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Abstract. This work describes an efficient approach for anomaly detection in
hosts, based on the analysis of syscalls sequences. The syscalls are grouped
by threat level and functionality, producing compact representations that are
analyzed by a Transformer model using bigram frequency matrices. Four re-
presentations were evaluated, and the combination of threat and functionality
achieved an F1-score of 0.90, close to the original model (0.92), with over 86%
reduction in execution time, thus maintaining competitive performance at a lower
computational cost.

Resumo. Este trabalho propõe uma abordagem eficiente para detecção de ano-
malias em hosts, baseada na análise de sequências de chamadas de sistema
(syscalls). As syscalls são agrupadas por nível de ameaça e funcionalidade,
gerando representações compactas analisadas por um modelo Transformer sobre
matrizes de frequência de bigramas. Quatro representações foram avaliadas, e
a combinação de ameaça e funcionalidade obteve F1-score de 0,90, próxima
ao modelo original (0,92), com redução superior a 86% no tempo de execução,
mantendo desempenho competitivo com menor custo computacional.

1. Introdução

A segurança da informação tornou-se crucial diante do aumento da quantidade de da-
dos, evolução tecnológica e expansão da Internet, exigindo estratégias eficazes contra
ameaças cibernéticas. Neste cenário, diversas pesquisas pesquisas buscam identificar
padrões anômalos nos dados do sistema para detectar intrusões de forma rápida e eficiente
[Khandelwal et al. 2022].

A análise de logs e registros é uma abordagem tradicional, porém morosa, tediosa
e complexa [Halpern 1987, Beschastnikh et al. 2020]. Isso motivou o desenvolvimento
de técnicas que resumem o comportamento do sistema, facilitando sua interpretação por
humanos e ferramentas automatizadas [Beschastnikh et al. 2020].

Modelos baseados em Transformer têm mostrado bons resultados na detecção
de anomalias [Ott et al. 2021, Guan and Ezzati-Jivan 2021], mas há poucas investigações
sobre métodos de redução de dimensionalidade que agrupem chamadas de sistema sem
perder informações relevantes.
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Este trabalho propõe uma abordagem eficiente para detectar anomalias em hosts
usando Transformer e agrupamento de syscalls com base em risco e funcionalidade. Avalia-
se o impacto desses agrupamentos na precisão e no tempo de detecção. A hipótese é que
o agrupamento reduz a complexidade, priorizando comportamentos suspeitos sem perda
significativa de desempenho.

Este artigo está organizado da seguinte forma: a Seção 2 apresenta o referencial
teórico; a Seção 3 discute os principais trabalhos relacionados; a Seção 4 detalha a proposta;
a Seção 5 descreve a avaliação experimental; e a Seção 6 conclui o artigo.

2. Fundamentação Teórica

Para compreensão dos temas abordados neste trabalho, são apresentados os conceitos fun-
damentais sobre chamadas de sistemas, aprendizado de máquina e o modelo Transformer.

2.1. Chamadas de Sistema

As chamadas de sistema constituem a API (Application Programming Interface) do núcleo
do sistema operacional, permitindo aos aplicativos solicitar ao núcleo a realização de
tarefas específicas ou o acesso a dispositivos do hardware [Love 2010]. Cada syscall
geralmente possui um identificador numérico único, conhecido como “número da syscall”
e faz referência a uma chamada de sistema específica [Love 2010].

As syscalls fornecem uma fonte primária de informações sobre as ações dos
processos no sistema, permitindo a análise detalhada de suas operações, sendo utilizadas
na detecção de anomalias e violações de segurança [Vyšniūnas et al. 2024]. Desde o
trabalho seminal de [Forrest et al. 1996], diversas abordagens têm explorado sua análise
com esse objetivo [Liu et al. 2018, Bridges et al. 2019]. A análise de syscalls oferece uma
granularidade mais fina que a análise de logs, pois esta última pode apresentar dados
diluídos e irrelevantes, além da dificuldade de tratamento dos dados, já que não possuem
formato, estrutura e nível de detalhe padronizados [Zhang et al. 2020].

A frequência e a ordem das syscalls são analisadas para classificar processos como
normais ou anômalos. Entre as técnicas estão modelos de frequência relativa e n-gramas.
Abordagens mais recentes aplicam conceitos de técnicas de recuperação de informação
e processamento de linguagem natural (Natural Language Processing – NLP), tratando
syscalls como palavras e suas sequências como documentos [Osamor and Wellman 2022].

