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Abstract. This paper presents a methodology to enhance the security of Kuber-
netes clusters using hostPath volumes, a feature that introduces considerable
risks due to direct host access. Our approach leverages Linux Security Modules
(LSMs) to enforce access control between workloads and host nodes, aligning
with Zero Trust principles. The proposed solution is demonstrated through inte-
gration with the SPIFFE CSI Driver within the SPIRE framework. Experimental
results show that, among various performance metrics, only the SPIRE Agent’s
identity synchronization latency increased notably, around 29.68%. While this
overhead appears significant, it may be acceptable in less time-sensitive scenar-
ios, particularly when balanced against the improved security posture achieved.

1. Introduction

The proliferation of cloud computing, particularly in microservice architectures, has
led to widespread adoption of containerization and Kubernetes (k8s) for orchestra-
tion [Deng et al. 2024]. While Kubernetes offers numerous advantages, certain applica-
tions, such as the SPIFFE Runtime Environment (SPIRE) [SPIFFE 2025], require the use
of hostPath volumes, a k8s volume abstraction that directly maps a directory or file from
the host node’s file system into a pod [Gunathilake and Ekanayake 2024]. This presents a
significant security challenge, as hostPath volumes can expose the underlying host system
to potential privilege escalation attacks.

Attackers could exploit this access to compromise the entire Kubernetes clus-
ter by gaining access to sensitive data or manipulating critical system compo-
nents [Islam Shamim et al. 2020]. Therefore, securing k8s environments that rely on
hostPath volumes is crucial. Attackers could potentially read or write to the etcd store,
create unauthorized pods, or obtain access tokens, leading to a complete system com-
promise. The inherent risks associated with hostPath volumes require the exploration of
alternative solutions and mitigation strategies to minimize the attack surface and improve
the overall security posture of Kubernetes deployments [Perera et al. 2022].

Despite security concerns, eliminating hostPath volumes is not always feasible
due to application dependencies and architectural constraints. Disabling this volume is
not an available option for many production environments that rely on this application.
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For example, while the official k8s documentation advises against using hostPath vol-
umes, SPIRE would require a significant architectural overhaul to function without them.
One of the primary alternatives to it is the Container Storage Interface (CSI), specifically
the SPIFFE CSI Driver, which provides a more secure mechanism for managing storage
access in k8s SPIRE environments [ Vasilenko and Mahesh 2019].

This driver introduces an intermediary layer that centralizes and secures access
to host resources by delegating the mounting of hostPath volumes to a privileged CSI
container sidecar, rather than having each workload directly access host directories. This
design significantly reduces the number of pods with direct access to hostPath volumes,
limiting the potential for privilege escalation [SPIFFE 2023]. However, it does not elim-
inate the underlying risk since the CSI driver itself must run with elevated privileges and
any compromise of this component could still lead to full node access [Mirantis 2022].

In light of these persistent security gaps, we propose the integration of KubeAr-
mor [KubeArmor 2025], a runtime enforcement framework built upon Linux Security
Modules (LSMs), such as AppArmor and SELinux, to apply fine-grained Mandatory Ac-
cess Control (MAC) policies to workloads utilizing hostPath volumes. Kube Armor allows
the definition and enforcement of Zero Trust principles within the k8s environment, en-
suring that even privileged components such as the SPIFFE CSI Driver operate within
strictly confined access boundaries.

Our approach leverages KubeArmor to implement a least-privilege model that
restricts access to only the necessary file system paths and operations for the SPIFFE
CSI Driver. This prevents unauthorized file system access, mitigates the risk of lat-
eral movement, and significantly narrows the attack surface in the event of container
compromise. Furthermore, because KubeArmor policies are applied at the runtime
level, they can adapt to changes in deployment patterns and provide continuous moni-
toring and enforcement, a crucial feature in dynamic, multi-tenant Kubernetes environ-
ments [Findlay et al. 2020, van Vugt and Malik 2023].

Experimental results showed that, for most SPIRE performance metrics evaluated,
particularly those related to the latency of common operations, the proposed solution ex-
hibited no significant differences when compared to a default SPIRE Kubernetes environ-
ment. The only exception was the SPIRE Agent Entries Latency metric, which increased
by approximately 29.68% when the proposed methodology was applied.

