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Abstract. Intrusion Detection Systems (IDS) are essential for network secu-
rity;, however, the growing complexity of cyberattacks challenges traditional
signature-based and anomaly-based approaches, which struggle to detect novel
threats while maintaining low false positive rates. In dynamic environments,
evolving attack strategies cause concept drift that degrade the performance of
static models. To address this, we propose a novel machine learning approach
that integrates an autoencoder with contrastive learning and models known at-
tack classes using Gaussian-based confidence regions. Experimental results
show that the proposed classifier outperforms the baseline approach, achieving
a higher average F1-score (0.39 vs. 0.25) due to the adaptability of hyperellip-
soidal confidence regions.

1. Introduction

Intrusion Detection Systems (IDS) are critical for network security, providing real-
time monitoring of suspicious activities. They are typically classified as signature-
based, which are accurate for known threats but ineffective against new ones, and
anomaly-based, which detect unknown threats but often yield high false positive
rates [Liu and Lang 2019]. With the increasing complexity of cyberattacks, IDS must
quickly identify diverse threats, demanding more adaptive and advanced solutions
[Abdulganiyu et al. 2023]. However, existing IDS methods often fail to keep up, rein-
forcing the need for improved and innovative approaches [Ozkan-Okay et al. 2021].

In the context of network attacks, where environments are constantly changing
or evolving, attackers continuosly develop new methods to by-pass institutional secu-
rity policies, a phenomenon known as concept drift [Elwell and Polikar 2011]. Con-
cept drift is characterized by a shift in the relationship between input data and the
target variable over time, resulting in performance degradation in non-adaptive mod-
els [Escovedo et al. 2018]. Machine learning (ML) techniques stand out for con-
cept drifting attacks due to their robustness, resilience to data noise and adaptability
[Kocher and Kumar 2021]. Some studies that employ ML techniques for concept drift
detection in IDS context include [Yang et al. 2021] and [Kuppa and Le-Khac 2022].

This paper presents a novel machine learning approach for concept drift detection
by integrating an autoencoder neural network with contrastive learning. The autoencoder
compresses network traffic into a lower-dimensional latent space, while contrastive learn-
ing improves representation by separating similar and dissimilar instances. Known attack
classes are modeled as Gaussian distributions and samples outside all confidence regions
are flagged as concept drift. This method provides a more flexible and accurate classifi-
cation framework, enhancing the detection and distinction of drifted samples.
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This paper is structured as follows: Section 2 reviews contrastive learning con-
cepts relevant to this study. Section 3 introduces the proposed approach. Section 4
presents experimental results and analysis, highlighting the method’s effectiveness in de-
tecting concept drift. Section 5 discusses related work on concept drift detection in IDS.
Finally, Section 6 outlines conclusions and future research directions.

2. Contrastive Learning

This section presents key concepts about contrastive learning essential for understanding
the study.

The main objective of contrastive learning is to project samples into a lower-
dimensional space while preserving their semantic relationships. This is achieved us-
ing a contrastive loss function that minimizes the distance between samples of the same
class and maximizes it between different classes. By enhancing feature discrimination,
contrastive learning proves effective in representation learning, facial recognition, recom-
mendation systems and anomaly detection [Le-Khac et al. 2020].

To calculate the contrastive loss, the model receives a pair of samples (X;, X j),
which are analyzed to determine their similarity relationship. This relationship is repre-
sented by a binary value Y, where Y = 0 indicates that both samples belong to the same
class, while Y = 1 indicates that the samples belong to different classes. Each network in
the model encodes its respective input sample separately, generating corresponding latent
representations or embeddings (z;, z;) [Chopra et al. 2005].

The contrastive loss is defined by [Chopra et al. 2005] as:

L= (1-Y)D?+ (Y){maz(0,m — D)}? (1)

where D is the Euclidean distance between z; and z;, and m is the margin used to
bring similar samples closer or push dissimilar samples farther apart.

3. The Proposed Aproach

This section presents an approach combining autoencoders and contrastive learning to
cluster same-class samples and separate different classes while preserving class-specific
features. Encoded samples are classified by modeling known classes as Gaussian distri-
butions and using confidence regions to define class membership.

