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Abstract. This work describes an efficient approach for anomaly detection in
hosts, based on the analysis of syscalls sequences. The syscalls are grouped
by threat level and functionality, producing compact representations that are
analyzed by a Transformer model using bigram frequency matrices. Four re-
presentations were evaluated, and the combination of threat and functionality
achieved an F1-score of 0.90, close to the original model (0.92), with over 86%
reduction in execution time, thus maintaining competitive performance at a lower
computational cost.

Resumo. Este trabalho propoe uma abordagem eficiente para detec¢do de ano-
malias em hosts, baseada na andlise de sequéncias de chamadas de sistema
(syscalls). As syscalls sdo agrupadas por nivel de ameaca e funcionalidade,
gerando representacoes compactas analisadas por um modelo Transformer sobre
matrizes de frequéncia de bigramas. Quatro representacoes foram avaliadas, e
a combinacdo de ameaca e funcionalidade obteve F1-score de 0,90, proxima
ao modelo original (0,92), com reducdo superior a 86% no tempo de execugdo,
mantendo desempenho competitivo com menor custo computacional.

1. Introducao

A seguranca da informacao tornou-se crucial diante do aumento da quantidade de da-
dos, evolucao tecnoldgica e expansao da Internet, exigindo estratégias eficazes contra
ameacas cibernéticas. Neste cendrio, diversas pesquisas pesquisas buscam identificar
padrdes andomalos nos dados do sistema para detectar intrusdes de forma répida e eficiente
[Khandelwal et al. 2022].

A anélise de logs e registros € uma abordagem tradicional, porém morosa, tediosa
e complexa [Halpern 1987, Beschastnikh et al. 2020]. Isso motivou o desenvolvimento
de técnicas que resumem o comportamento do sistema, facilitando sua interpretagdo por
humanos e ferramentas automatizadas [Beschastnikh et al. 2020].

Modelos baseados em Transformer t€m mostrado bons resultados na deteccdo
de anomalias [Ott et al. 2021, Guan and Ezzati-Jivan 2021], mas hé poucas investigacoes
sobre métodos de reducao de dimensionalidade que agrupem chamadas de sistema sem
perder informacdes relevantes.
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Este trabalho propde uma abordagem eficiente para detectar anomalias em hosts
usando Transformer e agrupamento de syscalls com base em risco e funcionalidade. Avalia-
se 0 impacto desses agrupamentos na precisio e no tempo de deteccao. A hipétese é que
o agrupamento reduz a complexidade, priorizando comportamentos suspeitos sem perda
significativa de desempenho.

Este artigo estéd organizado da seguinte forma: a Se¢do 2 apresenta o referencial
tedrico; a Secdo 3 discute os principais trabalhos relacionados; a Se¢o 4 detalha a proposta;
a Secdo 5 descreve a avaliagdo experimental; e a Se¢ao 6 conclui o artigo.

2. Fundamentacao Teérica

Para compreensao dos temas abordados neste trabalho, sdo apresentados os conceitos fun-
damentais sobre chamadas de sistemas, aprendizado de maquina e o modelo Transformer.

2.1. Chamadas de Sistema

As chamadas de sistema constituem a API (Application Programming Interface) do nicleo
do sistema operacional, permitindo aos aplicativos solicitar ao nucleo a realizacdo de
tarefas especificas ou o acesso a dispositivos do hardware [Love 2010]. Cada syscall
geralmente possui um identificador numérico unico, conhecido como “nimero da syscall”
e faz referéncia a uma chamada de sistema especifica [Love 2010].

As syscalls fornecem uma fonte primaria de informacdes sobre as acdes dos
processos no sistema, permitindo a andlise detalhada de suas operacdes, sendo utilizadas
na detec¢do de anomalias e violagdes de seguranca [VySniunas et al. 2024]. Desde o
trabalho seminal de [Forrest et al. 1996], diversas abordagens tém explorado sua andlise
com esse objetivo [Liu et al. 2018, Bridges et al. 2019]. A andlise de syscalls oferece uma
granularidade mais fina que a andlise de logs, pois esta ultima pode apresentar dados
diluidos e irrelevantes, além da dificuldade de tratamento dos dados, ja que ndo possuem
formato, estrutura e nivel de detalhe padronizados [Zhang et al. 2020].

A frequéncia e a ordem das syscalls sao analisadas para classificar processos como
normais ou andmalos. Entre as técnicas estdo modelos de frequéncia relativa e n-gramas.
Abordagens mais recentes aplicam conceitos de técnicas de recuperacao de informacao
e processamento de linguagem natural (Natural Language Processing — NLP), tratando
syscalls como palavras e suas sequéncias como documentos [Osamor and Wellman 2022].

