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2Depto. de Ciência da Computação – Universidade Federal de Minas Gerais (UFMG)

davi09bezerra@alu.ufc.br,aldri@dcc.ufmg.br,jeandro@ufc.br

Resumo. Os modelos de aprendizado profundo (MAP) são aplicados na
detecção de ataques e anomalias em redes IoT. O paradigma tiny machine le-
arning (tinyml) viabiliza a execução local desses modelos com baixo consumo
de recursos e maior privacidade. No entanto, MAPs ainda podem vazar da-
dos por ataques adversariais. Este trabalho implementa uma rede feedforward
para classificação e um autoencoder para detecção de anomalias, treinados
com DP-SGD no conjunto IoT-23. Os modelos foram otimizados com tinyML
e implementados em um Raspberry Pi 4. O modelo feedforward manteve 87%
de acurácia com privacidade alta (ϵ = 0.5), enquanto a otimização reduziu
em até 91% o tamanho dos modelos, 82% o uso de RAM e 80% o tempo de
execução. A combinação de privacidade diferencial e tinyML mostrou-se viável
para segurança em dispositivos de borda.

Abstract. Deep learning models (DLMs) are applied to attack and anomaly de-
tection in IoT networks. The tinyml paradigm enables local execution of these
models with low resource consumption and increased privacy. However, DLMs
can still leak data through adversarial attacks. This work implements a feed-
forward network for classification and an autoencoder for anomaly detection,
both trained with DP-SGD on the IoT-23 dataset. The models were optimized
with tinyml and deployed on a Raspberry Pi 4. The feedforward model retai-
ned 87% accuracy under strong privacy (ϵ = 0.5), while optimization reduced
model size by up to 91%, RAM usage by 82%, and execution time by 80%. The
combination of differential privacy and tinyml proved feasible for edge device
security.

1. Introdução
A Internet das Coisas (IoT) tem impulsionado áreas como automação e redes inteligentes,
gerando grandes volumes de dados utilizados por modelos de aprendizado profundo em
aplicações de segurança [Vidal 2020]. A necessidade de execução local favorece o uso
de tinyML, que permite operar modelos em dispositivos de baixo custo e baixa latência,
sem depender da nuvem [Zhou et al. 2025]. No entanto, esses modelos lidam com dados
sensı́veis e estão sujeitos a vazamentos.

Mesmo com execução local, modelos de aprendizado profundo (MAP) podem so-
frer ataques adversariais, expondo hábitos dos usuários [Huckelberry et al. 2024]. Para
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mitigar esses riscos, exploram-se abordagens como federated e split learning, que evi-
tam o compartilhamento direto de dados, além de mecanismos como criptografia e pri-
vacidade diferencial (PD) [Abadi et al. 2016]. A privacidade diferencial tem-se mostrado
promissora pela sua capacidade de anonimizar dados e diminuir o risco de vazamento por
modelos de aprendizado de máquina [Abadi et al. 2016]. No entanto, sua aplicação em
cenários restritos com tinyml ainda é pouco explorada.

Este trabalho propõe dois MAP — um feedforward e um autoencoder, ambos
para detecção de anomalia, aplicados ao conjunto de dados IoT-23 e otimizados com
tinyml. Utiliza-se o algoritmo Differentially Private Stochastic Gradient Descent (DP-
SGD) [Chua et al. 2024] para evitar vazamentos de dados nos modelos e se avalia o im-
pacto da otimização em três nı́veis de otimização. O modelo feedforward manteve 87%
de acurácia sob privacidade alta (ϵ = 0.5), enquanto o autoencoder sofreu distúrbios de
funcionamento com ruı́do. A otimização reduziu até 91% o tamanho dos modelos, 82%
o uso de RAM e 80% o tempo de execução, evidenciando a viabilidade da abordagem. O
restante deste artigo está organizado da seguinte forma: a Seção 2 apresenta os trabalhos
relacionados; a Seção 3, os conceitos envolvidos; a Seção 4 detalha a experimentação; a
Seção 5, os resultados; e a Seção 6 conclui o trabalho.

2. Trabalhos Relacionados

Diversas abordagens têm sido propostas para preservar a privacidade no contexto de
tinyml e computação de borda. Os principais trabalhos diferem em suas aplicações,
técnicas e ferramentas utilizadas. A Tabela 1 resume essas contribuições.

