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Abstract. Anomaly detection in computer networks is a critical challenge in the
field of cybersecurity, due to the increasing complexity of threats and the dyna-
micity of data traffic. This study proposes an ensemble stacking-based approach
that combines the Local Outlier Factor (LOF), Isolation Forest (iForest), and
One-Class SVM (OCSVM) algorithms for anomaly detection. The scores gene-
rated by these models then train a Random Forest classifier, responsible for the
final classification of traffic instances. Empirical validation was conducted with
the UGR’16 and CIC-IDS2017 datasets and used metrics such as AUC, ROC
curves, and F1-score, allowing us to evaluate the performance against tradi-
tional and state-of-the-art methods. The proposed solution shows promise in
reducing false positives and detecting malicious traffic in realistic and imbalan-
ced scenarios.

Resumo. A detecção de anomalias em redes de computadores é um desa-
fio crı́tico no campo da cibersegurança, devido à crescente complexidade das
ameaças e à dinamicidade do tráfego de dados. Este estudo propõe uma abor-
dagem baseada em ensemble stacking, que combina os algoritmos Local Ou-
tlier Factor (LOF), Isolation Forest (iForest) e One-Class SVM (OCSVM) para
a detecção de anomalias. Em seguida, os scores gerados por esses modelos trei-
nam um classificador Random Forest, responsável pela classificação final das
instâncias de tráfego. A validação empı́rica foi conduzida com o conjuntos de
dados UGR’16 e CIC-IDS2017 e utilizaram métricas como AUC, curvas ROC e
F1-score, permitindo avaliar o desempenho em relação a métodos tradicionais
e do estado da arte. A solução proposta demonstra ser promissora na redução
de falsos positivos e na detecção de tráfego malicioso em cenários realistas e
desbalanceados.

1. Introdução

Anomalias em redes de computadores são padrões estatı́sticos ou comportamentais que se
desviam do tráfego legı́timo esperado, podendo indicar falhas, intrusões ou atividades ma-
liciosas não autorizadas [Ness 2024]. Identificar esses padrões anômalos em tempo hábil
é essencial para mitigar danos financeiros e operacionais, além de garantir a segurança
das informações [Lunardi et al. 2022].

Anais do SBSeg 2025: Artigos Curtos

1



Apesar de sua eficácia em cenários especı́ficos, os métodos tradicionais de
detecção de anomalias, baseados em assinaturas ou regras, apresentam limitações crı́ticas.
Além disso, esses métodos enfrentam dificuldades em acompanhar a crescente heteroge-
neidade dos padrões de tráfego em redes modernas, especialmente em ambientes comple-
xos e de grande escala. Nesse contexto, as técnicas de aprendizado de máquina surgem
como alternativas promissoras, oferecendo a capacidade de aprender e adaptar-se a dife-
rentes padrões de tráfego sem a necessidade de intervenção manual constante.

No entanto, métodos isolados, como o Local Outlier Factor (LOF), Isolation Fo-
rest (IF) e One-Class Support Vector Machine (OCSVM), apresentam limitações ineren-
tes, incluindo a sensibilidade à distribuição dos dados e a dificuldade de generalização
em ambientes complexos. Estudos prévios demonstraram que abordagens baseadas em
empilhamento (stacking) podem superar essas limitações. [Wang et al. 2021] ao investi-
gar a detecção de anomalias em redes IoT, demonstrou que um modelo de empilhamento,
combinando Random Forest, Gradient Boosting e XGBoost, superou métodos individu-
ais, aumentando o valor do AUC (Area Under the Curve) em até 12%. Da mesma forma,
[Li et al. 2020] sugerem que a aplicação de empilhamento com Random Forest como me-
tamodelo em um ambiente com dados desbalanceados (80% benignos, 20% anômalos)
resultou em uma melhoria de 15% no F1-score em relação ao melhor modelo individual.