2.2. Aprendizado de Maquina

Aprendizado de maquina permite que computadores aprendam a partir de dados, sem
programacao explicita, utilizando algoritmos que simulam aspectos da inteligéncia humana
[Samuel 1959]. Redes neurais, base do aprendizado profundo (Deep Learning — DL),
extraem representacdes hierdrquicas por meio de arquiteturas com multiplas camadas
[Bhattacharyya et al. 2020, Bengio 2012].

O DL se destaca por identificar padrdoes complexos em grandes volumes de dados
por meio da retropropagacdo [LeCun et al. 2015]. Entre suas principais arquiteturas estao
as redes neurais convolucionais (Convolutional Neural Network — CNN), eficazes no
processamento de dados em matrizes, e a redes neurais recorrentes (Recurrent Neural
Network - RNN), projetadas para sequéncias temporais. Uma variacdo importante das
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RNNs sao as LSTMs (Long Short-Term Memory), que preservam informacdes por longos
intervalos, sendo tteis para prever séries temporais [Deep Learning Academy 2022].

Mais recentemente, o modelo Transformer revolucionou o campo ao usar apenas
mecanismos de aten¢do, eliminando convolugdes e recorréncias, e reduzindo o tempo de
treinamento [Vaswani et al. 2017]. A autoaten¢do permite capturar relacdes contextuais
complexas em sequéncias [Islam et al. 2024]. Desde sua introducdo, o Transformer tem
sido amplamente adotado em tarefas de NLP, visdo computacional, processamento de
sinais e multimodalidade [Islam et al. 2024].

3. Trabalhos Relacionados

Para contextualizar o estado da arte e identificar lacunas na literatura, foram selecionados
estudos dos ultimos quatro anos sobre o uso de Transformer na detec¢ao de anomalias, com
énfase em abordagens baseadas em chamadas de sistema, levando em conta a relevancia,
originalidade e a proximidade com os objetivos deste trabalho.

[Guan and Ezzati-Jivan 2021] apresentam uma técnica hibrida do uso de LSTM
e Transformer para a deteccdo de anomalias em syscalls em sistemas Linux, atingindo
92,6% precisao e 93,8% de revocacio, superando modelos como regressao logistica, SVM,
florestas aleatdrias e o proprio LSTM.

[Prasse et al. 2021] comparam CNN, LSTM, Florestas Aleatdrias e Transformer na
deteccao de padrdes de ataque em logs de trafego de rede. O modelo Transformer superou
os demais na maioria das situacdes, especialmente quando foi previamente treinado de
forma ndo supervisionada.

[Fournier et al. 2023] disponibilizam um conjunto de dados com mais de dois
milhdes de requisicoes web para sete comportamentos distintos. Comparando LSTM,
Transformer e LongFormer (variacdo do Transformer de menor complexidade), os modelos
atingiram F1-score e AuROC maiores que 95% na maioria das classificacdes. Transformer
obteve melhores resultados em trés dos cinco comportamentos andmalos avaliados.

[Alshomrani et al. 2024] apresentam uma andlise sobre diversos trabalhos que
utilizaram Transformer na deteccao de ameacas de segurancga cibernética, destacando sua
eficdcia, mas também seu alto custo computacional e demanda por grandes volumes de
dados.

[Ma et al. 2024] realizam uma revisdo ampla sobre Transformer em detec¢ao de
anomalias, abordando conceitos, desafios e métricas. Identificam limitagdes como viés
de distribui¢do, desequilibrio de classes e alto consumo de recursos e velocidade lenta.
Embora destaquem a possibilidade de mitigar parte desses problemas com pré-treinamento
e ajustes de variantes mais eficientes com a tarefa real.

4. Proposta

Uma categorizagdo de syscalls de acordo com seus niveis de ameaca e suas funcionalidades
foi proposta por [Heinrich et al. 2024], com base em [Bernaschi et al. 2002]. A Tabela 1
exibe os cinco niveis de ameaca (A—E), sendo que os niveis A, B e C correspondem a
chamadas com ameaca alta, enquanto D e E representam ameaca baixa. Essa classificacdo
¢ baseada em correlacdo, ndo causalidade — ou seja, o uso de chamadas de alto risco ndo
implica, por si s6, comportamento malicioso, mas um processo que faz varias chamadas
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no nivel A, por exemplo, tende a representar ameaga maior que outro que usa apenas
chamadas do nivel D [Heinrich et al. 2024].

Tabela 1. Niveis de ameacas das syscalls. Adaptado de [Heinrich et al. 2024].

Grupo Nivel Tipo de operacio

A Chamadas que sozinhas sdo mais frequentes em c6digo malicioso que benigno.
Alta B Chamadas usadas em conjunto mais frequentes em c6digo malicioso que benigno.

C Chamadas que, em cédigo malicioso, sdo repetidas mais vezes que em benigno.