Tabela 1. Comparação de trabalhos relacionados
Autor Modelos Técnica de privacidade Avaliação Métricas
[Radwan et al. 2024] Split learning com

TinyML
Transmissão de ativações
intermediárias

Análise de desempe-
nho

Acurácia e eficiência
energética

[Saranya et al. 2024] Random Forest, K-
nearest neighbors

Criptografia AES leve Estudo de caso Acurácia, precisão, recall,
f1-score

[Nurmi et al. 2023] Aprendizado federado Privacidade diferencial lo-
cal

Prova de conceito e
análise

Custo computacional, pre-
cisão e nı́vel de proteção

Proposto. 2025 Feedforward, Autoen-
coder

DP-SGD Análise de trade-off Erro de reconstrução, pre-
cisão, acurácia, recall, f1-
score

[Radwan et al. 2024] propõem um sistema federado com tinyML para
classificação de sentimentos em texto, com foco em eficiência energética e privaci-
dade. A proteção é feita pela transmissão de ativações intermediárias, dificultando
a reconstrução dos dados. O método foi testado em cenários sem fio com ruı́do,
demonstrando robustez e baixo custo computacional. [Saranya et al. 2024] propõem uma
arquitetura segura para IoT em saúde, utilizando tinyml para análise em tempo real de
sinais vitais e emissão de alertas. A proteção dos dados é feita por criptografia leve (AES)
e reforçada com um sistema de detecção de intrusões, sendo adequada para dispositivos
com recursos limitados. [Nurmi et al. 2023] apresentam o SPHERE-DNA, que combina
aprendizado federado com privacidade diferencial local para monitoramento de saúde.
A proposta utiliza sensores multimodais e processamento em borda para reconhecer
atividades com precisão, evitando centralização de dados e necessidade de terceiros
confiáveis.
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Esses trabalhos foram selecionados por abordarem a privacidade no contexto de
tinyml, com foco em ferramentas baseadas em modelos de aprendizado profundo. Os
trabalhos evidenciam aprendizado federado, criptografia e privacidade diferencial local.
Em contraste, o presente trabalho aborda o uso de DP-SGD implementado em modelos
tinyml.

3. Fundamentação Teórica

Este trabalho abrange a otimização de modelos diferencialmente privados utilizando
tinyml. Esses conceitos são melhor explicados a seguir.

TinyML é uma abordagem da inteligência artificial que permite executar algoritmos de
aprendizado de máquina localmente em dispositivos embarcados e de baixo custo, com
baixo consumo energético [Dutta and Bharali 2021]. É adequada para redes IoT, sistemas
industriais e aplicações em saúde, que exigem decisões rápidas com baixa latência. Ao
descentralizar o processamento, reduz o tráfego com a nuvem, melhora a privacidade e
elimina a dependência de servidores, viabilizando operação autônoma e em tempo real.

Essa tecnologia se baseia em otimizar modelos através de técnicas como a
quantização e poda para execução em hardware restrito. A quantização é uma técnica de
otimização que reduz o tamanho e a complexidade dos modelos ao converter operações e
parâmetros de float 32 para formatos como float 16 ou int 8 [Hubara et al. 2021]. Essa
conversão permite uma redução de até 4 vezes no tamanho de um modelo e uma inferência
mais rápida, com operações realizadas com números inteiros. A quantização de 8 bits é
mais otimizada e necessita de amostras de treino para aprender a representar os valores
reais com 8 bits.

Privacidade diferencial é um modelo matemático que limita o quanto uma informação
sensı́vel pode ser revelada, inserindo ruı́do controlado nos dados para dificultar a
identificação de indivı́duos [Dwork 2006]. Essa proteção é regulada pelo parâmetro ϵ, que
define o trade-off entre privacidade e utilidade: quanto menor o ϵ, maior a privacidade e
menor a utilidade. No aprendizado profundo a PD é uma técnica bastante utilizada contra
ataques adversariais, que visam obter dados dos modelos [Pustozerova et al. 2023]. Uma
técnica de PD para MAPs é o otimizador DP-SGD, que modifica o treinamento ao cortar
gradientes e adicionar ruı́do a cada iteração [Chua et al. 2024], reduzindo memorização e
dificultando ataques adversariais, como mostra a Figura 1.

Redes neurais profundas são modelos compostos por múltiplas camadas interconecta-
das capazes de aprender representações complexas dos dados [Reis 2021]. Esses modelos
são amplamente utilizados em tarefas como classificação e detecção de anomalias pela ca-
pacidade de generalização e adaptação a diferentes padrões. Durante o treinamento, os
pesos das conexões são ajustados iterativamente por algoritmos como o Stochastic Gradi-
ent Descent (SGD), que calcula os gradientes da função de perda e atualiza os parâmetros
com base no erro.

