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Resumo. Os modelos de aprendizado profundo (MAP) sdo aplicados na
detec¢do de ataques e anomalias em redes IoT. O paradigma tiny machine le-
arning (tinyml) viabiliza a execugdo local desses modelos com baixo consumo
de recursos e maior privacidade. No entanto, MAPs ainda podem vazar da-
dos por ataques adversariais. Este trabalho implementa uma rede feedforward
para classificacdo e um autoencoder para detec¢do de anomalias, treinados
com DP-SGD no conjunto loT-23. Os modelos foram otimizados com tinyML
e implementados em um Raspberry Pi 4. O modelo feedforward manteve 87%
de acurdcia com privacidade alta (¢ = 0.5), enquanto a otimizacdo reduziu
em até 91% o tamanho dos modelos, 82% o uso de RAM e 80% o tempo de
execucdo. A combinagdo de privacidade diferencial e tinyML mostrou-se vidvel
para seguranca em dispositivos de borda.

Abstract. Deep learning models (DLMs) are applied to attack and anomaly de-
tection in loT networks. The tinyml paradigm enables local execution of these
models with low resource consumption and increased privacy. However, DLMs
can still leak data through adversarial attacks. This work implements a feed-
forward network for classification and an autoencoder for anomaly detection,
both trained with DP-SGD on the 10T-23 dataset. The models were optimized
with tinyml and deployed on a Raspberry Pi 4. The feedforward model retai-
ned 87% accuracy under strong privacy (€ = 0.5), while optimization reduced
model size by up to 91%, RAM usage by 82%, and execution time by 80%. The
combination of differential privacy and tinyml proved feasible for edge device
security.

1. Introducao

A Internet das Coisas (IoT) tem impulsionado dreas como automagao e redes inteligentes,
gerando grandes volumes de dados utilizados por modelos de aprendizado profundo em
aplicagdes de seguranca [Vidal 2020]. A necessidade de execucdo local favorece o uso
de tinyML, que permite operar modelos em dispositivos de baixo custo e baixa laténcia,
sem depender da nuvem [Zhou et al. 2025]. No entanto, esses modelos lidam com dados
sensiveis e estdo sujeitos a vazamentos.

Mesmo com execugdo local, modelos de aprendizado profundo (MAP) podem so-
frer ataques adversariais, expondo habitos dos usudrios [Huckelberry et al. 2024]. Para
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mitigar esses riscos, exploram-se abordagens como federated e split learning, que evi-
tam o compartilhamento direto de dados, além de mecanismos como criptografia e pri-
vacidade diferencial (PD) [Abadi et al. 2016]. A privacidade diferencial tem-se mostrado
promissora pela sua capacidade de anonimizar dados e diminuir o risco de vazamento por
modelos de aprendizado de maquina [Abadi et al. 2016]. No entanto, sua aplicagdo em
cendrios restritos com tinyml ainda € pouco explorada.

Este trabalho propoe dois MAP — um feedforward e um autoencoder, ambos
para deteccao de anomalia, aplicados ao conjunto de dados I0T-23 e otimizados com
tinyml. Utiliza-se o algoritmo Differentially Private Stochastic Gradient Descent (DP-
SGD) [Chua et al. 2024] para evitar vazamentos de dados nos modelos e se avalia o im-
pacto da otimizag@o em trés niveis de otimizagdo. O modelo feedforward manteve 87%
de acurdcia sob privacidade alta (e = 0.5), enquanto o autoencoder sofreu disturbios de
funcionamento com ruido. A otimiza¢ao reduziu até 91% o tamanho dos modelos, 82%
o uso de RAM e 80% o tempo de execug¢do, evidenciando a viabilidade da abordagem. O
restante deste artigo esta organizado da seguinte forma: a Se¢do 2 apresenta os trabalhos
relacionados; a Secdo 3, os conceitos envolvidos; a Secdo 4 detalha a experimentacdo; a
Secdo 5, os resultados; e a Se¢ao 6 conclui o trabalho.

2. Trabalhos Relacionados

Diversas abordagens tém sido propostas para preservar a privacidade no contexto de
tinyml e computacdo de borda. Os principais trabalhos diferem em suas aplicagdes,
técnicas e ferramentas utilizadas. A Tabela 1 resume essas contribui¢des.