Para abordar essas questões, este trabalho propõe uma abordagem baseada em
ensemble stacking, combinando os algoritmos mencionados em uma estrutura que uti-
liza o classificador Random Forest como metamodelo para consolidar os resultados
[Jeffrey et al. 2024]. O objetivo geral deste estudo é demonstrar como a combinação de
algoritmos complementares em um framework de empilhamento pode melhorar signifi-
cativamente a precisão da detecção de anomalias, reduzindo taxas de falsos positivos e
aumentando a confiabilidade do sistema.

As demais seções deste artigo estão organizadas da seguinte forma: a Seção 2
apresenta os trabalhos relacionados, que associam mecanismos de detecção de intrusão
a técnicas de aprendizagem de máquina; a Seção 3 descreve a proposta do pipeline de
detecção e de treinamento do modelo; a Seção 4 apresenta os resultados, e a Seção 5
conclui e discute os trabalhos futuros.

2. Trabalhos Relacionados
Em [Tokmak and Nkongolo 2023], foi proposto um modelo baseado em Stacked Auto-
encoder (SAE) combinado com Long Short-Term Memory (LSTM) para a detecção e
classificação de ameaças zero-day. Segundo os autores, o modelo obteve uma precisão
de 98% utilizando o conjunto de dados UGRansome, sendo eficaz na identificação de
ataques de assinatura, assinaturas sintéticas e anomalias.

Na pesquisa de [Chliah et al. 2023], os autores propuseram uma abordagem
hı́brida baseada em aprendizado supervisionado e não supervisionado para a detecção
de anomalias em tráfego de rede, utilizando o motor de big data Apache Spark. Os ex-
perimentos indicaram que, com a aplicação do K-means para agrupamento de dados e
KNN para detecção de anomalias, o modelo alcançou uma precisão de 99,94% ao utili-
zar validação cruzada com K-folds no conjunto completo de 48 features. Apesar da alta
eficácia, os autores destacam que o desempenho pode variar com a escolha do número de
clusters, sendo o valor ótimo K=2 para o conjunto avaliado.
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Os trabalhos discutidos demonstram que técnicas de aprendizado de máquina,
como Autoencoders Variacionais, Stacked Autoencoders com LSTM e métodos hı́bridos,
têm impacto na detecção de anomalias e ataques cibernéticos, melhorando a precisão e
reduzindo falsos positivos. Em geral, os estudos focam em abordagens especı́ficas e por
este fato se faz necessária a investigação de novas implementações de ensemble stac-
king objetivando desenvolver frameworks mais robustos, capazes de lidar com cenários
de maior complexidade.

3. Pipeline de Detecção

Diferentemente de estudos anteriores que apenas agregam as saı́das de modelos, propo-
mos um mecanismo de empilhamento que explora as correlações cruzadas entre os de-
tectores base para compor um vetor de caracterı́sticas mais informativo, aumentando a
separabilidade entre instâncias benignas e anômalas.

A Figura 1 ilustra a arquitetura do pipeline de aprendizado de máquina para
detecção de anomalias. Inicialmente referenciamos os datasets utilizados UGR’16 e
CIC-IDS2017 como entrada, contendo o tráfego de rede com dados normais e anômalos
[Maciá-Fernández et al. 2018, Sharafaldin et al. 2018].

Figura 1. Pipeline do modelo proposto

Na etapa de pré-processamento, ajustamos os dados para que todas as variáveis
fiquem na mesma escala e equilibramos as classes de dados (normais e anômalos) para
evitar viés do modelo. Na etapa de empilhamento, combinamos as saı́das dos três detec-
tores de anomalias: LOF, IF e OCSVM. No processo de divisão de dados, processamos
o dataset distribuindo em 70% para treinamento e 30% para teste, onde, em seguida, o
metamodelo Random Forest utiliza os dados empilhados para treinar e detectar anomalias
no tráfego de rede.
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3.1. Extração de Features
Antes da extração de features, os dados brutos passam por um processo de normalização
e balanceamento. Utilizamos a técnica Min-Max Scaler para normalizar as variáveis em
uma faixa uniforme [0, 1], eliminando impactos de escalas heterogêneas que poderiam
distorcer a detecção de outliers.