2.2. Aprendizado de Máquina

Aprendizado de máquina permite que computadores aprendam a partir de dados, sem
programação explícita, utilizando algoritmos que simulam aspectos da inteligência humana
[Samuel 1959]. Redes neurais, base do aprendizado profundo (Deep Learning – DL),
extraem representações hierárquicas por meio de arquiteturas com múltiplas camadas
[Bhattacharyya et al. 2020, Bengio 2012].

O DL se destaca por identificar padrões complexos em grandes volumes de dados
por meio da retropropagação [LeCun et al. 2015]. Entre suas principais arquiteturas estão
as redes neurais convolucionais (Convolutional Neural Network – CNN), eficazes no
processamento de dados em matrizes, e a redes neurais recorrentes (Recurrent Neural
Network - RNN), projetadas para sequências temporais. Uma variação importante das
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RNNs são as LSTMs (Long Short-Term Memory), que preservam informações por longos
intervalos, sendo úteis para prever séries temporais [Deep Learning Academy 2022].

Mais recentemente, o modelo Transformer revolucionou o campo ao usar apenas
mecanismos de atenção, eliminando convoluções e recorrências, e reduzindo o tempo de
treinamento [Vaswani et al. 2017]. A autoatenção permite capturar relações contextuais
complexas em sequências [Islam et al. 2024]. Desde sua introdução, o Transformer tem
sido amplamente adotado em tarefas de NLP, visão computacional, processamento de
sinais e multimodalidade [Islam et al. 2024].

3. Trabalhos Relacionados
Para contextualizar o estado da arte e identificar lacunas na literatura, foram selecionados
estudos dos últimos quatro anos sobre o uso de Transformer na detecção de anomalias, com
ênfase em abordagens baseadas em chamadas de sistema, levando em conta a relevância,
originalidade e a proximidade com os objetivos deste trabalho.

[Guan and Ezzati-Jivan 2021] apresentam uma técnica híbrida do uso de LSTM
e Transformer para a detecção de anomalias em syscalls em sistemas Linux, atingindo
92,6% precisão e 93,8% de revocação, superando modelos como regressão logística, SVM,
florestas aleatórias e o próprio LSTM.

[Prasse et al. 2021] comparam CNN, LSTM, Florestas Aleatórias e Transformer na
detecção de padrões de ataque em logs de tráfego de rede. O modelo Transformer superou
os demais na maioria das situações, especialmente quando foi previamente treinado de
forma não supervisionada.

[Fournier et al. 2023] disponibilizam um conjunto de dados com mais de dois
milhões de requisições web para sete comportamentos distintos. Comparando LSTM,
Transformer e LongFormer (variação do Transformer de menor complexidade), os modelos
atingiram F1-score e AuROC maiores que 95% na maioria das classificações. Transformer
obteve melhores resultados em três dos cinco comportamentos anômalos avaliados.

[Alshomrani et al. 2024] apresentam uma análise sobre diversos trabalhos que
utilizaram Transformer na detecção de ameaças de segurança cibernética, destacando sua
eficácia, mas também seu alto custo computacional e demanda por grandes volumes de
dados.

[Ma et al. 2024] realizam uma revisão ampla sobre Transformer em detecção de
anomalias, abordando conceitos, desafios e métricas. Identificam limitações como viés
de distribuição, desequilíbrio de classes e alto consumo de recursos e velocidade lenta.
Embora destaquem a possibilidade de mitigar parte desses problemas com pré-treinamento
e ajustes de variantes mais eficientes com a tarefa real.

4. Proposta
Uma categorização de syscalls de acordo com seus níveis de ameaça e suas funcionalidades
foi proposta por [Heinrich et al. 2024], com base em [Bernaschi et al. 2002]. A Tabela 1
exibe os cinco níveis de ameaça (A–E), sendo que os níveis A, B e C correspondem a
chamadas com ameaça alta, enquanto D e E representam ameaça baixa. Essa classificação
é baseada em correlação, não causalidade – ou seja, o uso de chamadas de alto risco não
implica, por si só, comportamento malicioso, mas um processo que faz várias chamadas
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no nível A, por exemplo, tende a representar ameaça maior que outro que usa apenas
chamadas do nível D [Heinrich et al. 2024].

Tabela 1. Níveis de ameaças das syscalls. Adaptado de [Heinrich et al. 2024].

Grupo Nível Tipo de operação

Alta
A Chamadas que sozinhas são mais frequentes em código malicioso que benigno.
B Chamadas usadas em conjunto mais frequentes em código malicioso que benigno.
C Chamadas que, em código malicioso, são repetidas mais vezes que em benigno.

Baixa
D Chamadas usadas com a mesma frequência em código malicioso e em benigno, e

cuja semântica permite supor que não causa violações de segurança.
E Chamadas não utilizadas/obsoletas.