The remainder of this paper is organized as follows: Section 2 provides back-
ground information relevant to understanding the proposed methodology. Section 3 re-
views related work that inspired or influenced this study. Section 4 details the proposed
methodology and the architecture of a corresponding implementation, referred to as the
solution. Section 5 introduces a threat model for the SPIFFE CSI Driver. Section 6
presents the key results from the experimental evaluation. Finally, Section 7 summarizes
the conclusions and outlines directions for future work.

2. Background

2.1. Cloud Native Environments

In the early days of computational infrastructure, all data and operations had to be phys-
ically located alongside the hardware. When additional memory or processing power
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was required, users had to purchase new machines and allocate more physical space to
accommodate them. The advent of Cloud Computing and Cloud Native environments
revolutionized this model, allowing users to access computing resources from thou-
sands of kilometers away. These environments eliminate the need for acquiring new
hardware by leveraging virtualized, isolated systems that scale efficiently to meet de-
mand [Deng et al. 2024].

Over time, virtual environments evolved from requiring a full Virtual Machine
(VM) with an entire operating system to using containers. Unlike VMs, containers allow
applications to run with only the necessary components, eliminating the need for a com-
plete system [Pereira Ferreira and Sinnott 2019]. This flexibility enables applications to
run anywhere with minimal overhead. However, just as production systems once had to
coordinate a vast number of physical machines, they now face the challenge of manag-
ing numerous containers. This need gave rise to orchestration tools like Kubernetes and
Red Hat OpenShift, designed to manage and coordinate large-scale containerized envi-
ronments efficiently.

As a consequence of being widely used in extensive production environments,
some concerns started to emerge about how k8s manages the persistence of data, since in
case of a crash, all data in the container is lost due to its ephemeral nature. Additionally,
it is not practical to manually assemble a file-share system in a large-scale context outside
the context of k8s. To solve these issues, the concept of volumes in Kubernetes was
created, which is an abstraction of filesystems. Ephemeral Volumes have the lifetime of a
pod, meaning that if a pod is deleted its volume is deleted as well. Meanwhile, Persistent
Volumes (PV) outlive pods, and they will be preserved even in case of crashes or restarts.

That way, many functionalities are abstracted by the Persistent Volume API when
it comes to handling persistent data management. In the case of a user with the necessity
for other types of disk configurations or different sizes of volumes, Persistent Volume
Claims (PVC) help to manage this need. It binds with a PV that matches its claims to its
attributes and grants the requested volume.

2.2. SPIRE and the hostPath Volume Issue

The hostPath is a type of Persistent Volume in £8s that enables users to mount files and
directories from the Kubernetes host filesystem. Depending on the intended use, it can
be configured in various modes, such as read-only or read/write, which adapts to the ne-
cessity of the user. However, its characteristics can pose a security risk by increasing the
likelihood of privilege escalation attacks. One common attack vector involves a work-
load mounting sensitive host directories, breaking the isolation between the containerized
environment and the host system. This breach can lead to the compromise of both the
Kubernetes cluster and the underlying node. Despite these risks, many applications (such
as SPIRE) rely on hostPath volumes to operate correctly.

While SPIRE has implemented mechanisms to reduce the risks associated with
hostPath volumes, it does not eliminate their use entirely. One such mechanism is the
SPIFFE CSI Driver, a container storage interface that allows workloads running in the
cluster to access the SPIRE Agent Workload API without directly mounting sockets from
the host filesystem. Working in coordination with the SPIRE Server and Agent, the driver
retrieves the SPIFFE identity for the pod and mounts it as a volume. However, hostPath
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volumes remain necessary for the CSI driver to interact with the Kubernetes kubelet dae-
mon. Additionally, the SPIFFE CSI Driver must run in privileged mode, which increases
the potential impact if compromised and makes privilege escalation an even more serious
issue.

2.3. Linux Security Modules (LSMs)

In 2001, the National Security Agency of the United States introduced the foundation for
what is now known as the Linux Security Module (LSM) [Smalley et al. 2001]. LSM is a
framework that adds an extra layer of security to the operating system by using modules.
These modules enable the implementation of specific security features without requiring
direct modifications to the Linux Kernel.

LSMs introduced an innovative approach to managing file and directory access,
named Mandatory Access Control (MAC). MAC enforces access restrictions using poli-
cies, or rules, to prevent unauthorized users from interacting with system resources.
Within this framework, files and directories are treated as objects, while processes are
regarded as subjects.