A extração de features é realizada a partir de três modelos de detecção de outli-
ers que operam de maneira independente e, posteriormente, suas saı́das são empilhadas
para alimentar um metamodelo baseado em Random Forest. Implementamos as clas-
ses e métodos LOF obtidas a partir da biblioteca Scikit-learn [Pedregosa et al. 2011] e
aplicamos ao conjunto de treinamento um número de vizinhos k = 50 e um nı́vel de
contaminação de 0,5%. O algoritmo avalia a densidade local de cada instância em relação
aos seus vizinhos, produzindo um score negativo, onde valores mais baixos indicam maior
probabilidade de anomalia. Em nossa abordagem, invertemos esse score para padronizar
a interpretação dos valores e torná-los compatı́veis com os demais modelos.

Esses scores são então incorporados ao espaço de features para a etapa de empi-
lhamento. O IF constrói árvores binárias de maneira iterativa para particionar os dados,
gerando um score baseado na profundidade média necessária para isolá-la. Em nossa
abordagem, o modelo é treinado com um nı́vel de contaminação de 0,5% e sua saı́da é
calculada via função de decisão. Este score, ao contrário do LOF, é um valor contı́nuo,
onde valores mais baixos indicam instâncias mais prováveis de serem anômalas. Ele é
então empilhado junto às saı́das dos outros modelos. O OCSVM mapeia os dados para
um espaço de alta dimensionalidade usando um kernel RBF e aprende uma fronteira de
decisão que separa os exemplos normais das anomalias. A configuração utilizada no
código emprega γ = 0,1 e ν = 0,05, ajustando a flexibilidade da fronteira de decisão.

3.2. Treinamento do Modelo
Utilizamos a densidade local do LOF para identificar pontos de dados que se desviam de
seus vizinhos. Essa abordagem se baseia na densidade local, onde, para cada ponto p, a
densidade é definida com base nas distâncias aos k-vizinhos mais próximos. A distância
dk(p) é utilizada para determinar o raio de alcance R(p, k) necessário para englobar os
vizinhos. O LOF calcula a Razão de Densidade Relativa (RDR) como:

LOF(p) =
1

|Nk(p)|
∑

o∈Nk(p)

densidade(o)
densidade(p)

(1)

Um valor LOF(p) > 1 indica que p é menos denso que seus vizinhos, sugerindo
uma possı́vel anomalia. Avaliamos diferentes valores para k na faixa de 10 a 100, obser-
vando que valores entre 40 e 60 produzem melhor AUC.

Para o Isolation Forest, aplicamos a métrica de pontuação s(p), baseada no comprimento
médio do caminho h(p) até o isolamento do ponto, conforme:

s(p) = 2−
h(p)
c(n) (2)

onde c(n) é uma constante de normalização baseada no tamanho da amostra.
O parâmetro de contaminação foi variado de 0,001 a 0,05, e o número de estimadores
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(n estimators) entre 100 e 1000. Identificamos que n estimators = 700 oferece
um bom equilı́brio entre desempenho e custo computacional.

O OCSVM foi configurado com kernel RBF, sendo utilizados os hiperparâmetros
γ e ν, que controlam, respectivamente, a influência dos pontos de suporte e a fração de
anomalias esperadas. Avaliamos γ ∈ {0,01; 0,05; 0,1; 0,5} e ν ∈ {0,01; 0,05; 0,1; 0,2}. A
combinação γ = 0,1 e ν = 0,05 apresentou os melhores resultados.

O metamodelo Random Forest foi avaliado com diferentes números de árvores
(100, 300, 500, 1000). Os melhores resultados foram obtidos com 1000 árvores, embora
com maior tempo de execução. Para sistematizar a seleção dos hiperparâmetros, empre-
gamos um procedimento de Grid Search com validação cruzada estratificada, utilizando
o conjunto de validação extraı́do de 20% dos dados.

Essa análise de sensibilidade é relevante para a calibração fina dos modelos. Em
especial, observamos que valores extremos de hiperparâmetros tendem a comprometer o
desempenho global do ensemble.