Tabela 1. Comparacao de trabalhos relacionados

Autor Modelos Técnica de privacidade Avaliacao Métricas
[Radwan et al. 2024] | Split learning com | Transmissdo de ativagdes | Andlise de desempe- | Acurdcia e eficiéncia
TinyML intermedidrias nho energética

[Saranya et al. 2024]

Random  Forest, K-
nearest neighbors

Criptografia AES leve

Estudo de caso

Acurdcia, precisdo, recall,
fl-score

[Nurmi et al. 2023]

Aprendizado federado

Privacidade diferencial lo-
cal

Prova de conceito e
andlise

Custo computacional, pre-
cisdo e nivel de protecdo

Proposto. 2025

Feedforward, Autoen-
coder

DP-SGD

Analise de trade-off

Erro de reconstrugdo, pre-
cisdo, acurdcia, recall, fI-

score

[Radwan et al. 2024] propdoem um sistema federado com tinyML para
classificacdo de sentimentos em texto, com foco em efici€ncia energética e privaci-
dade. A protecao € feita pela transmissdo de ativagdes intermedidrias, dificultando
a reconstru¢do dos dados. O método foi testado em cendrios sem fio com ruido,
demonstrando robustez e baixo custo computacional. [Saranya et al. 2024] propdem uma
arquitetura segura para [oT em saude, utilizando finyml para andlise em tempo real de
sinais vitais e emissdo de alertas. A protecdo dos dados é feita por criptografia leve (AES)
e reforcada com um sistema de detec¢do de intrusdes, sendo adequada para dispositivos
com recursos limitados. [Nurmi et al. 2023] apresentam o SPHERE-DNA, que combina
aprendizado federado com privacidade diferencial local para monitoramento de saude.
A proposta utiliza sensores multimodais e processamento em borda para reconhecer
atividades com precisdo, evitando centralizacdo de dados e necessidade de terceiros
confidveis.
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Esses trabalhos foram selecionados por abordarem a privacidade no contexto de
tinyml, com foco em ferramentas baseadas em modelos de aprendizado profundo. Os
trabalhos evidenciam aprendizado federado, criptografia e privacidade diferencial local.
Em contraste, o presente trabalho aborda o uso de DP-SGD implementado em modelos
tinyml.

3. Fundamentacao Teérica

Este trabalho abrange a otimizacdo de modelos diferencialmente privados utilizando
tinyml. Esses conceitos sdo melhor explicados a seguir.

TinyML € uma abordagem da inteligéncia artificial que permite executar algoritmos de
aprendizado de maquina localmente em dispositivos embarcados e de baixo custo, com
baixo consumo energético [Dutta and Bharali 2021]. E adequada para redes IoT, sistemas
industriais e aplicagdes em saide, que exigem decisOes rapidas com baixa laténcia. Ao
descentralizar o processamento, reduz o trafego com a nuvem, melhora a privacidade e
elimina a dependéncia de servidores, viabilizando operac¢do autdnoma e em tempo real.

Essa tecnologia se baseia em otimizar modelos através de técnicas como a
quantizagdo e poda para execugdo em hardware restrito. A quantizagdo é uma técnica de
otimizacao que reduz o tamanho e a complexidade dos modelos ao converter operagdes e
parametros de float 32 para formatos como float 16 ou int 8 [Hubara et al. 2021]. Essa
conversao permite uma reducao de até 4 vezes no tamanho de um modelo e uma inferéncia
mais rapida, com operacdes realizadas com nimeros inteiros. A quantizac¢do de 8 bits é
mais otimizada e necessita de amostras de treino para aprender a representar os valores
reais com 8 bits.

Privacidade diferencial ¢ um modelo matematico que limita o quanto uma informacao
sensivel pode ser revelada, inserindo ruido controlado nos dados para dificultar a
identificagdo de individuos [Dwork 2006]. Essa protecao € regulada pelo parametro €, que
define o trade-off entre privacidade e utilidade: quanto menor o €, maior a privacidade e
menor a utilidade. No aprendizado profundo a PD € uma técnica bastante utilizada contra
ataques adversariais, que visam obter dados dos modelos [Pustozerova et al. 2023]. Uma
técnica de PD para MAPs € o otimizador DP-SGD, que modifica o treinamento ao cortar
gradientes e adicionar ruido a cada iteracao [Chua et al. 2024], reduzindo memorizacao e
dificultando ataques adversariais, como mostra a Figura 1.

Redes neurais profundas sio modelos compostos por multiplas camadas interconecta-
das capazes de aprender representagdes complexas dos dados [Reis 2021]. Esses modelos
sdo amplamente utilizados em tarefas como classificacao e deteccdo de anomalias pela ca-
pacidade de generalizacdo e adaptacdo a diferentes padrdes. Durante o treinamento, os
pesos das conexdes sdo ajustados iterativamente por algoritmos como o Stochastic Gradi-
ent Descent (SGD), que calcula os gradientes da funcao de perda e atualiza os pardmetros
com base no erro.