D Chamadas usadas com a mesma frequéncia em cédigo malicioso e em benigno, e
Baixa cuja semantica permite supor que ndo causa violagdes de seguranca.

E Chamadas nao utilizadas/obsoletas.

A divisao por funcionalidade agrupa syscalls por areas funcionais (dez grupos)
conforme o tipo de operacdo: manipulacdao de arquivos, controle de processos, geren-
ciamento de mdédulos, gerenciamento de memoria, operagcdes de tempo, operacdes de
comunicacao, informagdes do sistema, manipulagdo de dispositivos, reservado e ndo imple-
mentado/removido/depuracdo. Tal divisdo permite simplificar a anélise e permitir priorizar
dreas com maior risco de exploracao.

A substituicao das syscalls individuais por suas categorias reduz a dimensionalidade
e o custo computacional, além de padronizar o tratamento de chamadas funcionalmente
equivalentes (por exemplo, read e pread) [Das 2020]. Isso favorece a generalizacao
dos modelos e melhora a eficiéncia analitica.

A proposta deste trabalho € realizar deteccdo de anomalias em hosts por meio da
andlise de sequéncias de syscalls usando o modelo Transformer [Vaswani et al. 2017]. O
trabalho investiga também como o uso de representacdes categoricas para os dados de
entrada do modelo, com base nas classificacdes propostas por [Heinrich et al. 2024], im-
pacta o seu desempenho computacional (tempo para treinamento e classificagdo, consumo
de recursos) e o seu desempenho preditivo, algo que ainda € pouco explorado na literatura.

5. Avaliacao Experimental

A proposta apresentada na Secdo 4 foi avaliada experimentalmente com o intuito de
verificar sua aplicabilidade, sendo os resultados obtidos apresentados e discutidos.

5.1. Conjunto de dados

Para avaliacdo experimental, utilizou-se o conjunto de dados ADFA-LD (Australian De-
fense Force Academy Linux Dataset), gerado em um ambiente Linux realista. O conjunto
contém 5.205 sequéncias de syscalls rotuladas como normais e 746 sequéncias como
execucdes andOmalas, com cada syscall representada por um identificador inteiro entre 1 e
340 [Creech and Hu 2013].

As atividades normais envolvem desde navegacdo na web até configuracdo de
servicos como Apache, MySQL, FTP, SSH e uma versao da aplicacdao TikiWiki com
vulnerabilidades conhecidas. J4 os ataques incluem for¢a bruta (Hydra FTP/SSH), enge-
nharia social (via Metasploit e Meterpreter), execu¢do remota de cédigo (falha TikiWiki),
escalonamento de privilégios e inclusdo remota de arquivos com webshells.
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Embora ADFA-LD nio seja um conjuntos de dados recente (2013), ainda € utilizado
para pesquisas de deteccdo de anomalias, pois possui dados bem coletados e realistas, ca-
racteristicas que tornam a tarefa de aprendizado mais desafiadora e adequada para testar sis-
temas de deteccdo baseados em chamadas de sistema [Ring et al. 2021, Shin et al. 2019].

5.2. Pré-processamento

O conjunto ADFA-LD contém sequéncias de syscalls, sem atributos adicionais. Cada
sequéncia representa a execugao de um processo e estd rotulada como normal ou anomala.
Uma sequéncia S de chamadas de sistema emitidas por um processo € um vetor § =
[so 51 52 ---], onde s5; € Ne 1l < 5; < max representa o identificador numérico de
cada syscall (no ADFA, max = 340). As sequéncias podem ter tamanhos (nimero de
syscalls) |S| distintos, pois correspondem a execugdes distintas. Um n-grama G é uma
subsequéncia consecutiva de S com tamanho 7, ou seja, um vetor G = [s; - Sizn—1].

Mais especificamente, um bigrama é um n-grama com n = 2: [s; S;41].

Define-se f(G,S) a frequéncia de ocorréncias do n-grama G na sequéncia de
syscalls S. No caso simplificado de bigramas, a frequéncia de cada bigrama em uma
sequéncia S permite construir uma matriz de frequéncias F(S) bidimensional com di-
mensdes max X max, onde Vi, j F;;(S) = f([i j],S), ou seja, F;;(S) indica o niimero de
ocorréncias do bigrama [i j] na sequéncia S. Essa matriz permite representar a frequéncia
das sequéncias de duas chamadas de sistema consecutivas, mantendo esse atributo como
parte da andlise.

Este pré-processamento transforma sequéncias de syscalls varidveis em matrizes
de tamanho fixo, mais adequadas para o treinamento do modelo, preservando a sequéncia
dos dados de entrada [Hubballi 2012, Wang et al. 2017, Zhong et al. 2023]. Optou-se por
bigramas devido a dimensionalidade dos dados. O uso de sequéncias maiores, como
trigramas ou 4-gramas, implica um aumento exponencial de recursos computacionais.