The proposed approach integrates an encoder trained using a combination of an
autoencoder neural network and contrastive learning. To apply contrastive learning, the
training set is split into pairs of samples, each labeled with a similarity value Y, where
Y = 0 indicates both samples belong to the same class, and ¥ = 1 indicates they be-
long to different classes. These samples are then encoded into a lower-dimensional latent
space using the encoder, and the contrastive loss is computed as defined in Equation 1.
Simultaneously, the network reconstructs the input data, as in a standard autoencoder, and
calculates the reconstruction loss £, using Mean Squared Error (MSE).

Finally, a total loss £; is computed in Equation 2 where L. represents the con-
trastive loss and A is its weighting factor, it was empirically tuned on the validation set
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to balance the contribution of the contrastive loss and the reconstruction loss. Its sig-
nificance lies in controlling the trade-off between clustering quality in the latent space
and reconstruction accuracy, both of which affect drift detection performance. The con-
trastive autoencoder is trained to minimize this total loss, integrating both reconstruction
and contrastive objectives.

Li=L,+ A\, 2)

Using the trained encoder, the training data is projected into the latent space, and
each class is modeled as a Gaussian distribution. A confidence hyperellipsoid is computed
for each class at a confidence level v, as defined in Equation 3, where z is a £-dimensional
vector, 1; is the mean of the encoded training sample from class ¢, >; is a k X k covari-
ance matrix of class i and x? is the chi-squared distribution for & degrees of freedom
[Chew 1966].

(z = )" 57 (2 — ) < X°(7, k) 3)

Test samples are classified based on whether their latent representations fall within
a class’s confidence region. Samples outside all regions are identified as concept drift.
Gaussian Mixture Models (GMM) were used to model each attack class individually in
the latent space. Experimental results showed that, for most classes, a single-component
model outperformed multi-component models.

4. Experiments

This section provides an overview of the experiments conducted to evaluate the proposed
approach.

4.1. Experiment Settings

This subsection provides an overview of the experiments configuration, including details
of the hardware used, as well as the description of the real-world dataset used in the exper-
iment. To evaluate the proposed approach, an experiment was conducted on a computer
equipped with an AMD Ryzen 9 5900X processor, 32 GB RAM memory and NVIDIA
GeForce RTX 3070 GPU.

To evaluate the performance of the proposed approach, Contrastive Autoencoder
for Drifting detection and Explanation (CADE) [Yang et al. 2021] was used as a baseline
model. CADE was chosen as a baseline due to its conceptual and architectural similarity
to our method. Both approaches rely on autoencoders and contrastive learning for latent
representation and address concept drift detection. CADE employs the same type of con-
trastive autoencoder network architecture. The primary difference lies in their strategies
for concept drift classification. The proposed model classifies samples based on con-
fidence regions derived from Gaussian distributions, whereas CADE utilizes the Mean
Absolute Deviation (MAD) approach. In the CADE framework, for each class ¢, which
contains n; encoded samples z; in the latent space from the training set, two metrics are
computed: d; and MAD;, as defined in Equations 4 and 5. Here, c; represents the centroid
of class ¢ in the latent space and b is a constant.
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d; = median(||z; — ¢l|),j=1,...,n; 4)

MAD; = b* median(| ||z; — ;|| —d; |), 7 =1,....,n 5)

To classify a test sample 2z, which has been encoded in the latent space, the values
of A; are computed for each class i, as defined in Equation 6. If all computed A; values
exceed a predefined threshold, the sample is considered to represent a concept drift.

[z —all —di )
MAD;

A=t ©)
For the experiments, the baseline model parameters were kept the same as in the
original work.

The proposed approach was evaluated using the CICIDS-2018 dataset, a widely
adopted benchmark in cybersecurity research that also enables the simulation of drift
scenarios, supporting a comprehensive assessment of model effectiveness. Developed
by the Canadian Institute for Cybersecurity (CIC) at the University of New Brunswick
as an evolution of CICIDS-2017, the dataset includes 10 days of network traffic, fea-
turing 80 attributes generated by CICFlowMeter, covering time, packet, byte, and flow
statistics, and contains benign traffic alongside 14 attack types grouped into 7 cate-
gories: Brute Force, DoS, DDoS, Botnet, Infiltration, Web Attacks and SQL Injection
[Sharafaldin et al. 2018]. CICIDS-2018 was selected because it presents a diverse range
of contemporary attacks over multiple days, which naturally introduces temporal varia-
tion and realistic traffic dynamics. These characteristics make it suitable for simulating
concept drift scenarios without artificial data manipulation.