Feedforward é uma arquitetura com fluxo unidirecional de dados entre camadas, comum
em tarefas de classificacdo. Escolheu-se essa arquitetura por sua simplicidade estrutural
e bom desempenho com baixo custo computacional [Bezerra 2016].

Autoencoder é uma arquitetura usada para compressao e reconstrucio de dados, composta
por encoder, espaco latente e decoder [Li et al. 2023]. Esse modelo realiza treinamento
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Figura 1. Representacao de modelo diferencialmente privado

com dados ndo rotulados. Os dados aprendidos sao considerados ’dados’normais, que o
modelo consegue reconstruir com precisdo. A diferenga entre o valor de reconstrugado e o
valor real é chamado erro de reconstru¢do. Esse valor € usado para detec¢iao de anomalias,
com valores indicando dados fora da normalidade.

4. Metodologia da Experimentacao

Conjunto de dados: Para avaliar os modelos propostos, utilizou-se o conjunto de dados
publico [0T-23, composto por 23 capturas de trafego [oT com base em conexdes IP. Foram
selecionadas amostras de multiplos cendrios para formar um conjunto mais representativo,
com as classes Port Scanning, Okiru, DDoS, C&C, Attack e trafego benigno. Os atributos
utilizados incluem portas, protocolos, estados de conexao e duracdo. A divisdo dos dados
seguiu a propor¢ao de 50% para treino, 30% para teste e 20% para validagao.

Modelos: A abordagem foi implementada com os modelos feedforward e autoencoder,
arquiteturas que interagem com os dados de formas diferentes. A escolha dos modelos é
para avaliar o DP-SGD em diferentes arquiteturas. A Tabela 2 resume os parametros dos
modelos utilizados. O feedforward classifica o trafego entre as classes e o autoencoder
detecta anomalias. O autoencoder gera erros de reconstrucao para os dados de entrada,
um valor usado para comparar trafego benigno e maligno. Valores mais altos de erros
indicam possiveis anomalias.

Tabela 2. Arquiteturas utilizadas
Modelo Camadas | Ativacio oculta | Ativacio saida | Epocas
Feedforward 5 ReLU Softmax 15
Autoencoder 6 ReLU Sigmoid 25

DP-SGD e Tinyml: A solugdo utiliza o algoritmo Differentially Private ADAM (DP-
ADAM), uma variagao do DP-SGD que incorpora médias ponderadas dos gradientes para
treinar o modelo com garantias de privacidade. Implementado com a biblioteca Tensor-
Flow Privacy, o otimizador aplica cortes nos gradientes e insere ruido controlado a cada
iteragdo, regulado por trés parametros principais: norma de corte, multiplicador de ruido
e namero de micro-batch [TensorFlow Privacy Team 2024]. Niveis menores de norma de
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corte e maiores de ruido resultam em menor ¢, ou seja, maior privacidade. Os modelos
foram treinados com € = 0.5, 1.0 e 2.0.

Utilizou-se o fensorflow lite para a otimizagdo dos modelos. Eles foram con-
vertidos em dois formatos: otimizag¢ao padrio tflite, que apenas otimiza o modelo; e
quantizacdo int 8, em que converteu-se a representacdo de dados de valores decimais de
32 bits para inteiros de 8 bits. A otimizagdo padrdo ¢ uma conversdo de modelo que
permite a implementagdo de outros métodos de quantizacdo. Para otimizar modelos dife-
rencialmente privados, criou-se uma fungao personalizada para carregar o otimizador e a
func¢ao de ativacdo em um arquivo keras.

Cenario de inferéncia: Os modelos diferencialmente privados sdo implementados no
dispositivo Raspberry Pi 4. O experimento consiste no Raspberry Pi recebendo o trafego
dos dispositivos IP do dataset 10T-23 e realizando o papel de gateway, com os modelos
implementados. A Figura 2 ilustra o ambiente do experimento, com os modelos rece-
bendo trafego dos dispositivos.

Modelos
otimizados

Dispositivo

Raspberry pi 4 = de borda

Trafego de P
dataset ] =

Dispositivos
baseados em IP

Figura 2. Cenario do experimento

Cada modelo foi implantado individualmente no dispositivo e executado separa-
damente em diferentes experimentos. O Raspberry Pi 4 foi configurado para realizar
inferéncias com amostras pré-processadas do conjunto de teste, simulando o trafego de
dispositivos IoT na rede. Implementou-se um pipeline com a biblioteca tflite runtime que
importa os modelos no dispositivo, preparando o ambiente para execucao. Durante os tes-
tes, avaliou-se as métricas tempo médio de inferéncia, uso de memoéria RAM e tamanho
do modelo. Para cada arquitetura, foram testadas uma versao baseline (sem privacidade)
e trés versdes com privacidade diferencial, utilizando € = 0.5, 1.0 e 2.0.