A divisão por funcionalidade agrupa syscalls por áreas funcionais (dez grupos)
conforme o tipo de operação: manipulação de arquivos, controle de processos, geren-
ciamento de módulos, gerenciamento de memória, operações de tempo, operações de
comunicação, informações do sistema, manipulação de dispositivos, reservado e não imple-
mentado/removido/depuração. Tal divisão permite simplificar a análise e permitir priorizar
áreas com maior risco de exploração.

A substituição das syscalls individuais por suas categorias reduz a dimensionalidade
e o custo computacional, além de padronizar o tratamento de chamadas funcionalmente
equivalentes (por exemplo, read e pread) [Das 2020]. Isso favorece a generalização
dos modelos e melhora a eficiência analítica.

A proposta deste trabalho é realizar detecção de anomalias em hosts por meio da
análise de sequências de syscalls usando o modelo Transformer [Vaswani et al. 2017]. O
trabalho investiga também como o uso de representações categóricas para os dados de
entrada do modelo, com base nas classificações propostas por [Heinrich et al. 2024], im-
pacta o seu desempenho computacional (tempo para treinamento e classificação, consumo
de recursos) e o seu desempenho preditivo, algo que ainda é pouco explorado na literatura.

5. Avaliação Experimental
A proposta apresentada na Seção 4 foi avaliada experimentalmente com o intuito de
verificar sua aplicabilidade, sendo os resultados obtidos apresentados e discutidos.

5.1. Conjunto de dados
Para avaliação experimental, utilizou-se o conjunto de dados ADFA-LD (Australian De-
fense Force Academy Linux Dataset), gerado em um ambiente Linux realista. O conjunto
contém 5.205 sequências de syscalls rotuladas como normais e 746 sequências como
execuções anômalas, com cada syscall representada por um identificador inteiro entre 1 e
340 [Creech and Hu 2013].

As atividades normais envolvem desde navegação na web até configuração de
serviços como Apache, MySQL, FTP, SSH e uma versão da aplicação TikiWiki com
vulnerabilidades conhecidas. Já os ataques incluem força bruta (Hydra FTP/SSH), enge-
nharia social (via Metasploit e Meterpreter), execução remota de código (falha TikiWiki),
escalonamento de privilégios e inclusão remota de arquivos com webshells.
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Embora ADFA-LD não seja um conjuntos de dados recente (2013), ainda é utilizado
para pesquisas de detecção de anomalias, pois possui dados bem coletados e realistas, ca-
racterísticas que tornam a tarefa de aprendizado mais desafiadora e adequada para testar sis-
temas de detecção baseados em chamadas de sistema [Ring et al. 2021, Shin et al. 2019].

5.2. Pré-processamento
O conjunto ADFA-LD contém sequências de syscalls, sem atributos adicionais. Cada
sequência representa a execução de um processo e está rotulada como normal ou anômala.
Uma sequência 𝑆 de chamadas de sistema emitidas por um processo é um vetor 𝑆 =

[𝑠0 𝑠1 𝑠2 · · · ], onde 𝑠𝑖 ∈ N e 1 ≤ 𝑠𝑖 ≤ max representa o identificador numérico de
cada syscall (no ADFA, max = 340). As sequências podem ter tamanhos (número de
syscalls) |𝑆 | distintos, pois correspondem a execuções distintas. Um n-grama 𝐺 é uma
subsequência consecutiva de 𝑆 com tamanho 𝑛, ou seja, um vetor 𝐺 = [𝑠𝑖 · · · 𝑠𝑖+𝑛−1].
Mais especificamente, um bigrama é um n-grama com 𝑛 = 2: [𝑠𝑖 𝑠𝑖+1].

Define-se 𝑓 (𝐺, 𝑆) a frequência de ocorrências do n-grama 𝐺 na sequência de
syscalls 𝑆. No caso simplificado de bigramas, a frequência de cada bigrama em uma
sequência 𝑆 permite construir uma matriz de frequências 𝐹 (𝑆) bidimensional com di-
mensões max × max, onde ∀𝑖, 𝑗 𝐹𝑖 𝑗 (𝑆) = 𝑓 ( [𝑖 𝑗], 𝑆), ou seja, 𝐹𝑖 𝑗 (𝑆) indica o número de
ocorrências do bigrama [𝑖 𝑗] na sequência 𝑆. Essa matriz permite representar a frequência
das sequências de duas chamadas de sistema consecutivas, mantendo esse atributo como
parte da análise.

Este pré-processamento transforma sequências de syscalls variáveis em matrizes
de tamanho fixo, mais adequadas para o treinamento do modelo, preservando a sequência
dos dados de entrada [Hubballi 2012, Wang et al. 2017, Zhong et al. 2023]. Optou-se por
bigramas devido à dimensionalidade dos dados. O uso de sequências maiores, como
trigramas ou 4-gramas, implica um aumento exponencial de recursos computacionais.