In addition to network statistical attributes, the dataset includes timestamp infor-
mation with date and time. However, this information should be excluded, as each attack
class was collected on a distinct day, which could lead the model to rely on date cues
rather than network features for classification.

4.2. Experiments

The dataset was initially split into training/validation and test sets with an 80/20 ratio,
preserving class distributions. The training/validation set was then further divided into
training (64% of the total data) and validation (16% of the total data) sets, maintaining
the same 80/20 split and class balance. Additionally, the benign class underwent random
undersampling to 6% of its total size in order to keep it within the same order of magni-
tude as the other classes, as can be observed in Table 1, which shows the total number of
samples from the benign class and from the 14 attack classes, grouped into 7 attack cate-
gories. Undersampling the benign class was necessary to balance the training process and
ensure the model does not become biased toward the dominant class [Chawla et al. 2002].

To simulate the effect of concept drift, the attack classes are hidden during
the training phase and revealed during the testing phase.In this way, as interpreted by
[Yang et al. 2021], unknown attacks are treated as manifestations of concept drift, where
novel patterns deviate significantly from the latent distributions of known attack classes,
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Class Number of samples Total
Benign 803,354 803,354
DDoS attack-HOIC 686,012
DDoS attacks-LOIC-HTTP 576,191 1,263,933
DDoS attack-LOIC-UDP 1,730
DoS attacks-Hulk 461,912
DoS attacks-SlowHTTPTest 139,890 654.300
DoS attacks-GoldenEye 41,508 ’
DoS attacks-Slowloris 10,990
Botnet 286,191 286,191
Brute Force FTP 193,360
Brute Force SSH 187,589 380,949
Infiltration 160,639 160,639
Web Attack Brute Force Web 611 341
Web Attack Brute Force XSS 230
SQL Injection 87 87

Table 1. Number of samples in each class.

so that in a future step the model can be adapted to the new concept. For concept drift
detection, the samples from the class hidden during training are considered positive sam-
ples, while the other classes are considered negative samples. The proposed approach
identifies concept drift based on the confidence regions of known classes, regardless of
whether they are benign or malicious. Thus, previously unseen benign traffic (legitimate
traffic exhibiting a new pattern) can also be flagged as drifted, just like unknown attacks.
To evaluate the model’s performance, the accuracy, precision, recall and F1-score metrics
will be used.

For the contrastive autoencoder network, the architecture 82-64-32-16-7-16-32-
64-82 was used, with 250 epochs and a learning rate of 0.0001. For the contrastive loss,
a margin m of 10 and a weight A of 0.1 were used. For the calculation of the confidence
regions, 7y values in the range of 0.95 to 0.50 were tested, with the value of 0.85 achieving
the best result on the validation set, obtaining an average F1-score of 0.39.

4.3. Experimental Results and Analysis

Table 2 shows the performance in concept drift detection using the metrics mentioned for
each attack class hidden during the training phase. Similarly, Table 3 presents the per-
formance of CADE for each hidden attack class. Both classification models are capable
of identifying the occurrence of concept drift for the DoS and Brute Force classes, with
the proposed model achieving F1-scores of 0.83 and 0.68, respectively, while the baseline
reaches F1-scores of 0.67 and 0.72. Comparing the results with the DDoS class hidden,
the proposed model significantly outperforms the baseline, achieving an F1-score of 0.66
versus 0.08. For the Botnet class, the proposed model outperforms the baseline, achiev-
ing an F1-score of 0.42, compared to 0.26. In the Infiltration class, the proposed model
also outperforms the baseline, though with a low Fl-score of 0.13 versus 0.02, which is
much lower than the detection performance for the previously mentioned hidden classes.
This is due to the contrastive autoencoder network’s difficulty in representing this class
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distinctly from the benign class, as illustrated in Figure 1, where feature 4 of the latent
space encoding is the one that most differentiates the two classes, yet both are still heavily
overlapping. The Web Attacks and SQL Injection classes, however, were not adequately
detected by either model, while the proposed model indeed fails to identify both classes,
the baseline is able to detect 12% of the SQL Injection attacks. However, due to the small
number of samples from this class in the dataset, this value was diluted among the false
positives.

