. Essas
features seriam, portanto, as mais relevantes e deveriam estar entre as selecionadas pelo
GRASPQ-FS. No entanto, a feature delay não foi incluı́da, o que explica, em parte, o
baixo desempenho observado.

Para compreender o motivo de o GRASPQ-FS não ter selecionado a feature
delay, investigamos o processo de seleção do algoritmo. O primeiro passo do GRASPQ-
FS envolve a construção da Restricted Candidate List (RCL) utilizando o algoritmo
de ranqueamento por Mutual Information (MI). Detalhes sobre o funcionamento do
GRASPQ-FS podem ser encontrados em [Quincozes et al. 2024b]. Em nossos experi-
mentos, a RCL consistiu de 25 features. No entanto, o ranqueamento baseado em MI
colocou a feature delay na 38ª posição, o que fez com que ela não fosse incluı́da na
RCL e, consequentemente, não avançasse para as fases subsequentes do GRASPQ-FS.
Isso evidencia uma limitação do uso de MI, uma técnica univariada que ignora interações
entre features [Nayak et al. 2025], o que pode levar à subvalorização de variáveis que
só se mostram relevantes em conjunto com outras, especialmente em padrões temporais
complexos, como nos ataques Masquerade.

Por fim, experimentos adicionais mostraram que, ao utilizar apenas as 5 principais
features, o F1-Score alcançou 99,95%, confirmando que a feature delay tem um alto
impacto no modelo, especialmente em ataques Masquerade Fake Fault. Esse resultado
reforça que aplicar o enriquecimento antes da seleção é crucial para garantir que features
derivadas altamente relevantes — e.g., como a delay, obtida a partir da combinação
entre gTimestamp (GOOSE) e time (SV) — estejam disponı́veis para avaliação.

7. Conclusão

Este trabalho apresentou uma avaliação extensiva do impacto da seleção e do enriqueci-
mento de features no desempenho de IDSs aplicados a sistemas ciberfı́sicos, com foco
no dataset IEC-61850. Os experimentos exploraram três conjuntos principais de features
(básicas GOOSE, básicas GOOSE + SV e GOOSE + SV enriquecidas), avaliando o efeito
isolado e combinado das técnicas em sete ataques distintos.

Os resultados mostraram que a seleção com o GRASPQ-FS foi eficaz em ata-
ques como Random Replay, elevando o F1-Score de 30,8% para 100%, e também trouxe
ganhos em cenários complexos como Masquerade Fake Fault, com aumento de 21,7%
para 95,69%. O enriquecimento, por sua vez, foi decisivo em ataques mais sofistica-
dos, elevando o F1-Score do mesmo Masquerade Fake Fault de 21,7% para 98,95%. A
combinação das duas técnicas proporcionou os melhores resultados, embora com sensibi-
lidade à ordem de aplicação: aplicar a seleção diretamente sobre o conjunto enriquecido
pode eliminar features crı́ticas quando se utiliza ranqueamento univariado. A análise
de explicabilidade com SHAP confirmou esse risco, ao mostrar que features derivadas
altamente relevantes (i.e., delay) podem ser descartadas se o enriquecimento não for
realizado previamente. Em experimentos adicionais, o uso apenas das cinco features com
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maior impacto SHAP elevou o F1-Score para 99,95%, reforçando que enriquecer antes
da seleção é essencial para garantir a disponibilidade dessas variáveis.

Como trabalhos futuros, pretende-se incorporar o SHAP ao processo do
GRASPQ-FS, substituindo o ranqueamento baseado em MI por uma abordagem orien-
tada por explicabilidade. Também planeja-se utilizar outros datasets com features enri-
quecidas e explorar algoritmos alternativos de seleção.
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