5.3. Experimentos
Foram realizados experimentos com quatro variações no pré-processamento dos dados do
conjunto ADFA-LD:

• Original: syscalls originais, com matrizes de frequência com dimensões 340× 340;
• Níveis: syscalls substituídas pelos respectivos níveis de ameaça (Tabela 1), gerando

matrizes de frequência com dimensões 5 × 5;
• Funcionalidades: syscalls substituídas pelas respectivas áreas funcionais, gerando

matrizes de frequência com dimensões 10 × 10;
• Níveis e Funcionalidades: syscalls substituídas pelas combinações de níveis e

funcionalidades, gerando matrizes de frequência com dimensões 50 × 50.
Os experimentos foram realizados em um servidor Ubuntu 24.04.01 com kernel

6.8.0-45, processador de 2,10 GHz, com 32 GB de RAM, 50 GB de disco, Python 3.12.3.
Para cada variação, os dados foram divididos em 70% para treinamento e 30% para teste
no modelo Transformer. Foram mensurados os tempos de pré-processamento, treinamento
e teste, com repetições (mínimo de 5) e coeficiente de variação inferior a 6%.

Como o foco do estudo é o impacto do pré-processamento na representação
dos dados, não foram exploradas otimizações de desempenho, outros modelos ou es-
tratégias contra overfitting. Ainda assim, parâmetros do Transformer foram ajusta-
dos: o d_model foi fixado em 128, equilibrando representação e generalização, a
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função CrossEntropyLoss foi escolhida pela eficácia em cenários desbalanceados,
e foram usadas 75 épocas de treino, conforme estudos anteriores [Vaswani et al. 2017,
Guan and Ezzati-Jivan 2021].

5.4. Resultados e Discussão
Foram realizados experimentos com diferentes pré-processamentos dos dados, cujos resul-
tados estão resumidos na Tabela 2. Mediram-se tempos de execução (pré-processamento,
treinamento e teste), uso máximo de memória RAM e métricas de desempenho de classifi-
cação.

Tabela 2. Resultados dos experimentos.

Categorias Original Níveis Funcionalidades Níveis e
Funcionalidades

Pré-processamento (s) 11,68 1,93 2,25 2,23
Treino (s) 943,41 97,56 102,77 128,52
Teste (s) 1,60 0,14 0,13 0,12
Uso de RAM (MB) 2047 86 88 150
Precisão 0,93 0,70 0,84 0,90
Acurácia 0,97 0,83 0,94 0,96
Recall 0,91 0,85 0,92 0,91
F1 score 0,92 0,73 0,88 0,90

A representação original das syscalls, sem substituições, apresentou os melhores
resultados (acurácia de 0,97 e F1-score de 0,92), sendo registrados apenas 25 falsos
positivos e 37 falsos negativos. No entanto, com custo computacional elevado, devido à
alta dimensionalidade das matrizes (340 × 340), resultando em 956,69 segundos de tempo
total e 2.047 MB de RAM.

A substituição das syscalls por combinações de nível de ameaça e área funcional
manteve desempenho semelhante (F1-score de 0,90), mas com redução expressiva nos
recursos computacionais: tempo total de 130,87 segundos e uso de 150 MB de RAM
– ganhos de mais de 7 e 13 vezes, respectivamente. Enquanto outras representações
como o uso apenas da área funcional ou do nível de ameaça, apresentaram quedas mais
significativas nas métricas, especialmente no último caso (F1-score de 0,73), indicando
perda de informação relevante para a tarefa de detecção de anomalias.

Os resultados evidenciam o potencial do modelo Transformer baseado em bigramas
de chamadas de sistema, destacando que o agrupamento das syscalls pode reduzir substan-
cialmente os custos computacionais sem comprometer significativamente o desempenho.

6. Conclusão
Este trabalho investigou o uso do modelo Transformer com matrizes de frequência de
bigramas de syscalls para detecção de anomalias. Também foram avaliadas as substituições
das syscalls por níveis de ameaça e áreas funcionais, visando reduzir a complexidade e o
volume dos dados.

A abordagem testada no conjunto ADFA-LD, apresentou menor consumo de
recursos computacionais e tempos reduzidos de treinamento e teste, mantendo a eficácia
na detecção de anomalias.
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Como trabalhos futuros, propõe-se explorar novos agrupamentos semântico de
syscalls, variações do modelo Transformer e n-gramas que considerem relações não
necessariamente consecutivas entre chamadas.
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