Feedforward é uma arquitetura com fluxo unidirecional de dados entre camadas, comum
em tarefas de classificação. Escolheu-se essa arquitetura por sua simplicidade estrutural
e bom desempenho com baixo custo computacional [Bezerra 2016].
Autoencoder é uma arquitetura usada para compressão e reconstrução de dados, composta
por encoder, espaço latente e decoder [Li et al. 2023]. Esse modelo realiza treinamento
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Figura 1. Representação de modelo diferencialmente privado

com dados não rotulados. Os dados aprendidos são considerados ”dados”normais, que o
modelo consegue reconstruir com precisão. A diferença entre o valor de reconstrução e o
valor real é chamado erro de reconstrução. Esse valor é usado para detecção de anomalias,
com valores indicando dados fora da normalidade.

4. Metodologia da Experimentação
Conjunto de dados: Para avaliar os modelos propostos, utilizou-se o conjunto de dados
público IoT-23, composto por 23 capturas de tráfego IoT com base em conexões IP. Foram
selecionadas amostras de múltiplos cenários para formar um conjunto mais representativo,
com as classes Port Scanning, Okiru, DDoS, C&C, Attack e tráfego benigno. Os atributos
utilizados incluem portas, protocolos, estados de conexão e duração. A divisão dos dados
seguiu a proporção de 50% para treino, 30% para teste e 20% para validação.

Modelos: A abordagem foi implementada com os modelos feedforward e autoencoder,
arquiteturas que interagem com os dados de formas diferentes. A escolha dos modelos é
para avaliar o DP-SGD em diferentes arquiteturas. A Tabela 2 resume os parâmetros dos
modelos utilizados. O feedforward classifica o tráfego entre as classes e o autoencoder
detecta anomalias. O autoencoder gera erros de reconstrução para os dados de entrada,
um valor usado para comparar tráfego benigno e maligno. Valores mais altos de erros
indicam possı́veis anomalias.

Tabela 2. Arquiteturas utilizadas
Modelo Camadas Ativação oculta Ativação saı́da Épocas

Feedforward 5 ReLU Softmax 15
Autoencoder 6 ReLU Sigmoid 25

DP-SGD e Tinyml: A solução utiliza o algoritmo Differentially Private ADAM (DP-
ADAM), uma variação do DP-SGD que incorpora médias ponderadas dos gradientes para
treinar o modelo com garantias de privacidade. Implementado com a biblioteca Tensor-
Flow Privacy, o otimizador aplica cortes nos gradientes e insere ruı́do controlado a cada
iteração, regulado por três parâmetros principais: norma de corte, multiplicador de ruı́do
e número de micro-batch [TensorFlow Privacy Team 2024]. Nı́veis menores de norma de
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corte e maiores de ruı́do resultam em menor ϵ, ou seja, maior privacidade. Os modelos
foram treinados com ϵ = 0.5, 1.0 e 2.0.

Utilizou-se o tensorflow lite para a otimização dos modelos. Eles foram con-
vertidos em dois formatos: otimização padrão tflite, que apenas otimiza o modelo; e
quantização int 8, em que converteu-se a representação de dados de valores decimais de
32 bits para inteiros de 8 bits. A otimização padrão é uma conversão de modelo que
permite a implementação de outros métodos de quantização. Para otimizar modelos dife-
rencialmente privados, criou-se uma função personalizada para carregar o otimizador e a
função de ativação em um arquivo keras.

Cenário de inferência: Os modelos diferencialmente privados são implementados no
dispositivo Raspberry Pi 4. O experimento consiste no Raspberry Pi recebendo o tráfego
dos dispositivos IP do dataset IoT-23 e realizando o papel de gateway, com os modelos
implementados. A Figura 2 ilustra o ambiente do experimento, com os modelos rece-
bendo tráfego dos dispositivos.

Figura 2. Cenário do experimento

Cada modelo foi implantado individualmente no dispositivo e executado separa-
damente em diferentes experimentos. O Raspberry Pi 4 foi configurado para realizar
inferências com amostras pré-processadas do conjunto de teste, simulando o tráfego de
dispositivos IoT na rede. Implementou-se um pipeline com a biblioteca tflite runtime que
importa os modelos no dispositivo, preparando o ambiente para execução. Durante os tes-
tes, avaliou-se as métricas tempo médio de inferência, uso de memória RAM e tamanho
do modelo. Para cada arquitetura, foram testadas uma versão baseline (sem privacidade)
e três versões com privacidade diferencial, utilizando ϵ = 0.5, 1.0 e 2.0.