This concept was subsequently integrated into the Linux kernel by Linus Tor-
valds and has been included by default in major Linux distributions since 2003. Among
the most prominent implementations of Linux Security Modules (LSMs) is AppAr-
mor [Zhu and Gehrmann 2022], which enforces access control through the use of profiles.
Each profile defines a set of policies that specify the permissible actions and accessible
resources for a given process. AppArmor supports two operational modes: Complaining
Mode, which logs policy violations without enforcing restrictions, and Enforcing Mode,
which actively denies unauthorized actions while logging them.

2.4. KubeArmor

KubeArmor is a security tool that leverages LSMs to enhance security in Cloud Na-
tive environments, particularly in Kubernetes clusters, containerized applications, and
VMs [KubeArmor 2025, Lee et al. 2022]. Although LSMs have been in use for over two
decades, benefiting from continuous updates, refinements, and redesigns, they remain
challenging for many users. Their complexity and lack of user-friendly configuration
often make them impractical for widespread adoption.

To address these challenges, Kube Armor emerged as an alternative, combining the
power of LSMs with the simplicity of higher-level configuration files known as Security
Policies. These policies are easier to understand, write, and maintain, making it more
practical to leverage LSMs in Cloud Native environments, as we can see in the SE-RAN
5G project [SE-RAN-5G 2025]. It uses KubeArmor to protect networking with policies
and keep it supervised. Through this approach, KubeArmor has simplified the use of
LSMs, enabling enhanced security with greater accessibility.

3. Related Work

Security in Cloud Native environments has been the subject of intense research, with an
emphasis on identifying and mitigating vulnerabilities across multiple layers of the in-
frastructure. Zeng et al [Zeng et al. 2023] conducted a comprehensive analysis of vulner-
abilities on Cloud Native platforms, categorizing them according to the types of attacks
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and affected components, such as Docker, Kubernetes, and Istio. The study also com-
pares several open source security tools, highlighting gaps in the coverage of these tools
for complex contexts such as k8s, especially regarding the detection of misconfiguration
problems and malicious activities.

Complementing  this  analysis, Martijn  van  Vugt and Malik
[van Vugt and Malik 2023] conducted an effectiveness evaluation of open source
security tools in k8s microservices environments, focusing on observability and response
to simulated attacks. These studies reinforce the importance of robust observation and
response systems for effective protection of workloads in k8s environments, highlighting
that many tools still have gaps in detecting and responding to complex threats.

The security risks posed by the use of hostPath volumes in k8s have been ex-
tensively documented in both academic literature and industry analyses. Garfinkel and
Rosenblum [Garfinkel and Rosenblum 2003] were among the first to describe the dan-
gers of breaking isolation in virtualized environments, which directly parallels the risks
introduced by hostPath volumes, as it grants containers direct access to k8s host/node file
systems. More recently, Giilcii et al [Gililcii et al. 2021] provided a systematic taxonomy
of security challenges in k8s, identifying hostPath volumes as a critical vulnerability that
allows for escalation of privileges, unauthorized access to secrets, and lateral movement
between nodes.

The CNCF whitepaper by Peck et al [Peck et al. 2019] further elaborates on real-
world exploitation scenarios, including how attackers can use access to the k8s node/host
file system to manipulate etcd data, deploy rogue pods, or steal service account tokens.
Despite Kubernetes documentation discouraging the use of hostPath in most cases, its
usage persists due to its simplicity and necessity in certain operational workflows, partic-
ularly when exposing system-level resources like sockets and certificates.

Some mitigation strategies have been proposed to address these risks. The SPIFFE
CSI Driver represents a community-led effort to isolate hostPath volume usage within
a privileged container, thereby reducing direct exposure to k8s node/host resources
[SPIFFE 2023]. However, this solution retains the underlying reliance on privileged op-
erations, which remains a significant attack surface.

CNCEF introduced KubeArmor [KubeArmor 2025], a runtime security enforce-
ment tool based on Linux Security Modules that enables the implementation of fine-
grained access policies for containers, including those interacting with k8s node/host
mounted volumes. These tools, while not entirely eliminating the need for hostPath vol-
umes, offer practical mechanisms for reducing their associated risks, particularly when
applied in defense-in-depth architectures or in conjunction with Zero Trust security mod-
els. Despite these advancements, a fully secure and scalable alternative to hostPath re-
mains an open challenge, especially in systems requiring close integration with underly-
ing host services, such as SPIRE-based identity frameworks.