5.3. Experimentos

Foram realizados experimentos com quatro variacdes no pré-processamento dos dados do
conjunto ADFA-LD:

* Original: syscalls originais, com matrizes de frequéncia com dimensdes 340 x 340;

* Niveis: syscalls substituidas pelos respectivos niveis de ameaca (Tabela 1), gerando
matrizes de frequéncia com dimensdes 5 X 35;

» Funcionalidades: syscalls substituidas pelas respectivas dreas funcionais, gerando
matrizes de frequéncia com dimensdes 10 x 10;

* Niveis e Funcionalidades: syscalls substituidas pelas combinacdes de niveis e
funcionalidades, gerando matrizes de frequéncia com dimensdes 50 x 50.

Os experimentos foram realizados em um servidor Ubuntu 24.04.01 com kernel
6.8.0-45, processador de 2,10 GHz, com 32 GB de RAM, 50 GB de disco, Python 3.12.3.
Para cada variacdo, os dados foram divididos em 70% para treinamento e 30% para teste
no modelo Transformer. Foram mensurados os tempos de pré-processamento, treinamento
e teste, com repeti¢cdes (minimo de 5) e coeficiente de variacao inferior a 6%.

Como o foco do estudo € o impacto do pré-processamento na representacao
dos dados, nao foram exploradas otimiza¢des de desempenho, outros modelos ou es-
tratégias contra overfitting. Ainda assim, parametros do Transformer foram ajusta-
dos: o d_model foi fixado em 128, equilibrando representacdao e generalizagdo, a
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funcdo CrossEntropyLoss foi escolhida pela eficidcia em cendrios desbalanceados,
e foram usadas 75 épocas de treino, conforme estudos anteriores [Vaswani et al. 2017,
Guan and Ezzati-Jivan 2021].

5.4. Resultados e Discussao

Foram realizados experimentos com diferentes pré-processamentos dos dados, cujos resul-
tados estdo resumidos na Tabela 2. Mediram-se tempos de execug¢do (pré-processamento,
treinamento e teste), uso maximo de memoéria RAM e métricas de desempenho de classifi-
cacao.

Tabela 2. Resultados dos experimentos.

. . . o . . Niveis e
Categorias Original Niveis Funcionalidades Funcionalidades
Pré-processamento (s) 11,68 1,93 2,25 2,23
Treino (s) 943,41 97,56 102,77 128,52
Teste (s) 1,60 0,14 0,13 0,12
Uso de RAM (MB) 2047 86 88 150
Precisio 0,93 0,70 0,84 0,90
Acuracia 0,97 0,83 0,94 0,96
Recall 0,91 0,85 0,92 0,91
F1 score 0,92 0,73 0,88 0,90

A representacao original das syscalls, sem substituicdes, apresentou os melhores
resultados (acuricia de 0,97 e Fl-score de 0,92), sendo registrados apenas 25 falsos
positivos e 37 falsos negativos. No entanto, com custo computacional elevado, devido a
alta dimensionalidade das matrizes (340 X 340), resultando em 956,69 segundos de tempo
total e 2.047 MB de RAM.

A substituicao das syscalls por combinacdes de nivel de ameaca e drea funcional
manteve desempenho semelhante (F1-score de 0,90), mas com redug@o expressiva nos
recursos computacionais: tempo total de 130,87 segundos e uso de 150 MB de RAM
— ganhos de mais de 7 e 13 vezes, respectivamente. Enquanto outras representacdes
como o uso apenas da drea funcional ou do nivel de ameaca, apresentaram quedas mais
significativas nas métricas, especialmente no dltimo caso (F1-score de 0,73), indicando
perda de informacdo relevante para a tarefa de deteccao de anomalias.

Os resultados evidenciam o potencial do modelo Transformer baseado em bigramas
de chamadas de sistema, destacando que o agrupamento das syscalls pode reduzir substan-
cialmente os custos computacionais sem comprometer significativamente o desempenho.

6. Conclusao

Este trabalho investigou o uso do modelo Transformer com matrizes de frequéncia de
bigramas de syscalls para deteccdo de anomalias. Também foram avaliadas as substitui¢des
das syscalls por niveis de ameaca e areas funcionais, visando reduzir a complexidade e o
volume dos dados.

A abordagem testada no conjunto ADFA-LD, apresentou menor consumo de
recursos computacionais e tempos reduzidos de treinamento e teste, mantendo a eficicia
na detec¢do de anomalias.
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Como trabalhos futuros, propde-se explorar novos agrupamentos semantico de
syscalls, variagdes do modelo Transformer e n-gramas que considerem relagdes ndo
necessariamente consecutivas entre chamadas.
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