Hidden class | Accuracy | Precision | Recall | F1-score
DDoS 0.80 0.85 0.54 0.66
DoS 0.94 0.88 0.77 0.83
Brute Force 0.93 0.70 0.66 0.68
Botnet 0.92 0.52 0.35 0.42
Infiltration 0.92 0.13 0.13 0.13
Web Attacks 0.98 0.00 0.03 0.00
SQL Injection 0.96 0.00 0.00 0.00

Table 2. Proposed model performance for each hidden attack class.

Hidden class | Accuracy | Precision | Recall | F1-score
DDoS 0.61 0.24 0.05 0.08
DoS 0.86 0.59 0.78 0.67
Brute Force 0.92 0.56 1.00 0.72
Botnet 0.80 0.19 0.45 0.26
Infiltration 0.95 0.10 0.01 0.02
Web Attacks 0.97 0.00 0.06 0.00
SQL Injection 0.80 0.00 0.12 0.00

Table 3. CADE performance for each hidden attack class.

Table 4 presents a direct comparison of the average results obtained by the pro-
posed model and the baseline. The proposed method shows better results in the accuracy,
precision, and F1-score metrics, while it is outperformed by the baseline in the recall met-
ric. The classification performance of the proposed model surpasses the baseline due to
the flexibility of the confidence regions, which take the shape of a hyperellipsoid, whereas
the baseline is restricted to a hypersphere format, in other words, CADE depends solely
on the distance of the samples to the class centroid, forming a hypersphere that is less
adaptable to the distribution of the samples in the latent space than the hyperellipsoid
shape proposed in this work. This leads to situations where, depending on the class distri-
bution, there may be many false positives along with true positives, or many true negatives
along with false negatives.

5. Related works

In [Yang et al. 2021], the author proposes CADE, a contrastive autoencoder neural net-
work designed to detect concept drift in IDS and malware classification. The model
jointly minimizes contrastive loss and reconstruction error to cluster samples not only
by class but also by shared characteristics. For classification, CADE employs a statistical
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Figure 1. Histogram of the feature in the latent space that best distinguished the
Benign and Infiltration classes.

Classification method | Accuracy | Precision | Recall | Fl-score
Proposed model 0.92 0.44 0.35 0.39
CADE 0.84 0.24 0.35 0.25

Table 4. Comparison of the average metrics between the proposed model and
the baseline.

distance-based method using Mean Absolute Deviation (MAD). However, this classifica-
tion method is less flexible compared to the one presented in this work.

The study by [Kuppa and Le-Khac 2022] addresses concept drift detection, con-
cept identification, and model adaptation using a contrastive autoencoder with cosine
similarity, like [Yang et al. 2021], applied to IDS and URL categorization. It introduces
the Nearest Class Mean (NCM) method, which classifies a sample as concept drift if its
distance to all class centroids exceeds a threshold. However, this method, like that of
[Yang et al. 2021], offers less flexibility compared to the approach proposed in this work.

6. Conclusion and Future Works

The ability to detect zero-day attacks is crucial for enhancing network security. Conse-
quently, identifying changes and variations in known attack patterns is essential. Prior
studies indicate that combining autoencoder networks with contrastive learning is a
promising strategy for dimensionality reduction and clustering same class samples, en-
abling spatial classifiers to detect novel attacks by identifying samples that fall outside
known classes. The confidence region-based classifier outperformed the MAD-based
approach, achieving an average Fl-score of 0.39 compared to 0.25, due to the greater
flexibility of hyperellipsoidal regions over hyperspherical ones. However, both methods
failed to detect concept drift in certain attack classes, suggesting limitations in either the
extracted features or the dimensionality reduction technique.

As future work, we plan to compare the proposed model with the Nearest
Class Mean (NCM) classifier, evaluate it on additional datasets like UNSW-NB15
[Moustafa and Slay 2015], and assess the impact of retraining with concept drift sam-
ples in an online learning setting to verify the model’s ability to adapt and associate attack
variations with their original classes.
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