In the context of Zero Trust security, D’Silva et al [D’Silva and Ambawade 2021]
examine the application of the Zero Trust model within Kubernetes environments to en-
hance network security through rigorous authentication and authorization mechanisms.
Their study highlights the model’s effectiveness in isolating and safeguarding systems, a
particularly important strategy in multi-tenant k8s deployments. Similarly, Rodigari et al



Anais do SBSeg 2025: Artigos Completos

k8s pod —— k8s pod —— k8s Pod j«———

SPIFFE CSI Driver Security Policies
KubeArmor k8s control

Plane

SPIRE Server — SPIRE Agent

k8s Host Security Policies

k8s Node —— k8s Node —— k8s Node

Figure 1. An architectural overview of the proposed solution running on a k8s
cluster.

[Rodigari et al. 2021] assess the impact of adopting Zero Trust principles in multi-cloud
architectures using Istio, focusing on performance metrics and resource consumption, and
providing practical insights into the operational trade-offs of this security model in Cloud
Native environments.

In terms of reducing the attack surface, Ghavamnia et al [Ghavamnia et al. 2020]
introduce the Confine tool, which automatically generates system call policies for con-
tainers through static analysis. This solution addresses Linux Kernel protection against
exploits from malicious containers, a crucial strategy for k8s environments where com-
plete isolation between containers and the host may not be fully guaranteed.

4. Solution Architecture

Figure 1 illustrates the architecture of the proposed solution, which integrates KubeAr-
mor’s [KubeArmor 2025] runtime enforcement with the SPIFFE identity framework and
the SPIRE implementation. To illustrate the proposed methodology, we use the SPIFFE
CSI Driver, though the underlying policy model is also generalizable to other applications
relying on hostPath volumes.

This design can be structured into three invisible layers that operate within a Ku-
bernetes environment: the Workload Layer, the Identity and Policy Enforcement Layer,
and the Infrastructure Layer.

4.1. Workload Layer

At the top of the architecture are the k8s pods, which host application containers running
in the cluster. These pods rely on the Kubernetes Control Plane for orchestration, schedul-
ing, and service discovery. When a pod starts, it requests an identity to be used for secure
communication within the system.

The SPIFFE CSI Driver, in its turn, is responsible for mounting the SPIFFE Veri-
fiable Identity Document (SVID) into the pod’s file system. Each identity is then used by
the workloads to assert their trustworthiness to other components or services in the mesh.
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The communication between pods and the SPIFFE CSI Driver occurs transparently during
pod initialization.

4.2. Identity and Policy Enforcement Layer

The SPIFFE CSI Driver acts as the intermediary between pods and the SPIRE infrastruc-
ture. Once a pod is scheduled on a node, the CSI Driver initiates a connection with the
local SPIRE Agent to retrieve the appropriate SVID. These operations are governed by
security policies defined to control access to the driver and to ensure it functions within
secure parameters.

Next, we have the SPIRE Agent and Server. As expected, the SPIRE Agent han-
dles workload attestation and identity issuance, validating that the requesting workload
matches an existing registration entry and communicates with the SPIRE Server to re-
trieve the corresponding identity. The SPIRE Server, then, manages all trust bundles,
registration entries, and configuration data.

KubeArmor contributes at this layer by enforcing security policies related to both
the SPIFFE CSI Driver and the SPIRE components. Specifically, it applies mandatory
access control (MAC) rules using AppArmor or another LSM to prevent unauthorized in-
teractions with the SPIRE Agent or attempts to subvert the identity provisioning process.

4.3. Infrastructure Layer

At the bottom of the stack are the Kubernetes Nodes that form the physical or virtual
infrastructure for the cluster. The SPIRE Server and Agent run on these nodes, as do the
containers and kernel-level components used by KubeArmor.

KubeArmor enforces node-level policies designed to restrict the behavior of work-
loads and system components. These Host Security Policies limit the system calls, file
access, and network connections that individual workloads or even system services can
initiate. Such restrictions are especially important for protecting the SPIRE Agent, which
performs sensitive cryptographic operations and exposes a local API endpoint.

We can then define that Kube Armor applies two classes of policies:

* SPIFFE CSI Driver Security Policies: These control the operations the driver
can perform, limiting its access to only necessary resources and interfaces.

* Host-Level Security Policies: These protect the node, SPIRE components, and
control plane agents from malicious actions or privilege escalations.

It is important to note that the integration of Kube Armor is non-intrusive to SPIRE.
It does not modify the SPIRE codebase or disrupt its control flow. Instead, it monitors
and controls system-level interactions through policy enforcement at runtime.