3.3. Conjuntos de Dados

O conjunto de dados utilizado neste estudo é o UGR’16, composto por aproximadamente
19 bilhões de registros de tráfego de rede. Esse conjunto de dados representa um dos
maiores e mais desafiadores conjuntos de dados disponı́veis para a detecção de anomalias
e ataques em redes. Apresenta caracterı́sticas tı́picas de redes de produção, incluindo a
distribuição desbalanceada entre tráfego benigno (cerca de 95%) e anomalias (aproxima-
damente 5%).

Focamos na análise de três classes de tráfego: anomaly-spam, background e blac-
klist, selecionadas com base em sua relevância prática em ambientes reais. A classe
anomaly-spam representa um padrão de tráfego associado à disseminação de spam, fre-
quentemente observadas em ataques automatizados. A classe background refere-se ao
tráfego de plano de fundo não categorizado, mas que pode conter eventos atı́picos difı́ceis
de rotular sendo relevante na avaliação de modelos de detecção de anomalias de natureza
genérica. Já a classe blacklist corresponde a interações com domı́nios ou IPs listados em
listas negras, frequentemente usados para evasão ou exfiltração, tornando-se representa-
tiva em estratégias de detecção reativas e proativas.

Adicionalmente, o conjunto de dados CICIDS2017 [Sharafaldin et al. 2018] foi
empregado para reforçar a validação do modelo proposto em amostras distintas de tráfego.
Este dataset é reconhecido na literatura cientı́fica por sua abrangência e padronização,
incorporando tráfego benigno e diversas classes de ataques realistas capturados em um
ambiente controlado que simula uma rede corporativa. Sua estrutura balanceada entre
tráfego normal e malicioso, combinada com caracterı́sticas extraı́das dos fluxos de rede,
torna uma referência consolidada para validação de modelos de detecção de intrusões.

4. Resultados

Para avaliar o desempenho dos modelos, utilizamos curvas ROC por classe. Para cada
classe, as taxas de verdadeiros positivos (TPR = TP / (TP + FN)) e falsos positivos (FPR
= FP / (FP + TN)) são calculadas usando roc curve. O AUC é computado para medir a
capacidade do modelo de distinguir entre classes normais e anômalas. Também geramos

Anais do SBSeg 2025: Artigos Curtos

5



uma curva ROC agregada, considerando todas as classes e utilizando os rótulos binari-
zados para calcular as TPR e FPR em todo o conjunto de dados. A Figura 2 apresenta
as curvas ROC para cada classe, com linhas que indicam o desempenho do modelo em
termos de TPR e FPR. As curvas incluem os valores de AUC para cada classe.

O Eixo X mede a proporção de falsos positivos em relação ao total de negativos
reais, indicando o custo de “alarmar incorretamente”. Já o Eixo Y mede a proporção
de verdadeiros positivos em relação ao total de positivos reais. A linha diagonal reflete
o desempenho de um modelo aleatório (AUC = 0,5). Quanto mais próxima do canto
superior esquerdo, melhor o desempenho. A AUC sintetiza a curva ROC em um único
valor, onde valores próximos a 1 indicam excelente separação. A Figura 2 ilustra as
curvas ROC utilizadas na comparação dos modelos. A curva ROC (a), para anomaly-
spam (AUC = 0,99), mostra excelente separabilidade entre dados normais e tráfego de
spam. A curva (b), background (AUC = 0,90), indica bom desempenho, embora inferior
ao da classe anterior, refletindo possı́vel sobreposição entre padrões. A curva (c), blacklist
(AUC = 0,91), revela desempenho levemente superior ao do background, sendo mais
eficaz na separação de domı́nios bloqueados e tráfego legı́timo. Os resultados sugerem
que a classe anomaly-spam é a mais bem discriminada pelo modelo, sendo a mais indicada
para cenários crı́ticos.

Figura 2. Comparação dos modelos individuais: (a) ROC para anomaly-spam, (b)
background, (c) blacklist.