5. Analise dos Resultados

No modelo autoencoder, as trés versoes privadas apresentaram resultados semelhantes
em termos de previsao, indicando que o uso de DP-SGD impactou pouco na qualidade da
reconstrucdo. Por isso, as andlises comparativas seguintes utilizaram apenas € = 2.0. A
Tabela 3 apresenta as métricas do modelo feedforward para os diferentes niveis de €. Os
resultados revelam a relagdo direta entre o nivel de privacidade e a utilidade do modelo,
evidenciando o trade-off entre privacidade e desempenho.
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Tabela 3. Métricas do feedforward e suas versoes

€ acurdcia | precisdo | recall | fI-Score
baseline | 0.93 0.92 0.93 0.92
2.0 0.89 0.89 0.89 0.87
1.0 0.88 0.87 0.88 0.86
0.5 0.87 0.87 0.87 0.85

A Figura 3 apresenta a saida do autoencoder para trafegos benigno (esquerda) e
malicioso (direita). As barras representam os erros de reconstru¢do, e alturas acima do
limiar de 0.16 indicam possiveis anomalias. Esse valor foi definido empiricamente com
base no comportamento do conjunto de dados malicioso.
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Figura 3. Analise de trafego benigno e trafego maligno

A Figura 4 exibe a saida do autoencoder com privacidade diferencial. Observa-se
um padrdo andmalo nas reconstrucdes, indicando que o ruido do DP-SGD prejudicou a
capacidade do modelo de generalizar os dados. Esse comportamento, consistente nos trés
niveis de e, dificulta a distin¢do entre trafego benigno e malicioso com base no erro de
reconstrucao.
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Figura 4. Analise de trafego benigno e trafego maligno por modelo privado
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A Tabela 4 compara o desempenho dos modelos nos formatos keras (normal), tflite
e quantizacao int8, inferindo 7000 amostras. O autoencoder consumiu mais recursos e
tempo, especialmente no formato keras. Os formatos otimizados (flite € quantizado) re-
duziram consumo e tempo, embora o modelo quantizado tenha levado mais tempo devido
ao carregamento e conversao das amostras.

Tabela 4. Desempenho dos modelos otimizados (Feedforward / Autoencoder)
Formato Tempo (seg) RAM (MB) Tamanho (MB)
Keras 35.22/36.39 | 612.21/630.41 0.18/0.24
tflite 06.60/07.09 | 112.18/112.29 0.05/0.06
Quantizado | 12.86/13.66 | 112.28/112.13 0.02/0.02

Discussao: Os resultados mostram que técnicas de privacidade diferencial sdo vidveis
para modelos de classificacdo otimizados com tinyml , como o feedforward. No entanto,
deve haver uma analise do quanto a privacidade desejada pode prejudicar a utilidade. Um
modelo que atinge acima de 80% de acurdcia pode ser considerado aceitavel, havendo
alto nivel de privacidade. O trade-off entre privacidade e utilidade € evidente na queda
de performance conforme o € diminui. O autoencoder apresentou comportamento irregu-
lar, indicando a inviabilidade com DP-SGD. Além disso, a otimizag@o para dispositivos
de borda permite desempenho semelhante a modelos robustos com menor consumo de
recursos, reduzindo complexidade e acelerando a inferéncia.

6. Conclusao

Este trabalho apresentou uma abordagem para detecc¢ao de ataques e anomalias em trafego
IoT usando privacidade diferencial e otimizacao via tinyml. Utilizou-se o conjunto [0T-23
para treino e validacdo, com testes no Raspberry Pi 4. O classificador feedforward dife-
rencialmente privado teve desempenho aceitdvel, apesar da taxa consideravel de falsos
positivos, e mostrou viabilidade para execucdo em ambientes de baixo poder computaci-
onal no formato #flite. J4 o modelo de detec¢do de anomalias apresentou comportamento
inesperado, com erros de reconstru¢do em amostras benignas, indicando a necessidade
de ajustes, embora seu custo computacional seja baixo. Pode-se concluir que solucdes
para ambientes restritos podem utilizar modelos de aprendizado profundo diferencial-
mente privados para classificacdo de trafego, havendo apenas a necessidade de ajuste de
parametros. Outra conclusdo € a inviabilidade de autoencoders de reconstrucdo nesses
ambientes.
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