4.4. Security Policy Implementation

To implement the proposed methodology, we leverage KubeArmor’s ability to enforce
fine-grained access control policies that govern interactions within Kubernetes clusters. In
our solution, KubeArmor is used to protect the SPIFFE CSI Driver and sensitive paths in
the Kubernetes host filesystem, focusing primarily on the hostPath volumes that facilitate
communication between the CSI Driver and the underlying node infrastructure.
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The security mechanism is structured around two complementary sets of policies,
as defined in Section 4.3, the SPIFFE CSI Driver Security Policies, and the Kubernetes
Host Security Policies. By enforcing these policies, KubeArmor brings key regions of
the system under the control of LSM-based protections, adding a runtime layer of defense
rooted in the kernel.

Both policy sets are implemented as YAML definitions following KubeArmor’s
specification and are designed to operate transparently alongside existing Kubernetes and
SPIFFE/SPIRE components. Although our focus is the SPIFFE CSI Driver, the same
policy-based approach is generalizable to other workloads that use hostPath volumes or
interact with sensitive host resources.

4.4.1. SPIFFE CSI Driver Security Policies

Within the pod where the SPIFFE CSI Driver runs, the policy created was developed with
a Zero Trust strategy [Rose et al. 2020] as its motivation, restricting file operations to
only those explicitly required. The policy prohibits the creation, modification, deletion, or
execution of any file outside a predefined allowlist. This allowlist is constructed through
an analysis of the CSI Driver’s source code and expected behavior. In the event of a
pod compromise, any malicious attempt to escalate privileges or tamper with the driver’s
functionality would be blocked by AppArmor’s enforcement.

4.4.2. Kubernetes Host Security Policies

For the Kubernetes nodes themselves, a restrictive host-level policy is applied designed
to isolate access to critical directories used by the Kubernetes control components and
the SPIFFE/SPIRE stack. Unlike the pod-level policy, which is tailored for a specific
workload, host policies must address a more complex environment involving multiple
interacting services.

The primary goal is to prevent unauthorized processes from accessing or manip-
ulating host resources required for the operation of the SPIFFE CSI Driver and SPIRE.
To that end, only trusted components, such as Kube Armor, the Kubernetes Control Plane,
and selected daemons are granted access to these paths.

Specifically, the policy enforces access control on:

e /run/spire/agent-sockets/: which holds the UNIX socket through
which the SPIRE Agent exposes its Workload API to the CSI Driver.

* /var/lib/kubelet and its subdirectories: which are critical to the Kuber-
netes runtime and include metadata and mount points required by the CSI subsys-
tem.

These restrictions are essential to contain the blast radius of a potential node com-
promise, minimizing the risk of lateral movement and identity spoofing within the cluster.
4.5. Execution Flow Example

To better illustrate the behavior of the architecture, we describe the typical execution flow
when a new k8s pod is deployed:
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1. A developer or automation tool schedules a new pod on a Kubernetes node. The
Control Plane handles scheduling and resource allocation.

2. Upon initialization, the SPIFFE CSI Driver is invoked to mount the SVID into the
pod. The driver makes a request to the local SPIRE Agent.

3. The SPIRE Agent attests the workload using node and workload selectors and
verifies its eligibility based on registration entries.

4. If attestation is successful, the Agent contacts the SPIRE Server to retrieve or
generate the appropriate SVID for the workload.

5. The SPIRE Server issues the SVID and sends it back to the Agent, which delivers
it to the CSI Driver.

6. The CSI Driver mounts the SVID into the pod’s file system, making it available
for mutual TLS communication or other secure interactions.

7. Meanwhile, KubeArmor monitors the system and enforces the defined security
policies. It ensures that the SPIFFE CSI pod cannot access unauthorized re-
sources, execute commands that are not explicitly allowed or perform privileged
operations that have not been previously specified.

8. On the k8s host side, sensitive directories created by using hostPath volumes have
their access control managed by LSMs, preventing access to these directories by
unauthorized elements.

This flow highlights the coordination between Kubernetes scheduling, SPIFFE
identity issuance, and KubeArmor’s runtime enforcement, all contributing to a secure
workload onboarding process.

5. Threat Model

The primary goal of the SPIFFE CSI Driver is to minimize the use of hostPath volumes
between workloads and the SPIRE Agent Workload API. However, their use cannot be
entirely eliminated, as certain hostPath volumes are still required between the SPIFFE
CSI Driver containers and the kubelet daemon that manages the nodes in the Kubernetes
cluster.