Comparamos o desempenho ROC para diferentes arquiteturas: Stacking Autoen-
coder (AUC = 0,97), VAE (0,96), GBT (0,91) e o modelo proposto Random Forest Stac-
ked (AUC = 0,90). Embora o modelo proposto apresente AUC inferior, sua arquitetura

Anais do SBSeg 2025: Artigos Curtos

6



favorece interpretabilidade, modularidade e menor custo computacional. Testes mostra-
ram tempo médio de inferência de 34 ms por lote de 512 instâncias, contra até 120 ms ob-
servados com autoencoders profundos. Também analisamos a classe 0 (tráfego benigno),
com AUC de 0,90. A curva revela alta taxa de verdadeiros positivos, com baixo cresci-
mento na taxa de falsos positivos, indicando que o modelo é eficaz também na detecção
de tráfego legı́timo.

Complementarmente à avaliação conduzida no UGR’16, foram realizados expe-
rimentos utilizando o dataset CICIDS2017. Utilizando o mesmo pipeline de ensemble
stacking, os resultados obtidos revelaram melhorias nas principais métricas avaliadas.
Observou-se elevação do AUC de 0,91 para 0,95, aumento da precisão de 0,89 para 0,94,
da revocação de 0,90 para 0,93 e do F1-score de 0,89 para 0,935. A Tabela 1 sintetiza os
resultados comparativos.

Tabela 1. Comparativo de desempenho entre os datasets UGR’16 e CICIDS2017
Métrica UGR’16 CICIDS2017
Área sob a Curva (AUC) 0,91 0,95
Precisão 0,89 0,94
Revocação 0,90 0,93
F1-score 0,89 0,93

Conforme observamos ainda na Tabela 1, a aplicação do pipeline de ensemble
stacking revelou um desempenho progressivamente superior ao longo das iterações, evi-
denciando a robustez do modelo proposto e sua capacidade de generalizar para domı́nios
distintos, mantendo uma boa eficácia mesmo diante de diferentes distribuições estatı́sticas
de tráfego. Os resultados obtidos nas execuções com o CICIDS2017 apontam para
um processo de aprendizado mais estável e com menor variância entre as métricas de
avaliação, com destaque para ganhos consistentes em AUC e F1-score. Embora a maior
regularidade do tráfego benigno e a qualidade da rotulagem dos ataques no CICIDS2017
contribuam para um cenário mais controlado, os ganhos observados decorrem, em grande
medida, da arquitetura técnica do modelo, cuja combinação de detectores complementa-
res potencializa a capacidade discriminativa mesmo em contextos distintos.

5. Conclusão
Os resultados experimentais demonstraram que o modelo proposto possui uma boa capa-
cidade de generalização, mesmo em cenários desbalanceados e de alta complexidade. As
métricas obtidas destacam seu desempenho expressivo, com AUC de 0,99 para a classe
anomaly-spam, 0,90 para background e 0,91 para blacklist. Esses valores reforçam a
eficácia do modelo na discriminação de diferentes padrões de tráfego, consolidando sua
aplicabilidade prática em contextos reais de segurança cibernética.

Adicionalmente, a análise por classe revela elevados ı́ndices de Precisão,
Revocação e F1-score, confirmando a consistência do modelo em múltiplas categorias.
Diferentemente de modelos baseados em redes profundas, como VAE e SAE, o ensemble
proposto oferece vantagens em termos de interpretabilidade, modularidade e escalabili-
dade. Seu tempo médio de inferência, inferior a 35 ms por lote, demonstra sua viabilidade
para aplicações em tempo quase real, com baixo custo computacional e fácil integração
em pipelines de segurança já existentes.
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Em sı́ntese, a abordagem proposta representa um avanço significativo na detecção
de anomalias em tráfego de rede, conciliando alto desempenho, baixo custo operacional
e facilidade de implantação. Para trabalhos futuros, pretendemos explorar mecanismos
de adaptação contı́nua, avaliação em ambientes com tráfego criptografado e integração
com técnicas baseadas em aprendizado profundo para aprimorar ainda mais a precisão e
a abrangência da solução.
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