5. Análise dos Resultados
No modelo autoencoder, as três versões privadas apresentaram resultados semelhantes
em termos de previsão, indicando que o uso de DP-SGD impactou pouco na qualidade da
reconstrução. Por isso, as análises comparativas seguintes utilizaram apenas ϵ = 2.0. A
Tabela 3 apresenta as métricas do modelo feedforward para os diferentes nı́veis de ϵ. Os
resultados revelam a relação direta entre o nı́vel de privacidade e a utilidade do modelo,
evidenciando o trade-off entre privacidade e desempenho.
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Tabela 3. Métricas do feedforward e suas versões
ϵ acurácia precisão recall f1-Score

baseline 0.93 0.92 0.93 0.92
2.0 0.89 0.89 0.89 0.87
1.0 0.88 0.87 0.88 0.86
0.5 0.87 0.87 0.87 0.85

A Figura 3 apresenta a saı́da do autoencoder para tráfegos benigno (esquerda) e
malicioso (direita). As barras representam os erros de reconstrução, e alturas acima do
limiar de 0.16 indicam possı́veis anomalias. Esse valor foi definido empiricamente com
base no comportamento do conjunto de dados malicioso.

Figura 3. Análise de tráfego benigno e tráfego maligno

A Figura 4 exibe a saı́da do autoencoder com privacidade diferencial. Observa-se
um padrão anômalo nas reconstruções, indicando que o ruı́do do DP-SGD prejudicou a
capacidade do modelo de generalizar os dados. Esse comportamento, consistente nos três
nı́veis de ϵ, dificulta a distinção entre tráfego benigno e malicioso com base no erro de
reconstrução.

Figura 4. Análise de tráfego benigno e tráfego maligno por modelo privado
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A Tabela 4 compara o desempenho dos modelos nos formatos keras (normal), tflite
e quantização int8, inferindo 7000 amostras. O autoencoder consumiu mais recursos e
tempo, especialmente no formato keras. Os formatos otimizados (tflite e quantizado) re-
duziram consumo e tempo, embora o modelo quantizado tenha levado mais tempo devido
ao carregamento e conversão das amostras.

Tabela 4. Desempenho dos modelos otimizados (Feedforward / Autoencoder )
Formato Tempo (seg) RAM (MB) Tamanho (MB)

Keras 35.22 / 36.39 612.21 / 630.41 0.18 / 0.24
tflite 06.60 / 07.09 112.18 / 112.29 0.05 / 0.06

Quantizado 12.86 / 13.66 112.28 / 112.13 0.02 / 0.02

Discussão: Os resultados mostram que técnicas de privacidade diferencial são viáveis
para modelos de classificação otimizados com tinyml , como o feedforward. No entanto,
deve haver uma análise do quanto a privacidade desejada pode prejudicar a utilidade. Um
modelo que atinge acima de 80% de acurácia pode ser considerado aceitável, havendo
alto nı́vel de privacidade. O trade-off entre privacidade e utilidade é evidente na queda
de performance conforme o ϵ diminui. O autoencoder apresentou comportamento irregu-
lar, indicando a inviabilidade com DP-SGD. Além disso, a otimização para dispositivos
de borda permite desempenho semelhante a modelos robustos com menor consumo de
recursos, reduzindo complexidade e acelerando a inferência.

6. Conclusão
Este trabalho apresentou uma abordagem para detecção de ataques e anomalias em tráfego
IoT usando privacidade diferencial e otimização via tinyml. Utilizou-se o conjunto IoT-23
para treino e validação, com testes no Raspberry Pi 4. O classificador feedforward dife-
rencialmente privado teve desempenho aceitável, apesar da taxa considerável de falsos
positivos, e mostrou viabilidade para execução em ambientes de baixo poder computaci-
onal no formato tflite. Já o modelo de detecção de anomalias apresentou comportamento
inesperado, com erros de reconstrução em amostras benignas, indicando a necessidade
de ajustes, embora seu custo computacional seja baixo. Pode-se concluir que soluções
para ambientes restritos podem utilizar modelos de aprendizado profundo diferencial-
mente privados para classificação de tráfego, havendo apenas a necessidade de ajuste de
parâmetros. Outra conclusão é a inviabilidade de autoencoders de reconstrução nesses
ambientes.
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Gerais.

Saranya, T., Jeyamala, D., Indra Priyadharshini, S., et al. (2024). A secure framework for
miot: Tinyml-powered emergency alerts and intrusion detection for secure real-time
monitoring. In 2024 8th International Conference on I-SMAC (IoT in Social, Mobile,
Analytics and Cloud)(I-SMAC), pages 13–21. IEEE.

TensorFlow Privacy Team (2024). Dpkerasadamoptimizer: Differentially private adam
optimizer for keras. https://github.com/tensorflow/privacy. Acesso
em: 10 abr. 2025.

Vidal, I. d. C. (2020). Protecting: garantindo a privacidade de dados gerados em casas
inteligentes localmente na borda da rede.

Zhou, H., Zhang, X., Feng, Y., Zhang, T., and Xiong, L. (2025). Efficient human activity
recognition on edge devices using deepconv lstm architectures. Scientific Reports,
15(1):13830.

Anais do SBSeg 2025: Artigos Curtos

8