To build a Threat Model for SPIFFE CSI Driver focusing on the hostPath problem,
we used the STRIDE methodology to conduct some investigations [Shostack 2014]. It is
necessary to identify potential security threats inside the context of the solution architec-
ture presented in Section 4. With this goal in mind, we adopt the following assumption
regarding the deployment of the SPIFFE CSI Driver in Kubernetes clusters: the SPIFFE
CSI Driver pod is the only workload in the cluster permitted to create hostPath volumes.

5.1. Spoofing

An attacker can change the build variables while compiling the SPIFFE CSI Driver binary
or building its container image. This may compromise the generated binary and its dis-
tribution. This compromised workload could attempt to impersonate a legitimate SPIFFE
CSI Driver on the cluster and thereby compromise the entire system.

Some ways to deal with this are to validate and authenticate Git Tags and Commits
before building using digital signatures (Git Commit Signing). All SPIFFE CSI Driver
instances must be regularly listed, and their identifiers periodically verified.
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5.2. Tampering

Similar to the Spoofing threat category, an attacker may manipulate downloaded depen-
dencies during the execution of package management tools to inject malicious code into
the build process, resulting in a compromised binary. Mitigation strategies include the
use of vulnerability scanners, hash verification of generated software artifacts, and more
advanced integrity assurance mechanisms such as software attestation.

It is also crucial to configure trusted repositories for package management soft-
ware, as they are increasingly subject to supply chain attacks [Ohm et al. 2020].

5.3. Repudiation

Pod logs may be manipulated or may not contain enough information for auditing. This
can impact a lack of traceability of the activities carried out in the Kubernetes cluster.
Some ways to deal with this are the use of centralized logging with tools like Fluentd or
CloudWatch and using labels or annotations to track pod activity.

Itis also possible that an attacker with access to the cluster could deny involvement
in malicious actions involving the SPIFFE CSI Driver. This highlights the importance of
implementing logging and monitoring with proper timestamps and identity verification
to CSI and gRPC interfaces. Digital signatures and secure audit trails can also help in
tracking actions.

5.4. Information Disclosure

Sensitive data, such as Kubernetes secrets or authentication tokens for cloud platforms,
may be exposed within a pod, potentially leading to data leakage. To mitigate this risk, it
is recommended to mount secrets using Kubernetes Secrets Volumes rather than injecting
them through environment variables. Additionally, implementing periodic secret rotation
enhances security. When available, cloud-native secret management solutions, such as
AWS Key Management Service (KMS) or Google Cloud KMS, should be used to further
safeguard sensitive credentials.

5.5. Denial of Service

The SPIFFE CSI Driver pod may be overloaded with excessive traffic or allocated to a
host with insufficient resources, causing outages and service interruption. To deal with it,
it is necessary to configure resource request limits on the pod for CPU and Memory and
Auto Scaling for pods and nodes in the Kubernetes cluster. Horizontal Pod Autoscaler
and Cluster Autoscaler can also be used, as well as third-party tools that implement rate
limiting, such as Istio and AWS API Gateway.

If the attacker is unable to mount a privileged directory using a malicious or legit
SPIFFE CSI Driver, the kubelet daemon can be exploited to cause a denial of service
attack by creating a large number of CSI volume mount requests. Mitigation demands
enforcing a limit on the number of instances of SPIFFE CSI Driver in the cluster.

5.6. Elevation of Privilege

The SPIFFE CSI Driver and other containers utilizing SPIRE may obtain superuser priv-
ileges on the host node or access Kubernetes APIs beyond their designated namespace,
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potentially resulting in full cluster compromise. To mitigate these risks, containers should
be configured to run as non-root users and, where feasible, use a read-only filesystem.
Furthermore, access to Kubernetes APIs should be tightly controlled using Role-Based
Access Control (RBAC). Additional safeguards include enforcing strict namespace iso-
lation and limiting Kubernetes Service Account permissions through fine-grained access
control policies.

6. Experimental Evaluation

This section presents the experimental evaluation of the solution introduced in Section 4,
detailing the evaluation environment, selected scenarios, performance metrics, and key
experimental results.

6.1. Objectives

The objective of this experiment is to evaluate the performance impact of the proposed
solution, which integrates KubeArmor into a SPIRE-enabled Kubernetes environment.
The analysis focuses primarily on latency-related performance metrics associated with
the SPIRE Server and SPIRE Agent, including the time required for workload attestation,
SVID retrieval and synchronization, and operations involving the datastore and trust bun-
dles. These metrics provide insight into the potential overhead introduced by the runtime
enforcement mechanism, particularly in scenarios with dynamic workload registration
and identity issuance.

It is worth noting that this experimental evaluation does not aim to empirically
verify whether the proposed solution mitigates the threats outlined in the threat model,
such as reduction of the attack surface or prevention of privilege escalation. These aspects
are considered out of scope. Our focus in this set of experiments is on assessing the
performance impact of the solution. We assume that the use of LSM by KubeArmor
contributes to enforcing fine-grained access control and mitigating privilege escalation
threats, for instance, even though this is not empirically verified in our experiments.

6.2. Setup and Scenarios

The Kubernetes cluster used in the experiment consists of a Control Plane node of the
general.medium flavor and four general.large Worker nodes, all deployed via Kubeadm
on virtual machines within a private OpenStack cloud environment. Experiment data was
collected using the Prometheus monitoring tool through its integration with SPIRE for
telemetry. Table 1 provides additional details on the experimental setup and hardware
configuration.

The experiment was conducted under two distinct scenarios. In the first, referred
to as the baseline, the cluster ran only SPIRE. In the second, referred to as the solution
scenario, the cluster included both SPIRE and the solution described in Section 4. In each
scenario, 100 different workloads were executed, each registering with the SPIRE Server
and subsequently requesting its corresponding SVID from the SPIRE Agent through the
SPIFFE CSI Driver installed on the cluster.

The workloads used in the experiment are created in the form of k8s pods using a
minimal base image, containing only the commands for registering with the SPIRE Server
and requesting their respective SVID.
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Quantity Type VM Flavor vCPUS | RAM | Disk
04 Worker general.large 4 8GB | 20GB
01 Control Plane | general.medium 2 4GB | 20GB

Table 1. Virtual Machines configuration of the k8s cluster used in the experiment
for both selected scenarios (baseline and solution).

6.3. Metrics Evaluated

In this Subsection we present the metrics considered in this experiment. We chose to
evaluate some performance metrics of the SPIRE Server and SPIRE Agent, focusing on
the latency of some common operations in the SPIRE life cycle to provide identity to
workloads present in the Kubernetes cluster:

* SPIRE Agent Workload API Latency (wapi): is one of the main metrics ex-
posed by the SPIRE Agent for monitoring the latency of the workload attestation
process in milliseconds. It measures the time required for the SPIRE Agent to
complete the attestation of a workload through the Workload API. That is the time
between the start of the identity request by the workload and the delivery of an
SVID.

* SPIRE Agent Entries Latency (entries): measures the latency of the SVIDs
synchronization process on the SPIRE Agent in milliseconds. This synchroniza-
tion happens periodically to ensure that valid SVIDs are available for workloads
authenticated through the Workload API Socket.

¢ SPIRE Server Bundle Retrieval Latency (bundle): refers to the time it takes for
the SPIRE Server to retrieve its trusted bundle in milliseconds. A Trust Bundle is
essentially a set of trusted certificates used to validate identities between different
domains or between nodes within the same Trust Domain;

* SPIRE Server Datastore Latency (datastore): measures the time required in
milliseconds for operations on the Datastore, which is the component responsible
for persistently storing data such as SVIDs, Trust Bundles, workload logs, and
other important information for the operation of SPIRE;

* SPIRE Server Synchronization Latency (syncro): indicates the time in mil-
liseconds it takes for the SPIRE Server to synchronize data from the identity store
with its internal subsystems, including workload data, federated entries, and Trust
Bundles.

6.4. Results and Discussion

In this Subsection, we report and interpret the results of our experimental evaluation,
comparing the baseline and solution scenarios in terms of performance metrics, followed
by a discussion of their implications with respect to the proposed solution.

Figure 2 provides a general comparative analysis of the selected SPIRE perfor-
mance metrics across the investigated scenarios. Upon initial examination, it is evident
that the baseline and solution scenarios exhibit similar performance for most metrics, with
only minor differences. The metric displaying the most significant variation between the
two scenarios was the SPIRE Agent Entries Latency (entries).

This behavior is within expectations since introducing a new component in a given
system can increase the latency of operations performed on it. For this metric, the median
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Figure 2. Comparison of the investigated scenarios (baseline and solution) re-
garding the selected SPIRE performance metrics.

values for the baseline scenario were 7.75ms, while for the solution scenario, it was
10.05ms, indicating a considerable increase of approximately 29.68%. Figure 3 shows a
detailed temporal comparison of the entries metric, more specifically when we compare
the latency measurements individually for both scenarios of interest.

The high initial peaks observed in Figure 3 (from time instants t5 to ¢8) suggest
an initialization overhead that eventually stabilizes. One potential explanation for this
is the impact of the security policies enforced by KubeArmor, which directly affect the
SPIFFE CSI Driver. This influence may arise during the handshake process between the
SPIFFE CSI Driver and the SPIRE Agent Workload API via gRPC interfaces, or due to
the syscall inspection performed by the AppArmor LSM. Additionally, the SPIRE plugin-
based model requires plugins to be loaded or restarted at certain points, and the security
policies implemented in the solution scenario could potentially interfere with this process.

Considering these aspects, the observed overhead of approximately 29% should
be interpreted in light of the cluster’s operational priorities. In environments where per-
formance is critical, such an increase may represent a relevant trade-off. However, in
scenarios where security takes precedence over latency, this level of overhead may be en-
tirely acceptable. It is also important to note that direct comparisons with other studies
are not straightforward, as variations in cluster configurations, workload profiles, enforce-
ment mechanisms, and evaluation methodologies can significantly affect performance
outcomes. We leave this assessment to the reader, acknowledging that the actual im-
pact of the proposed solution will vary depending on workload characteristics, cluster
size, and specific configuration choices.

Next, when we compare the previous results with a similar metric, this time for
the SPIRE Server, as is the case of the SPIRE Server Synchronization Latency (syncro),
we can see in Figure 4 that most of the time the solution scenario had relatively similar
results or even lower in some cases, except for some peaks (between time instants ¢1 and
t6). A smaller difference between the baseline and solution scenarios for this metric was
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Figure 3. Temporal comparison of the SPIRE Agent Entries Latency (entries)
metric for the baseline and solution scenarios.

within the expected results since SPIRE Server metrics tend to be less affected by the
SPIFFE CSI Driver, a result that was also observed in the other metrics related to it, as
can be seen in Figures 2 and 5.

In Figure 5, we can see the remaining metrics related to the SPIRE Server. We
can see that, with the exception of a few spikes, the behavior remains similar, which is
within what was expected for the SPIRE Server metrics, since it does not communicate
directly with the KubeArmor components. This work is handled by the SPIRE Agent
and, more specifically, the SPIFFE CSI Driver, where access control by the LSM is more
intense, since we adopted a security policy for the CSI Driver inspired by the principles
of Zero Trust. One of the possible factors for the spikes observed in the metrics could be
fluctuations in the use of the OpenStack cloud.

7. Conclusion and Future Work

The primary contribution of this work is the proposal of a methodology aimed at enhanc-
ing the security of applications utilizing hostPath volumes in Kubernetes clusters. This
methodology focuses on strengthening access control at the interception regions between
Kubernetes pods and host file systems, specifically during their interaction. It achieves
this by integrating LSMs into the Kubernetes cluster ecosystem.

We  implemented the  proposed  methodology  using  KubeAr-
mor [KubeArmor 2025], a tool that enables the creation of restrictive security policies
based on Zero Trust principles, facilitated by the AppArmor LSM for Kubernetes nodes
and pods. The solution was tested within a SPIRE environment, incorporating the
SPIFFE CSI Driver to enhance the security of the hostPath volume mounted between the
driver and the Kubernetes kubelet control daemon.

In the experimental evaluation, we observed minimal performance differences be-
tween the baseline and solution scenarios for most SPIRE performance metrics, indicating
no significant overhead. The only exception was the SPIRE Agent Entries Latency (en-
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Figure 4. Temporal comparison of the SPIRE Server Synchronization Latency
(syncro) metric for the baseline and solution scenarios.
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Figure 5. Temporal comparison of the SPIRE Server Bundle Retrieval Latency
(bundle) and SPIRE Server Datastore Latency (datastore) metrics for the
baseline and solution scenarios.

tries), which increased by approximately 29.68% in the solution scenario compared to
the baseline. While this increase is notable, it can be considered acceptable, particularly
in environments where security is prioritized over performance, as the solution scenario
provides significant security benefits.

Future work should focus on a more comprehensive evaluation of the proposed
methodology, incorporating a wider range of metrics. Additionally, varying the exper-
imental setup, such as using Kubernetes clusters of different sizes or exploring SPIRE
environments with federation, would offer deeper insights into the methodology’s impact.
Expanding the scope by applying the proposed methodology to different applications uti-
lizing hostPath volumes and experimenting with various LSMs could further contribute
to the understanding and enhancement of security in Kubernetes environments.
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